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Abstract: Images routinely suffer from quality degradation in fog, mist, and other harsh weather
conditions. Consequently, image dehazing is an essential and inevitable pre-processing step in
computer vision tasks. Image quality enhancement for special scenes, especially nighttime image
dehazing is extremely well studied for unmanned driving and nighttime surveillance, while the
vast majority of dehazing algorithms in the past were only applicable to daytime conditions. After
observing a large number of nighttime images, artificial light sources have replaced the position
of the sun in daytime images and the impact of light sources on pixels varies with distance. This
paper proposed a novel nighttime dehazing method using the light source influence matrix. The
luminosity map can well express the photometric difference value of the picture light source. Then,
the light source influence matrix is calculated to divide the image into near light source region and
non-near light source region. Using the result of two regions, the two initial transmittances obtained
by dark channel prior are fused by edge-preserving filtering. For the atmospheric light term, the
initial atmospheric light value is corrected by the light source influence matrix. Finally, the final
result is obtained by substituting the atmospheric light model. Theoretical analysis and comparative
experiments verify the performance of the proposed image dehazing method. In terms of PSNR,
SSIM, and UQI, this method improves 9.4%, 11.2%, and 3.3% over the existed night-time defogging
method OSPF. In the future, we will explore the work from static picture dehazing to real-time video
stream dehazing detection and will be used in detection on potential applications.

Keywords: nighttime dehaze; photometric map; atmospheric light model

1. Introduction

With the acceleration of industrial modernization, the smoke and dust emitted by
factories and the exhaust gas from gasoline combustion are mixed with atmospheric
particles to form haze. As a kind of disastrous weather, haze is increasingly common in
our daily life. As particles in the atmosphere, haze absorbs and scatters light, which blurs
the background of the image captured by the imaging sensor device, significantly reduces
the visibility of the scene, and masks the details of image. Image dehazing is of great
significance for computer vision tasks [1]. Before images taken on foggy days are input into
computer vision algorithms frame (such as object detection [2–5], scene recognition [6], etc.),
it is necessary to preprocess the images to improve the effectiveness of subsequent models.
Many practical applications, such as video surveillance, automatic driving, and outdoor
vision systems, all need the help of image dehazing technology to improve system effects.

Image dehazing technology [7] can be divided into single-image dehazing and multi-
image dehazing. The multi-image dehazing [8] requires numerous additional information
inputs. In addition, the scene geometry model used for multi-image dehazing needs large
images of the same scene under different weather conditions or different polarization
states to be compared and analyzed. This kind of information input limits the application
of this method in real life scenes. Therefore, researchers pay more attention to single-
image dehazing methods. Single-image dehazing falls into three categories: enhancement-
based methods, physical model-based methods, and learning-based methods. Image

Appl. Sci. 2022, 12, 10222. https://doi.org/10.3390/app122010222 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010222
https://doi.org/10.3390/app122010222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6352-3165
https://doi.org/10.3390/app122010222
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010222?type=check_update&version=2


Appl. Sci. 2022, 12, 10222 2 of 17

enhancement aims to emphasize and enhance some feature attributes of foggy images.
Tan [9] divides the image into several small blocks, and maximizes the contrast of each
small block to remove fog. Bekaert et al. (2012) [10] and Ancuti (2013) [11] introduced
fusion-based methods, which fused results, such as white balance, contrast enhancement,
etc. Choi et al. (2015) [12] proposed a non-reference perceptual fog density prediction
model and enhanced images based on this model. Although image enhancement methods
can improve the contrast of foggy images, there is still a lack of physical explanation for the
results of dehazing technology.

The physical model approach is mainly based on the atmospheric scattering model [13],
which interprets foggy images as a combination of fog-free images and atmospheric light-
ing. Estimating transmission maps and atmospheric light maps are the two main tasks
of physical model-based approaches. For the transmission map, many researchers have
proposed their own solutions: dark channel prior estimation [14,15], color attenuation
prior estimation [16,17], fog line prior method [18], etc. The learning-based method [19–21]
is that researchers adjust parameters of neural network through training data to obtain
the corresponding dehazing model. Many researchers also combine physical models and
learning-based methods to accomplish this task. Zhu et al. [22] reformulated the atmo-
spheric scattering model into a generative adversarial network, where the network model
learns atmospheric light and transmittance from the data, and reworked the model to
improve the interpretability of the GAN. Huang et al. utilized the haze feature sequence
obtained by self-encoding network to calculate the scene transmittance, finally substituted
it into atmospheric scattering model to restore the dehazed image. However, deep learn-
ing methods require high-quality training data. In addition, some training methods are
expensive, requiring the consumption of processors and GPUs.

Almost all of dehazing strategies mentioned above are aimed at daytime. Generally,
the sun is the main light source for daytime images, and the overall atmospheric light
basically remains constant. Affected by artificial light, such as street lights and car lights, the
atmospheric light value at night is not uniform. Therefore, the daytime dehazing algorithms
are not necessarily applicable for nighttime images. Furthermore, extensive previous
experiments have demonstrated that some well-behaved image dehazing frameworks
under daytime conditions cannot be directly applied to nighttime tasks.

According to the analysis of scene conditions, nighttime images have the following
characteristics: (1) it is difficult to determine the illumination intensity and range of artificial
light sources. If there are many artificial light sources in the image, the pixel values of
weaker light sources will also be affected by the strong light sources. Depending on
the position of the imaging device, reflected light from objects in the captured image is
attenuated differently. (2) In contrast to sunlight, the light emitted by artificial light sources
is colored. The color description of an object in the nighttime image is the superposition of
the color of itself and the color of the artificial light source.

In view of the above-mentioned characteristics of atmospheric light in foggy scenes at
night, some researchers take advantage of illumination compensation and color correction
to modify spatially varying illumination. Zhang et al. [23] used the enhanced light intensity
to balance illumination and corrected the color of incident light to estimate accurate ambient
light; Pei et al. [24] improved the dark channel prior to better adapt to nighttime dehazing
tasks. In order to enhance the effect, they used color shift and local contrast correction.
Though this method produces results with lower contrast and lower brightness overall;
Li et al. [25] proposed a relatively smooth constrained layering algorithm to remove the
glow effect; based on the Retinex theory [26], Yu et al. [27] estimated the ambient illumina-
tion by channel differential guided filtering method, and they used the dark channel prior
and the bright channel combination to evaluate the dehazing transmission map; paying
attention to preserving the details of the fine structure area, Yang et al. [28] decomposed
the image into luminous image and non-luminous night image. They calculated the value
of the atmospheric light and dark channels of each pixel in the non-luminous night image
based on the superpixel method. Then, the transmission map is decomposed from fog-free
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image through the weighted guided image filter. All the above methods have achieved
good results. However, past methods basically have some defects, such as color distortion,
serious loss of texture details, and insufficient effect. Therefore, the task of dehazing night-
time images requires model reconstruction. Based on He’s dark channel theory dehazing
algorithm (DCP) [14], this paper proposes an improved nighttime dehazing algorithm for
the influence matrix of artificial light sources. According to the light intensity of light source
points, we filter the light source through the photometric map and obtain the corresponding
light source influence matrix. The transmittance near the light source can be adaptively
adjusted to reduce the glow effect near the light source by the light intensity matrix. The
experimental results demonstrate that the method has great dehazing effect and detail
retention at night, and the color cast problem of the restored image is also improved. Our
main contributions are as follows:

• The light source influence matrix is proposed to adaptively modify the transmittance
near the artificial light source, so as to improve the dehazing task.

• To enhance the detail of image, we used an edge filter to fuse the transmittance of
the near and far light source areas. Furthermore, we used MRP to make the image
more colorful.

• For different fog concentration scenes, a bias coefficient is introduced to make the
defogging algorithm suitable for dense fog scenes.

The paper is organized as follows: Section 2 reviews the related work. The detailed
model and the proposed framework are presented in Section 3. The experiment results
and the corresponding analyses are demonstrated in Section 4. Finally, we conclude in
Section 5.

2. Related Work

The light will come into contact with suspended particles in the atmosphere during
its propagation process, and some of the light will be scattered by the particles, so the
light received by the imaging device will be weaker [29]. In 1976, John Wiley et al. [13]
proposed that transmission light of the target would be attenuated by scattering, and the
transmission device will receive not only the reflected light from the target but also a layer
of atmospheric scattered light. Srinivasa G. Narasimhan et al. [30] constructed a method to
recover scenes for foggy days with low visibility by visual performance under different
weather conditions. McCartney [13] developed an atmospheric scattering model based on
the Mie scattering theory, and the expression of the pixel value received by the device is
expressed by the following equation:

Ix = Jxtx + A(1− tx) (1)

where x represents the position of the pixel in the image, Ix represents the foggy image,
Jx represents the fog-free image, tx represents the transmission at the position of x in the
image, and A represents the atmospheric light value of the image. This model divides the
light received by the device into two parts. The first part represents the target reflected
light, which means that the reflected light is directly transmitted to the device through the
absorption and scattering of airborne particles, also known as the direct attenuation term
of incident light; the other part is that the ambient light (mainly including direct sunlight,
atmospheric diffuse light, and ground reflected light), which will also be attenuated by the
action of the medium in the air.

Many daytime physical model dehazing methods and some nighttime dehazing
methods have been designed based on this model. The most typical one is the dark
channel dehazing algorithm (DCP), which takes into account the global uniformity of
atmospheric light in the daytime environment and can recover satisfactory images of the
scene. He et al. [14] studied many fog-free images and found that at least one channel
of the non-sky color block of the fog-free image contains very low-intensity pixels, and
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this color channel is called the dark channel. Ideally, the dark channel of a clear image is
approximately zero and is mathematically represented as follows:

Jdark
x = min

y∈Ω(x)
( min

c∈{r,g,b}
Jc
x) ≈ 0 (2)

However, in foggy images, air light causes the intensity of the color block pixels in
these dark channels to increase. Therefore, during the process of recovery, it is necessary
to adjust the light transmittance and the atmospheric light value to make the image clear.
The author in [14] takes the average value of the first 0.1% pixels of illumination in the
dark channel as the atmospheric light value, which is expressed by Ac, c ∈ {r, g, b}. The
transmittance is estimated from the atmospheric light value, which is mathematically
expressed as:

ty = 1−ω min
y∈Ω(x)

( min
c∈{r,g,b}

Ic
y

Ac ) (3)

Among them, ω is the introduction parameter which represents the concentration of
fog. ty is the transmission at the position of y in the image, where the position y is a point
belonging to the set of light sources Ω(x). Ac means atmospheric light values in the channel
c. Ic

y means pixel value at the position of y in the channel c. The image obtained in this way
will have a block effect. To solve the above problem, He et al. [14] proposed a soft-matting
algorithm to correct the initial transmission map. Finally, the atmospheric light value and
transmission map are brought into Equation (1) to obtain the final restored image:

Jx =
Ix − A

t
+ A (4)

However, in night scenes, the atmospheric ambient light is susceptible to nighttime
lighting [31]. The local maximum intensity of each color channel in the image is mainly
provided by artificial light source, so it is inaccurate to use global atmospheric light values
to preserve the color characteristic of nighttime images. Therefore, we can reduce the
attention on ambient light and directly estimate the ambient illumination and transmittance
to recover foggy images. Most of the light radiated by point-like artificial sources varies
smoothly in space, except for some sudden changes between bright and dark areas due
to shading. In the estimation of ambient illumination, it is necessary to use light intensity
normalization and maintain the color component of the artificial light source. Many
researchers have analyzed the night scenes and reworked the atmospheric imaging model,
as shown in the Table 1. Zhang et al. [32] splits the atmospheric light value A in Equation (1)
into Lxηx, which is mathematically represented as:

Ix = Jxtxηx + Lxηx(1− tx) (5)

where Lx represents the ambient illumination, and ηx represents the environmental color
coefficient. Although the improved model is effective in the nighttime defogging task, it
still can not remove the halo effect from the nighttime images.

For removing the above halo effect, Li et al. [25] suggested adding a nighttime halo
term to the original equation:

Ix = Jxtx + A(1− tx) + Ax ∗ APSF (6)

The atmospheric point spread function is expressed as a halo term in the proposed
model, and it decays with increasing depth of field. The halo term can represent the halo
characteristics of the image, and the new proposed model can estimate the atmospheric
light pixel by pixel, so that the halo can be removed from the image more accurately.
Nevertheless, it should be noted that some noise in the recovered image is amplified and
some color artifacts are generated around the light source.
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Table 1. Related work of dehazing algorithms.

Year Title Author Methods

2011 Single Image Haze Removal Using
Dark Channel Prior He et al. [14]

The dehazing model is simplified by the dark channel
prior, and the image dehazing problem is transformed
into a matting problem.

2015 Nighttime Haze Removal with
Glow and Multiple Light Colors Li et al. [25] A night-time halo term is added to the atmospheric

lighting model to eliminate the halo effect.

2016 Night-time dehazing by fusion Ancuti C et al. [33]
Atmospheric light terms for image blocks are
estimated using a Laplace pyramid decomposition of
the input multiscale image block and a weight map.

2017
Fast Haze Removal for Nighttime
Image Using Maximum
Reflectance Prior.

Zhang et al. [32] This article proposes the maximum reflection prior
(MRP) method to estimate atmospheric light maps.

2018
Nighttime Image Dehazing Based
on Low-Pass Filtering and Joint
Optimization of Multi-Feature

Yang et al. [34]
The article uses low-pass filtering to estimate ambient
light and use ambient light to predict
nighttime transmittance.

2020 Nighttime Dehazing with a
Synthetic Benchmark Zhang et al. [35]

The article proposes an optimal scale based maximum
reflectance prioritization algorithm (OSFD) on the
basis of MRP.

Zhang et al. [32] observed that each color channel of fog-free images contains some
high-intensity pixels. For nighttime images, the high-intensity pixels of their color channels
are all contributed by artificial ambient lighting. Based on these observed phenomena, the
authors put forward the maximum reflection prior (MRP) to estimate the atmospheric light
map. Due to the influence of the color of the artificial light source, the maximum reflectance
map of the nighttime image is mathematically expressed as:

Mc
Ω(x) = max

x∈Ω(y)
Ic
x = max

x∈Ω(y)
Rc

x(LΩ(y)η
c
Ω(y)tΩ(y))

+ LΩ(y)η
c
Ω(y)(1− tΩ(y))

(7)

Under the action of light, the maximum reflectance is approximated as 1:

max
x∈Ω(y)

Rc
x ≈ 1 (8)

Mc
Ω(x) = LΩ(y)η

c
Ω(y) → ηc

Ω(y) =
Mc

Ω(x)

LΩ(y)
(9)

LΩ(y) = max
c∈{r,g,b}

( max
x∈Ω(y)

Ĩc
x) (10)

In nighttime images, the color channel of the glow part of the light source has a high-
intensity value, and MRP can be used to improve the halo around the light source to some
extent. The prior models, however, are built based on clear daytime image characteristics,
which in some cases are different from the nighttime image characteristics. The fog-free
image output with MRP alone will be distorted.

On the basis of MRP, Zhang et al. [35] proposed the Optimal Scale-Based Maximum
Reflectance Prior algorithm (OSFD), which considers the maximum reflectance as the
probability of a pixel block that completely reflects the incident light in all frequency
ranges. Moreover, color correction and defogging are separated and solved sequentially. In
addition, the extinction Laplace matrix in the MRP method is replaced by the maximum
value of the light intensity in all channels as a way to facilitate the calculation of the light
intensity normalization. To reduce the halo effect and retain details, Ancuti C et al. [33]
were inspired by the dark channel algorithm to assign higher weights to high-contrast
image blocks, and finally used the Laplace pyramid decomposition of the input multi-scale
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image blocks and weight maps to estimate the atmospheric light terms of the image blocks.
A new model for imaging nighttime fog images containing artificial light sources was
developed by Yang et al. [34] by deeply analyzing the imaging pattern of nighttime fog
images. The ambient light is estimated using low-pass filtering, followed by the prediction
of the night scene transmittance using ambient light, and, finally, the histogram matching
method is used to color correct the result.

3. Proposed Method
3.1. Problem Analysis

Firstly, the illumination of the light source is uneven. In the nighttime environment, the
illumination intensity of the artificial light source is much greater than that of the ambient
light, resulting in excessive illumination in the area close to the light source and insufficient
illumination in the area far away from the light source, which is why the illumination of
the image we see is uneven. Accordingly, the non-constant atmospheric light value plays a
significant role in nighttime image dehazing.

Secondly, the color shift of the light source. The intensity of artificial light sources is
not like sunlight in the daytime. The color of the light source determines the naturalness
of scene objects in the image, and the color of the light source will also affect the final
dehazing effect.

Third, the details of the image after dehazing. Since the whole image is in a night
scene, the lack of brightness will lead to high noise and serious loss of image details after
dehazing. However, if the exposure of the entire image is simply increased, the glow
portion will also increase.

3.2. Overview of Algorithm

In order to solve the problems of serious texture loss and poor dehazing effect in the
nighttime dehazing algorithm, this paper proposes a nighttime dehazing method based
on the light source influence matrix. The algorithm flow is shown in Algorithm 1. As
illustrated in Figure 1, the whole algorithm consists of a pre-processing section (Color
Correction), a section of calculating light source influence matrix, and a dehazing section.

𝑀𝑀𝑀𝑀𝑀𝑀
Color Correction 

HSI
K

𝛷𝛷 �

{𝑚𝑚0,𝑚𝑚1,⋯ ,𝑚𝑚𝑇𝑇−1}

Selecting light source pixel points

𝐼𝐼′

𝐼𝐼 𝑉𝑉 𝐼𝐼_𝑉𝑉

𝐴𝐴′ 𝐴𝐴

Initial atmospheric light map

𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡𝑓𝑓𝑛𝑛𝑛𝑛

𝐷𝐷𝐷𝐷𝑀𝑀

Median filtering Modify

Distinguish

𝑡𝑡′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Modify

Edge filtering fusion

T

𝐽𝐽

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

Figure 1. An overview of proposed nighttime dehazing method.

Color Correction: The color of the artificial light source in the night scene has a certain
influence on the reflected light of the object. It is necessary to perform color correction on
the image at first to prevent color distortion of the image after dehazing. Therefore, the
first step is to correct the color shift of the image through the maximum reflection prior
algorithm, so as to maintain the color balance of the image and enhance the details of
the image.
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Light Source Influence Matrix: The low-frequency component is extracted from the
image through a mid-pass filter, and the initial atmospheric light value is calculated with
the low-frequency component. Then the image is transferred to the HSI space to extract the
photometric map. According to the photometric map, the artificial light source pixels are
filtered out and the corresponding influence matrix is calculated. After superposition, the
final matrix is obtained.

Nighttime Dehaze: Using the light source influence matrix and introducing the adap-
tive atmospheric light deviation coefficient, the atmospheric light value near the light
source area is corrected. The initial transmittance of the two regions is estimated separately
from the dark channel method and then refined to fuse the boundary parts of the two
regions. Among them, the transmittance of the near-source region is modified and adjusted
using the edge-preserving filtering method. Finally, the dehazing image is obtained by
optimizing the atmospheric light value, transmittance and the light source influence matrix.

Algorithm 1: Nighttime dehazing algorithm
Data: I0
Result: J

1 Color Correction:
2 I ← MRP(I0)
3 Light Source Influence Matrix:
4 calculate the matrix K according to Algorithm 2
5 Parameter Estimation:
6 A← Φ(I);
7 classify A according to Equation (15);
8 calculate the initial transmittance map tnear and t f ar according to Equation (16);
9 t← Fuse(tnear, t f ar);

10 Nighttime Dehaze:
11 synthesize J according to Equation (21)

3.3. Light Source Influence Matrix

According to the MRP theory, the atmospheric light value is replaced by the illumina-
tion of artificial light source. As the distance increases, the attenuation of light decreases.
The pixels near the light source are more affected by the light source, while the pixels far
from the light source are less affected by the light source.

3.3.1. Judging the Near and Far Light Source Area

Convert the image to HSI space, and extract the photometric map of the image. Fully
considering nighttime conditions, we default the brightness of artificial light sources to a
great extent. The average value of the pixels in the top 0.5% of the photometric value is
selected as the light source candidate threshold Cmax. In the photometric map, filter out
the light source pixel points whose photometric values are greater than or equal to the
threshold value. Keep the light source pixel points in the photometric map to obtain the
light source map, and define the pixel blocks in the top 2% of the photometric value as the
near light source region Ω.

3.3.2. Create Light Influence Matrix

According to the T light source pixel points in the light source map, number each
light source pixel point in descending of the photometric value {m0, m1, · · · , mT−1}, and
calculate the influence matrix for each light source:

ki =
lg(1 + Ci)

lg(1 + Cmax)
∗ Ci
|di,m|

(11)
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K =
1
T

T−1

∑
j=0

k j (12)

The normalized light source influence matrix is closer to 1 in the near light source area
Ki; When the pixel is closer to the light source, Ki is higher; when the pixel is farther from
the light source, influence value corresponding to the pixel is lower. For calculating the
light source influence matrix, we summarize the algorithm flow in Algorithm 2.

Algorithm 2: Light influence matrix
Data: I of size w ∗ h
Result: K

1 V ← HSI(I);
2 rand← w ∗ h ∗ 0.5%;
3 I_V ← sort(V, rand);
4 lightnum = 0;
5 for i← 1 to w do
6 for j← 1 to h do
7 if V(i, j) in I_V then
8 lightnum← lightnum + 1;
9 calculate the distance d from other pixels to the selected light source;

10 k← matrix(d, I_V);
11 K ← K + k;
12 end
13 end
14 end

3.4. Night-Time Dehaze
3.4.1. Estimating Atmospheric Light

According to the Retinex theory, the modified

Iλ
i = Lλ

i Rλ
i tλ

i + Aλ
i (1− ti) (13)

where Rλ
i is a high-frequency component, the rest of items have the characteristics of

smooth change, which belong to low-frequency components. When the pixel position
i is far away from the light source, it is less affected by the artificial light source. After
processing the image with a low-pass filter, the low-frequency components can be obtained
to estimate the ambient light:

Φ
(

Iλ
i

)
=
(

Iλ
i

)
L
≈ Lλ

i tλ
i + Aλ

i (1− ti) (14)

where Φ(·) represents low pass filter,
(

Iλ
i
)

L represents low frequency components of
the image. At the near light source, considering the large deviation of the atmospheric
light from the near light source, the influence of the artificial light source far exceeds the
surrounding environment.

Since the ambient light will be low after superimposing the influence value of the light
source, which will affect the subsequent dehazing effect, the atmospheric light deviation
coefficient A0 is introduced to modify the atmospheric light value Āλ

i near the light source:

Aλ
i =

{
Āλ

i + A0, i ∈ Ω
Āλ

i , i /∈ Ω
(15)

It has been verified by a large number of experiments that the dehazing effect of A0 in
the range of 0.1–0.16 is better.
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3.4.2. Estimating Transmittance

We will use different transmittance estimation methods according to different re-
gions, and obtain their respective transmittances in the near light source area and the
non-near light source area. According to the two fusion and refinement, we can obtain the
final transmittance.

• Non-near light source area. It is less affected by artificial light sources, and the
transmittance of the dark channel prior is superior, so we use the DCP method to
estimate it:

ti = 1− w min
j/∈Ω

[
min

Ic(j)
Ac

]
(16)

• Near light source area.
Due to the influence of the halo effect caused by the transmittance of the dark channel,
we propose to re-optimize the transmittance to accurately estimate the transmittance
and reduce the Halo effect. Si is assumed to be the minimum value of a channel in the
near light source area, and since the transmittance is continuous in the local area of
the image and suddenly changed at a depth of field, the calculation is converted into
finding the maximum transmittance:

arg max
∫

t− λ‖∇t‖2 (17)

0 < ti∈Ω < Si (18)

where λ represents the smoothness of the optimized transmittance. In addition, use
edge-preserving filtering on the transmittance to make it have the same gradient
information as the original image.

• Transmittance Fusion.
t = witi∈Ω + ti/∈Ω (19)

wi is the adjustment correction coefficient.

wi =
max(Ki, ti)

ti
+ α (20)

α is the fog-free image is the adjustment correction coefficient

Ji =
Iλ
i − Aλ

i ·max(Ki, 1− ti)

max(ti, Ki)
(21)

In this paper, the transmittance is corrected by defining the near and non-near light
source area and fusing the transmittance of the area to solve the halo phenomenon
near the light source.

4. Experiment
4.1. Experimental Settings

In order to verify the reliability and validity of the method proposed in this paper. In
this experiment, the algorithm programming is performed under Matlab2016b, and the
hardware environment of the simulation experiment is i7-10750H, 2.60 GHz, 16 G RAM.

During the experiment, the diameter of the low-pass filter window is 0.06 × min(h, l),
h and l are the numbers of pixels in the row and column in the image, respectively. A0 was
set to 0.02λ was set to 0.1. In order to ensure the effectiveness of the algorithm at night, the
dataset used in the experiment is NHRW, which is 150 real nighttime foggy images selected
from 3000 images [25,32], and the scenes include urban night scenes, roads, riversides,
parks, and other scenes.
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4.2. Main Results

In order to verify the universality of the algorithm, foggy images in various environ-
ments (city, road, riverside, park) are selected for experiments, and 150 real nighttime foggy
scene images are used in the dataset for experiments and evaluation. The selected com-
parison algorithms include DCP [14] , NDIM [25], and OSFD [35]. Through experimental
comparison, the experimental results are analyzed and evaluated from both subjective and
objective aspects.

As shown in Table 2, We compare the differences between the proposed method
and DCP in terms of the way to calculate atmospheric light and transmittance. For the
atmospheric light value, DCP selects the first 0.1% of the pixel values in the dark channel of
the image and then chooses the brightest of these values as the constant atmospheric light
value. This method may cause the defogged image to be too light near the light source.
Our method calculates the atmospheric light value by making the image through the
median filter directly. For transmittance, the proposed method corrects the transmittance
at the near light source with the light source influence matrix based on the dark channel
prior, and, finally, blends the transmittance at the near and far light source areas with the
edge-preserving filter.

Table 2. The difference between proposed method and DCP.

Method Atmospheric Light Values Transmittance Applicable Condition

DCP
Takes the maximum value of
the first 0.1% of pixels of
the image

dark channel prior Daytime

Proposed
method Median filter

the transmittance of the
near light source is
corrected by the light
source influence matrix

Nighttime

4.2.1. Subjective Evaluation

The comparison experimental image of the nighttime defogging algorithm experiment
is shown in Figure 2. DCP sets the ambient light as a global constant. Due to the special
environment at night, the atmospheric light value of the artificial light source will be
considered by DCP as the global atmospheric light term during the day, so the image after
defogging is dark. As shown in the figure, the information of river surface, buildings and
haystacks is unclear. This proves that the nighttime foggy ambient light should be a local
variable rather than a simple fixed value. NDIM (the third row in Figure 2) tends to increase
the overall brightness of the resulting image more, but it is worth noting that the result
may add more noise. In addition, since the algorithm does not balance the brightness, the
image is easily overexposed, e.g., there is still a lot of noise in the light source region in the
sky. Although the OSFD algorithm can obtain better image sharpness, it also can not avoid
the noise problem. The method in this paper effectively solves the defects of the above
algorithm, makes the image more colorful while preserving the original colors. Effective
defogging is performed in the dark areas of the image, as well as around the light source.
Details can still be effectively maintained in distant depth of field. A comparison of the
enlarged images in Figure 3 shows that the algorithm in this paper is smoother in the dark
detail part than the OSFD algorithm. However, there is still residual fog in the results, and
there is still some color bias in the light source region, which can be addressed in future
work by glow effects (e.g., adding a color bias term to the glow term).
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(1)

(2)

(3)

(4)

(5)

Figure 2. The subjective experimental results. The defogging effect can be clearly seen at the red box.
(1) Nighttime hazy image. (2) DCP [14]. (3) NDIM [25]. (4) OSFD [35]. (5) OURS.

Figure 3. Image detail comparison. The defogging effect can be clearly seen at the red box.

4.2.2. Objective Evaluation

To quantitatively evaluate the performance of different methods, we use PSNR [36],
SSIM [37], UQI [38] three reference indicators to evaluate the algorithm. PSNR only
measures the reconstruction quality of the pure image by comparing the pure image and
the noisy image. The higher the PSNR proves the better the quality of the processed image,
as shown in the formula:

PSNR = 10∗log10

(
2552

MSE

)
(22)

where MSE is mean square error:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (23)
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Structural similarity is used to evaluate the retention of image structure information,
which can solve the problem that PSNR and MSE cannot measure the similarity of image
structure, as shown in the formula:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxσy

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (24)

where µx and µy represent the mean brightness of images X and Y, σx and σy represents the
standard deviation.The larger the SSIM, the better the dehazing effect and the higher the
retention of the important information of the original image.

UQI is designed by modeling image distortion as a combination of three factors:
correlation loss, luminance distortion, and contrast distortion. The larger the UQI, the
better the image quality.

Combining the above three indicators, as is shown in Figure 4, it can be considered
that the proposed algorithm is better than other methods in terms of information retention,
reconstructed image quality and structural information retention in night scenes. As is
shown in Table 3, our method improves the baseline DCP by 34%, 13%, 8% in PSNR, SSIM
and UQI, respectively, and it increases the existed excellent algorithm OSPF by 9.4%, 11.2%,
3.3%. In the process of dehazing, it still retains more details. Compared with the two
algorithms, the algorithm in this paper has more vivid colors on the premise of no image
distortion, which is more suitable for human vision. The experimental image is shown in
Figure 5.
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Figure 4. Performance comparison of different methods.

Table 3. Dehazing Results of Different Methods.

Dataset Index DCP NDIM OSFD Ours

Images in Figure 5
PSNR 18.5416 14.5284 20.2025 27.0478
SSIM 0.7822 0.5806 0.7801 0.9476
UQI 0.8358 0.5836 0.8125 0.9592

NHRW
PSNR 15.0240 20.6918 22.4842 24.6032
SSIM 0.5531 0.7593 0.8062 0.9082
UQI 0.6599 0.8596 0.9038 0.9397
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(1) (2) (3) (4) (5)

Figure 5. The objective experimental results. The defogging effect can be clearly seen at the red box
(1) Nighttime hazy image. (2) DCP [14]. (3) NDIM [25]. (4) OSFD [35]. (5) OURS.

4.3. Statistical Analysis

As can be seen in (b) of Figure 6, the proposed method outperforms the comparison
method in all three metrics. The proposed method is outstanding due to the fact that
this paper uses a median filter, which is more accurate than DCP at nighttime. The more
accurate the atmospheric light value is, the higher the quality of the processed image.
Therefore, our method is higher than DCP in terms of PSNR and UQI. SSIM indicates the
extent to which information is retained in the processed image. As this paper uses the light
source influence matrix to participate in modifying the transmittance near the light source,
it can better retain the image information.

Furthermore, a non-parametric test was used to verify the differences between the
methods in this paper and others. As the samples did not conform to a normal distribution
and were independent of each other, the Wilcoxon Signed-Rank Test was used to analyze
the samples. We calculate the difference between the comparison method and the proposed
method (Z-value in Table 4) and the corresponding p-value. As shown in Table 4, the
p-value is all less than 0.05, indicating that the proposed method is significantly different
from the comparison method in all indicators. According to Table 3, the proposed method
is higher than the comparison method in terms of mean and median.
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(a)

(b)

0 0 00.60               0.70               0.80                0.90                 1.00

Figure 6. Statistics of the results. (a) Histogram of results; (b) Box diagram of different methods.

Table 4. Statistical results between ours and compared algorithms on Wilcoxon Signed-Rank Test.

PSNR SSIM UQI

Methods Z-Value p-Value Z-Value p-Value Z-Value p-Value

DCP −3.62 <0.05 −8.47 <0.01 −6.91 <0.05
NDIM −9.82 <0.05 −9.85 <0.01 −5.06 <0.05
OSPF −9.01 <0.05 −9.86 <0.01 −4.78 <0.05

4.4. Supplementary Experiments

In addition, we conducted fog removal experiments under different fog concentrations.
Since there are few datasets of nighttime images, we choose the dataset source for the
concentration comparison experiment as DCIM, which is a low-light image to simulate
the restored nighttime scenes. The fog concentration is set manually to generate the
corresponding dataset. Alpha indicates the fog concentration of the composite image, the
higher the fog concentration, the higher the alpha value, and the lower the visibility of the
image. The synthetic dataset is defogged and the results are evaluated using PSNR, SSIM,
and NIQE metrics. Comparison experiments with different fog concentrations are shown
in Figure 7. For the evaluation results, the best and worst evaluation scores are removed
and the evaluation average of each method is obtained. The results are shown in Table 5.

From the longitudinal perspective, the performance of all methods decreases to some
extent as the haze density increases and less information is visible. In terms of cross-
sectional metrics, the NDIM algorithm performs the worst in PSNR and SSIM metrics. Due
to the presence of daytime images in the dataset, DCP has an advantage in the defogging
task. In the case of dense fog, our algorithm still outperforms the other two nighttime
defogging methods. In future work, we may need to explore further adaptive methods for
removing different concentrations of dehazing.
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(1)

(2)

(3)

(4)

(5)

α=0.3 α=0.5 α=0.7

Figure 7. Results of dehazing at different concentrations. (α means the degree of fog concentration)
(1) Origin image. (2) DCP [14]. (3) NDIM [25]. (4) OSFD [35]. (5) OURS.

Table 5. Comparison of algorithms at different fog concentrations.

SSIM (↑) PSNR (↑) NIQE (↓)

α = 0.3

DCP 0.8076 18.3604 12.9122
NDIM 0.6148 17.0594 10.9517
OSFD 0.7026 18.6044 12.9762
OURS 0.7796 20.2292 10.5981

α = 0.5

DCP 0.8572 17.3624 13.7685
NDIM 0.5479 15.9944 12.4291
OSFD 0.6508 16.7321 12.5742
OURS 0.8044 22.0709 11.4440

α = 0.7

DCP 0.9098 18.0504 14.3905
NDIM 0.4793 14.6109 14.3162
OSFD 0.6572 16.8288 13.8864
OURS 0.8575 25.3665 12.4637

5. Conclusions

In this paper, a nighttime dehazing algorithm based on the light source influence
matrix is proposed for the foggy environment at night. Different from the DCP estimation
method of constant atmospheric light values, our light source influence matrix is more
suitable for night scenes. Furthermore, the processed image by our method does not
occur overexposed near the light source. To enhance the detail of image, an edge filter
is introduced to fuse the transmittance of the near and far light source areas, and the
correction with MRP makes the image more colorful. In addition, we introduce bias
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coefficients to make the algorithm effective in dense fog situations. Therefore, our method
is better adapted to night scenes. The performance of the algorithm is quantitatively
analyzed from three aspects: PSNR, SSIM, and UQI. The experimental results show that the
proposed algorithm is effective in removing fog at night. In terms of PSNR, SSIM, and UQI,
this method improves 34%, 22%, and 21% over the existed night-time defogging method
OSPF. However, the time complexity of the algorithm increases as the size of the image
increases. Refining the dark part and maintaining the time complexity is the main direction
of future research. With the development of artificial intelligence, 5G communication, and
other technologies, the next step will be to improve the dehazing algorithm to achieve
video stream dehazing, or integrate the dehazing algorithm improvement into the target
detection field.
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