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Abstract: As the need for medical services has grown in recent years, medical image critical point
detection has emerged as a new subject of research for academics. In this paper, a search decision
network method is proposed for medical image landmark detection. Unlike the conventional coarse-
to-fine methods which generate bias prediction due to poor initialization, our method is to use
the neural network structure search strategy to find a suitable network structure and then make
reasonable decisions for robust prediction. To achieve this, we formulate medical landmark detection
as a Markov decision process and design a shooting reward function to interact with the task. The task
aims to maximize the discount of the received value and search for the optimal network architecture
over the entire search space. Furthermore, we embed the central difference convolution, which
typically extracts the data invariant feature representation, into the architectural search space. In
experiments using standard accessible datasets, our approach achieves a detection accuracy of 98.59%
in the 4 mm detection range. Our results demonstrate that, on standard datasets, our proposed
approach consistently outperforms the majority of methods.

Keywords: neural architecture search; medical landmark detection; reinforcement learning

1. Introduction

Recently, orthodontics is one of the most popular surgeries, which improves patients’
facial appearance. A successful orthodontics surgery requires reliable and precise preoper-
ative preparation. The stomatologist analyzes the orthodontic patient’s tooth angle and
linear measurement of the point position through the anatomical landmarks annotated
(Figure 1) in the skull X-ray images, makes a clinical diagnosis, and formulates an accu-
rate and effective treatment plan according to the measurement results [1]. However, the
manual annotation of the landmarks still requires time, even among seasoned medical
professionals. Hence, fully automatic and accurate cephalometric landmark detection is
currently the main research.

Many methods have been devoted to automatic cephalometric landmark detection.
Deep learning-based techniques and conventional image-based strategies are the two basic
types of landmark detection. The more widely used techniques for detecting images include
pixel classification [2,3] and random forest regression [4,5], which are based primarily on
statistical a priori information. Deep learning techniques have been extensively applied
in recent years to issues with medical image analysis. Deep learning techniques perform
landmark detection tasks on medical images far more accurately than conventional machine
learning techniques [6–10]. For the first time, Lee et al. utilized the deep learning approach
to cephalometric landmark detection [6]. In order to identify different landmarks on MR
images of the brain, Zhang et al. integrated two deep CNN networks, one of which was
used to regress the coordinates of image landmarks and the other to learn the correlation
between local image patches and the target anatomical landmarks [7]. Regarding the pro-
posed U-net network, U-net is also widely used in medical image landmark detection [11].
Zhong et al. proposed two U-nets to produce ‘coarse’ and ‘fine’ heatmap predictions
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of landmark locations [8]. In simultaneously classifying and identifying landmarks of
abdominal ultrasound images using a single network, Xu et al. presented a multi-task
learning (MTL) strategy. They discovered that the training method of the multi-task net-
work outperformed the single-task processing method [9]. Payer et al. implicitly modeled
the relationships by a spatial configuration block [12]. Anatomical landmarks are often
found close to the margin of a particular anatomical area, and Chen et al. developed a
cascaded two-stage U-Net network based on this idea for heat map regression [13]. Liu
et al. evaluated the clinically significant correlations between the landmarks and position-
constrained landmarks with the clinically significant associations, then generated both heat
maps and position-constrained vectors for the landmarks [10]. However, the researchers
personally created each of the aforementioned neural network architectures. It would not
be best to deploy neural network designs that were manually created. On account of this,
neural network architectures that can automatically determine the most effective medical
landmark regression under the supervised signal of the pertinent task should be taken
into consideration.

Figure 1. Doctors perform linear measurements based on the positions of the annotated landmarks.
ANB = ∠L5L2L6, the angle between the landmark 5, 2 and 6. SNB = ∠L1L2L6, the angle between the
landmarks 1, 2 and 6. SNA = ∠L1L2L5, the angle between the landmark 1, 2 and 5.

Manually created regression detection networks with excellent performance need
significant skill and a large number of comparing experiments to evaluate the network’s
relevant parameters. As a result, the majority of researchers presently use pre-existing
networks (such as U-Net [11] and ResNet [14]) and build on top of them with different
modifications for different tasks. Therefore, Zoph et al. presented the neural architecture
search (NAS) approach, which intends to automatically search for more appropriate neu-
ral network architectures for learning than those created manually by experts [15]. The
controller is principally responsible for the reinforcement-based strategy for producing
new designs for training and assessing the performance of the search architecture. As a
reward for architectural search training, the controller utilizes the accuracy of the search
architectures on the validation set. NAS has proven to be quite effective in natural image
recognition, and researchers are now adapting it to medical image analysis, such as medical
segmentation [16] and medical object detection [17].
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In this work, we present using reinforcement learning to optimize the loss function
and search for accurate and reliable neural network architectures to evaluate the accuracy of
regression image landmarks. Specifically, we employ a neural architecture search approach
that is based on the optimization of a reinforcement learning algorithm. We propose medical
landmark detection as a Markov decision process. To achieve the accuracy of landmark
regression, we created the shooting reward function, a learnable reward function that con-
trols the neural network architecture to search and then optimizes the regression process for
training landmarks. Compared with vanilla convolution, central difference convolution can
better extract semantic information and gradient-level details. Hence, we add central differ-
ence convolution in vanilla convolution to extract the data-invariant feature representation.
Relevant experiments were carried out using a widely used publicly available dataset, and
the experimental findings demonstrated the reliability of the proposed approach.

The main contributions of this work are summarized two-fold:

• We propose an intelligent shooting reward learning network to regress the medical
landmark. Benefiting from the full access to all landmarks, our method simultaneously
achieves the invariant feature representation and makes reasonable decisions for
robust prediction.

• Moreover, the central difference convolution is introduced inside our model, replacing
the vanilla convolution to extract the data invariant feature representation. Hence, our
method extracts the semantic information and gradient-level detailed messages for
robust medical landmark regression.

• Experimentally, we present folds of comparisons with the state of the art and ablation
studies on different components. Both the quantitative and qualitative results indicate
the effectiveness of the proposed method on the standard dataset.

The remainder of the paper is organized as follows. In Section 2, we give more related
work related to medical landmark detection. In Section 3, we discuss the components
of our shooting reward learning network algorithm and develop the guidelines for the
reward function and network architecture, searching to achieve algorithm stability and
robustness based on the theoretic analysis. Section 4 presents our model and discusses the
experimental results. Finally, we conclude our work and discuss further work in Section 5.

2. Related Work

In this subsection, we briefly review the related literature on landmark detection.
Conventional landmark detection. Image landmark detection is widely used in face-

alignment tasks. In face-alignment research, cascaded regression is widely used to map
landmark feature localization to shape. In the initial detection of landmarks in medical
images, methods such as pixel classification and random forest regression are mainly
used. These methods utilize prior knowledge in statistics to be data driven to explore
mathematical relationships between landmarks. However, there are some problems with
both face-alignment and landmark-detection methods in medical images. Essentially,
the features of images are extracted manually, which requires professional experts and
consumes a lot of time. Furthermore, the mapping of linear features cannot handle the
localization of landmarks in complex scenes, and the prediction stability of these methods
is relatively poor. Hence, proposing a stable and robust method for landmark detection is
an extremely challenging task.

Deep Learning-based landmark detection. Deep learning networks have been used
to address the issue of landmark recognition in recent years [18], mostly in an end-to-end
manner with better nonlinear capabilities for image-to-shape mapping. Deep neural net-
works learn adaptive feature representations directly from raw image pixels and greatly
improved model robustness. For example, Zhang et al. proposed a deep cascade convo-
lutional network, which, with the powerful feature extraction ability of a convolutional
neural network and improved the detection accuracy of landmarks [7]. Lee et al. [19]
applied a deep learning network to cephalometric landmark detection for the first time,
which proposes an end-to-end deep learning system for cephalometric landmark detection.
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The landmark detection methods based on deep learning can be divided into those based
on coordinate regression, heatmap regression, and graph network regression.

Dollar et al. [20] presented cascaded pose regression (CPR) which gradually refines a
specified initial prediction value through a series of regressors, where each regressor relies
on the output of the previous regressor to perform a simple image operation. The whole
system can automatically learn from the training samples. Zhang et al. [21] proposed a
multi-task cascaded convolutional network (MTCNN) that can handle both face detection
and alignment. MTCNN adopts an online selection method to improve network perfor-
mance, which can select difficult samples during the training process. However, these
methods provide less supervision information during the training process, and the model
converges slowly. To address the problem, heatmap-based approaches [10,13,22,23] have
also been proposed for landmark detection on a large scale. The deep learning network
based on heatmap directly regresses the probability of each class of landmarks, providing
supervision information. The network converges faster, and at the same time, predicting the
position of each pixel can improve the positioning accuracy of landmarks. Kowalski et al.
proposed a new heatmap-based cascaded deep neural network (DAN), which can effec-
tively overcome the problems caused by pose changes and initialization by taking the entire
image as input. Since the U-net is widely used in the field of medical image processing,
the landmark detection of medical images uses the U-net network to predict the landmark
heatmap and then process the final landmark position. Yao et al. [24] implemented a
multi-task U-net to predict both heatmaps and offset maps simultaneously. Zhu et al. [25]
developed a general anatomical landmark detection model to implement hybrid-based end-
to-end training for multiple landmark detection tasks, and the model design requires much
fewer parameters than models with standard convolutions. It is well known that all current
fully supervised image landmark detection methods require professional doctors to label
training data, which usually consumes considerable time and cost. Hence, Yao et al. [26]
proposed a self-supervised novel framework named cascade comparing to detect (CC2D)
for one-shot landmark detection. The task of landmark localization is particularly suitable
for modeling graph networks, and graph modeling is performed based on the positional
relationship between landmarks and landmarks [27–30]. Zhou et al. [30] presented the
exemplar-based graph matching (EGM) network, using network learned shape constraints
to model graph network structure matching and directly obtain optimal landmark configu-
rations. Li et al. [31] proposed a topology-adaptive deep graph learned end-to-end network
by two graph convolutional networks (GCNs) to construct graph signals using local image
features and global shape features.

Neural Architecture Search. Recently, many research studies have been conducted
on automatic neural architecture search methods [15,32–37], and neural architecture search
(NAS) is gradually being applied to many computer vision tasks [38], such as image classi-
fication [39], object detection [40] or image segmentation [16]. Meanwhile, current neural
architecture search algorithms are based on reinforcement learning (RL) [41], the evolu-
tionary algorithm (EA) [42], and the gradient-based method [43]. In RL-based methods,
Baker et al. [41] model the network architecture search as a Markov decision process,
using RL methods (specifically, the Q-learning algorithm) to generate CNN architectures.
For each layer of CNN, learn to choose the type of layer and corresponding parameters.
The evaluation accuracy obtained after training after generating the network structure is
rewarded. Liu et al. [43] mixed the candidate operations using the softmax function. In
this way, the search space becomes a continuous space, and the objective function becomes
a differentiable function. Gradient-based optimization methods can be used to find the
optimal structure. After the search is over, these mixed operations are replaced by the
operations with the largest weight to form the final result network. After that, NAS was
gradually applied to the field of medical image segmentation. Yan et al. [44] proposed a
multi-scale NAS framework with a multi-scale search space from the network backbone to
cell operations and a multi-scale fusion function that fuses features of different sizes. Utilize
partial connectivity and two-step decoding to reduce computational overhead while main-
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taining optimal quality. Zhu et al. formulated structural learning as a differentiable neural
architecture search and let the network itself choose between 2D, 3D, or Pseudo-3D (P3D)
convolutions at each layer [45]. Kim et al. [46] proposed a neural architecture search (NAS)
framework for 3D medical image segmentation, where the NAS framework searches the
structure of each layer in the encoder and decoder. Yu et al. [16] presented a coarse-to-fine
neural architecture search (C2FNAS) to automatically search 3D segmentation networks
from scratch to address inconsistencies in network size or input size. In this work, our
method automatically searches for a task-adapted neural network architecture by designing
an excitation function and providing a well-initialized parameter during training.

3. Our Proposed Shooting Reward Learning Network

As shown in Figure 2, we present a reinforcement learning-based neural network
architectural search technique for searching the regression neural network for the optimal
landmarks. Moreover, we create a new learnable reward mechanism function that serves
as an effective supervisory signal for neural architecture search and regression network
training. Technically, we formulate medical landmark detection as a Markov decision
process and leverage reinforcement learning algorithms to incorporate NAS with the medi-
cal image landmark regression task. We present central difference convolution, replacing
vanilla convolution because central difference convolution can extract the intensity-level
semantic information and gradient-level detailed information.

Figure 2. The overall framework of our method. We design a reward (shooting reward) and exploit a
neural architecture search algorithm (reinforcement learning-based with LSTM controller) beyond a
search space.

3.1. Central Difference Convolution

Following the convention of NAS, the generated building blocks for the outside
network are called cells [47]. The down-sampling and up-sampling blocks are named
down-sampling cell (DC) and up-sampling cell (UC), respectively. We design two types of
cell architectures called DC and UC based on a multi-task U-Net backbone [24]. Central
difference convolution can extract the data invariant feature representation [48]. Semantic
information and gradient-level detail information are critical for the regression of medical
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image landmarks in medical images, which indicates that combining vanilla convolution
with central differential convolution may yield more robust regression network models.
Hence, we generalize central difference convolution as [48]

y(p0) = θ · ∑
pnεR

w(pn) · (x(p0 + pn)− x(p0)) + (1− θ) · ∑
pnεR

w(pn) · (x(p0 + pn). (1)

where p0 denotes the current location on both input and output feature maps, while pn
enumerates the locations in R.

We replace the vanilla convolution in the backbone network’s up and down sampling
with central difference convolution (CDC), and we also replace the vanilla convolution in
the network’s deep network with CDC.

3.2. Markov Decision Process Formulation

Inspired by the reinforcement learning for face-alignment tasks, in this work we pro-
pose medical landmark detection as a Markov decision process [49]. We define
L = [L1, L2, · · · , LI ] ∈ R2×I as a location vector of I points, where Li denotes for the
horizontal and vertical coordinates of the i-th landmark, given a medical image I. All
ground truth landmarks should be represented by the vector LGT = [LGT

1 , LGT
2 , · · · , LGT

I ].
In this work, a Markov decision process is realized through the definition of an agent. We
constrain the full procedure to have both an action space A and a discrete, finite state space
S. The agent can select from a finite set of actions, A(si) ⊆ A, for each state si ∈ S. With
probability, an agent in state si will transition to state sj after performing action α ⊆ A(si).
The agent is rewarded at each time step t, depending on the transition from state s to state s′

and the action α. Maximizing the total anticipated reward along the whole available struc-
ture approaches is the agent’s purpose. Starting from a certain state si, perform action α in
accordance with policy π. Bellman’s Equation, often known as the recursive maximization
equation, can be articulated as

Q∗π(si, α) = Esj |si ,α[Er|si ,α,sj
[r|si, α, sj] + γ max

α′∈A(sj)
Q∗π(si, α′)]. (2)

The Bellman equation could frequently be formulated as an iterative update [41]:

Qt+1(si, α) = (1− β)Qt(si, α) + β[Rt + γ max
α′∈A(sj)

Q∗π(si, α′)]. (3)

where Rt stands for the agent’s reward and Q∗(si, α) is the maximum total expected reward.
Consequently, Q∗(si, α) is referred to as the Q-values. The weight provided to fresh knowledge
over old information is determined by the Q-learning rate (β), while the weight given to
immediate rewards over long-term rewards is determined by the discount factor (γ).

We evaluate each candidate’s quality value using the searched network and choose a
course of action based on policy π:

πθc(s) = max
α∈A(sj)

Q∗π(si, α) (4)

where θc denotes the network architecture parameters for the entire search.
Shooting reward. We modified the distance between the anticipated regression land-

mark and the target in different places after assessing the model’s performance, and we
assigned various rewards depending on where the regression landmark was located. If
we utilize ground truth as the target for the landmark detection task, landmark detection
becomes identical to a shooting game that is repeatedly played to achieve the goal of get-
ting nearer to the target. Therefore, to concurrently maximize both processes of learning a
landmark loss function and routing a reliable regression network architecture, we designed
a learnable incentive (shooting reward Figure 3). In particular, the reward function is
intended to quantify the SDR evaluation index, which is defined as follows:
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di = θ|−→Li −
−−→
LGT

i |. (5)

R =


10 di < 2.0 mm
8 2.0 mm ≤ di < 2.5 mm
6 2.5 mm ≤ di < 3.0 mm
3 3.0 mm ≤ di < 4.0 mm

Rt =
1
n

n

∑
i=1

R. (6)

where θ is the pixel spacing and Lox
n ,L

oy
n are the horizontal and vertical differences between

the predicted landmarks and the ground truth, respectively.

Figure 3. Schematic of shooting reward. We take the target point as the center of the circle, and
according to the SDR evaluation index of the data, we divide four regions with the radii of 2.0 mm,
2.5 mm, 3.0 mm, and 4.0 mm. The red points represent the ground truth, and the yellow points
represent the landmarks predicted by the model. The predicted landmarks fall into different regions
to give them different rewards.

3.3. Search Strategy

Using a reinforcement learning technique, the agent sequentially selects structures
until it reaches a termination state. The verification accuracy and architectural description
are deposited in the long short-term memory (LSTM), and the knowledge is sampled from
the LSTM on a regular basis to update the Q-value via Equation (3). A neural network with
that architecture is created after the controller LSTM has completed deriving it. The model
calculates its accuracy on a constant validation sample during the search. The controller
LSTM’s relevant settings are then optimized to enhance the anticipated validation accuracy
of the search architecture. The controller’s predicted list of operations may be construed as
a set of procedures a1:T for generating a sub-network architecture. We will train the LSTM
controller based on the shooting reward and deploy it as a signal for the search architecture.

We utilize Williams’ reinforcement rule in this work. Since the reward signal cannot
be differentiated, we iteratively update θc using the strategic gradient approach [15]:

∇θc J(θc) =
1
m

m

∑
k=1

T

∑
t=1
∇θc log P(at|a(t−1):1; θc)(Rt − b). (7)

where T is the total amount of hyperparameters our controller will predict in order to
create a neural network architecture, and m is the total number of designs the controller
samples in a batch. After being trained on a training dataset, the k-th neural network
design achieves the validation accuracy of Rt, and b is an exponential moving average of
the validation accuracy of the preceding architectures.
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We design to embed the CDC operation within the search space in order to automat-
ically search a network architecture with promising performance. The specification of a
hybrid module, which is the basic computational component in both downsampling cells
and upsampling cells, is the first element in explaining the searching space [23]. The hybrid
module combines N0 with several operations (OPs), all of which are guaranteed to have the
same output structure. There is a parameter α that is assigned a weight to the output of each
OPi, where i ∈ [1, N0]. The optimizers will enhance the α, whose bonded OPs affected the
hybrid module more as the search process progressed, and decrease the other α that belong
to a less significant OPs. In this research, we present two different types of hybrid modules,
the DC and UC. As a consequence, our approach concentrates on selecting the optimal DC
and UC design. Table 1 lists the alternative search subspace DC and UC operations.

Table 1. Operation candidates for down-sampling cell and up-samping cell.

Operation Candidates Down-Sampling Cell Up-Sampling Cell

1 avg-pool up-cweight
2 max-pool up-dep-conv
3 down-cweight up-CDC
4 down-dil-conv up-dil-conv
5 down-dep-conv -
6 down-CDC -

The CDC, in addition to a number of frequently used candidate operations, such as
3 × 3 dilated convolution, 3 × 3 and 5 × 5 depthwise separable convolution, 3 × 3 cweight
operation, 2 × 2 pooling operation, and skip connection, make up the search space for the
DC and UC.

Algorithm 1 details the training procedure of our shooting reward learning network (SRLN).

Algorithm 1: SRLN

Input: Training set:LN
i with N samples, T = 300, t = 75. sharing parameters ω,

LSTM controller parameters θc.
Output: SRLN model
searching step:
for Epoch = 1, . . . , T do

Initialize ω and θc;
A random selection of network architectures a1;
Update ω and θc on training sample;
Compute Reward Rt via Equations (5) and (6);
Optimize ω and θc by Maximizing the function Equation (7);
Update parameters and the search network parameters;

end
training step:
for Epoch = 1, . . . , T do

for t = 1, . . . , t do
Load the searched network architecture at;
Initialize searched network with θc and ω;
Execute action αt and the new state st;
Compute Reward Rt via Equations (5) and (6);
Update αt+1 = πθc(st) based on Equation (4);
Optimize π and θc by Maximizing the function Equation (3);
Update αt+1 = πθc(st) based on Equation (4);

end
end
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4. Performance Evaluation

In this section, we qualitatively and quantitatively evaluate our model and compare it
with the public methods on a standard X-ray dataset. In addition, we perform an ablation
experiment to show how certain components enhance the effectiveness of our model.

4.1. Setting

All of our experiments were completed on an NVIDIA RTX 3090 GPU and were
performed in Pytorch 1.8.0. A setup of 300 epochs was selected for the search neural
network architecture task, and 300 epochs were set for neural network training. The training
network and the search neural network design both have a batch size of two. We used the
ADAM optimizer for both search and training throughout the process. Additionally, the
maximum validation accuracy of the previous five epochs is the shooting reward utilized
to update the NAS controller. During model training, we use the loss function to optimize
the gradient and use the shooting reward to show the training accuracy of the model, as
shown in Figure 4.

4.1.1. Dataset

We made use of the 400 X-ray images from the IEEE ISBI 2015 Challenge, a widely used
public dataset for cephalometric landmark recognition. For each X-ray image, 19 landmarks
of clinical anatomical relevance were identified by two experienced doctors (Table 2). A
training set of 150 images, a test set of 150 images, and a test set of 100 images, respectively,
are separated from the dataset.

Table 2. List of anatomical landmarks.

Number L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Anatomical
Name Sella Nasion Orbitale Porion Subspinale Supramentale Pogonion Menton Gnathion Gonion

Number L11 L12 L13 L14 L15 L16 L17 L18 L19

Anatomical
Name

Lower
incisal

incision

Upper
incisal

incision
Upper lip Lower lip Subnasale Soft tissue

pogonion
Posterior

nasal spine
Anterior

nasal spine Articulate

4.1.2. Metrics

Mean radial error (MRE) and the corresponding standard deviation (SD) are used to
measure the quantitative comparison. The successful detection rates for the accuracy rang-
ing as 2.0 mm, 2.5 mm, 3.0 mm, and 4.0 mm served as another assessment criterion. Doctors
designated a single pixel rather than a whole region as the location of each landmark. The
detection of this landmark is regarded as successful if the absolute difference between
the detected and the reference landmark is no larger than z; otherwise, it is regarded as a
misdetection. The success detection rate (SDR) Rz with precision less than z is formulated
as follows:

Rz =
#(i : ||Lp(i)− Lgt(i)|| < z)

#ω
× 100% (8)

where Lp(i) and Lgt(i) represent the locations of the detected landmark and the ground
truth landmark, respectively; z denotes four precision ranges used in the evaluation,
including 2.0 mm, 2.5 mm, 3.0 mm and 4.0 mm; i ∈ ω and #ω represent the number of
detections made.

4.2. Ablation Study

We developed two baseline techniques and compared them to the ISBI2015 dataset in
order to thoroughly justify the components of our proposed module. We used the multi-
task U-net network’s results for Baseline-1 without making any changes. We evaluated
the backbone multi-task U-net network with central difference convolution for Baseline-2.
Based on Baseline-1, we trained the Baseline-3 model and used the proposed reinforcement
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learning mechanism-based network architecture search to find a network architecture with
high performance. Figure 5, Tables 3 and 4 shows a comparison between our approach and
the three established baselines. We show in Figure 6 the locations of the specific landmarks
obtained by the different baseline methods. We can see from the figure that our method’s
performance is better than the two previous baselines, which demonstrates how effective
our network would be at reliably learning landmark regression. Comparing the result
reveals a significant increase in detection accuracy, proving the value of automatically
searching for appropriate network architectures.

4.3. Architecture of Algorithmic Search

The down-sampling and up-sampling cells that were searched using our approach are
represented in Figures 7 and 8. Each cell in the figures has three intermediate nodes, each
of which has two operations performed out from the preceding nodes. The nodes corre-
spond to feature maps for each cell. Our proposed reward, which receives the maximum
reward during the search optimization epochs, determines which cell structure is selected.
Figures 7 and 8 demonstrate that the CDC operation is preferable in our search space by
the search processing. In order to provide more accurate high-level semantic information
and details of the gradient level between the down-sampling and up-sampling routes, the
CDC procedure complements the conventional convolution operation.

4.4. Result

We quantitatively compare our approach to various current state-of-the-art supervised
algorithms as well as the first and second place winners from the ISBI 2015 Challenge in
Tables 5 and 6. As a consequence, our approach obtains MRE of 1.09 mm, 3 mm SDR of
95.54%, 4 mm SDR of 98.59%, and MRE of 1.34 mm, 4 mm SDR of 95.05% in test 2, which
are competitive compared to other supervised methods. We provide the model detection
image results in Figure 9 so that we can evaluate how accurately our model performs. On
several measures, nevertheless, our experiment results fall short of the ideal performance.
The fundamental cause of our method’s underperformance on all measures is that our
model’s performance is very reliant on the backbone network. We draw the conclusion that
each landmark detection produces a different variety of results based on the experimental
results in Figure 10. The effectiveness of our model may also be increased by investigating
the causes of the high MRE value of landmark detection and then further optimizing the
network structure design.

Figure 4. Model training situation, use the loss function to optimize the gradient during model
training and display the score of the excitation function in the process.
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Figure 5. Ablation study of our model. Success detection rates (SDRs) using four precision ranges,
including 2 mm, 2.5 mm, 3 mm, and 4 mm, with 150 test images.

Figure 6. Medical Landmark detection on the ISBI2015 dataset under a different method. From left to
right are the results of Baseline-2, Baseline-3, and our method. Red points are predicted landmarks;
green points are ground truth.

Figure 7. Cell architecture search by our method on the ISBI2015 dataset. It is the down-sampling
cell architecture.
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Figure 8. Cell architecture search by our method on the ISBI2015 dataset. It is the up-sampling cell
architecture.

Figure 9. Visualized results of our approach for the ISBI2015 dataset. Red points are predicted
landmarks; blue points are ground truth.
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Figure 10. Mean radial errors (unit: 1 mm) in detection of individual landmarks on the ISBI2015
Test (1).

Table 3. Ablation study results of Baseline-1, Baseline-2, Baseline-3 and our shooting reward learning
in ISBI2015 test set 1 (measured by MRE and SDR).

Method MRE 2.0 mm (SDR%) 2.5 mm (SDR%) 3.0 mm (SDR%) 4.0 mm (SDR%)

Baseline-1 1.3 84.03 90.87 93.89 97.29
Baseline-2 1.27 85.5 91.32 94.00 97.96
Baseline-3 1.23 86.12 91.57 94.84 98.02

Ours 1.09 87.87 92.45 95.54 98.59

Table 4. Ablation study results of Baseline-1, Baseline-2, Baseline-3 and our shooting reward learning
in ISBI2015 test set 2 (measured by MRE and SDR).

Method MRE 2.0 mm (SDR%) 2.5 mm (SDR%) 3.0 mm (SDR%) 4.0 mm (SDR%)

Baseline-1 1.58 71.26 80.36 85.94 93.73
Baseline-2 1.53 73.63 81.84 87.78 94.57
Baseline-3 1.46 74.21 83.47 88.10 94.63

Ours 1.34 79.05 87.95 89.79 95.05

Table 5. Comparisons of SDR of our method with recent compelling methods on ISBI2015 test set (1).

Method 2.0 mm (SDR%) 2.5 mm (SDR%) 3.0 mm (SDR%) 4.0 mm (SDR%)

Lindner et al. [50] 74.95 80.28 84.56 89.68
Ibragimov et al. [51] 71.72 77.4 81.93 88.04

Arik et al. [52] 75.37 80.91 84.32 88.25
Zhong et al. [8] 86.91 91.82 94.88 97.9
Chen et al. [13] 86.67 92.67 95.54 98.53
Liu et al. [10] 89.05 93.93 95.47 98.46

Ours 87.87 92.45 95.54 98.59

Table 6. Comparisons of SDR of our method with recent compelling methods on ISBI2015 test set (2).

Method 2.0 mm (SDR%) 2.5 mm (SDR%) 3.0 mm (SDR%) 4.0 mm (SDR%)

Lindner et al. [50] 66.11 72.00 77.63 87.43
Ibragimov et al. [51] 62.74 70.47 76.53 85.11

Arik et al. [52] 67.68 74.16 79.11 84.63
HRnet18 [53] 69.89 78.95 85.16 92.32

Zhong et al. [8] 76.00 82.9 88.74 94.32
Chen et al. [13] 75.05 82.84 88.53 95.05
Liu et al. [10] 80.42 87.84 89.68 94.63
Li et al. [31] 76.57 83.68 88.21 94.31

Ours 79.05 87.95 89.79 95.05

5. Conclusions and Future Work

In this paper, we develop a reinforcement learning approach and a learning reward
to choose a reliable landmark regression network architecture. Extensive experimental
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results on standard benchmarks show the validity of our shooting reward learning net-
work on model balancing and its effectiveness of medical landmark detection. Future
research will focus on self-supervised or unsupervised landmark recognition in medical
images, which can solve the problem of expensive labeling. To raise the competence of
our model, it would be desirable to design new network configurations and operators.
Additionally, to provide supervision signals and improve model performance, structural
information connecting medical landmarks will be introduced. We may conclude from our
experiments that our model still falls short in terms of the regression accuracy of particular
landmarks, and the following work might be examined and adapted for specific spots with
inadequate identification.
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