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Abstract: The production of gamma-decalactone (GDL) by Yarrowia lipolytica is mainly based on
the biotransformation of ricinoleic acid, derived from castor oil triglycerides. The main difficulty
in this process is the multitude of factors that determine the growth rate of microorganisms, and
thus affect the efficiency of lactone synthesis. In order to improve the technological aspects of GDL
biosynthesis in batch culture, the influence of three factors was determined: substrate concentration,
medium mixing intensity, and its pH, using the Taguchi solid design method (based on orthogonal
array design). On the basis of four bioreactor batch cultures, the most favorable culture conditions in
terms of GDL synthesis were selected using the statistical Taguchi method. The statistical method of
experimental planning has shown that the optimal parameters of lactone biosynthesis are a constant
pH at the level of 7, a variable mixing speed in the range of 200–500 rpm, and a substrate concentration
at the level of 75 g/L. Using these parameters, about 2.93 ± 0.33 g/L of aroma was obtained. The
intensity of mixing turned out to be the most important factor influencing the increase in GDL
concentration in the medium.

Keywords: gamma-decalactone; Yarrowia lipolytica; batch cultures; bioreactor; Taguchi method

1. Introduction

Fragrances are the key parameter influencing the acceptance and consumer preferences
of food and cosmetic products. Hence, the market for aromas and flavors is constantly
evolving. The global Food Flavors market was valued at USD 13.31 billion in 2018 and
is expected to reach USD 19.72 billion by 2026, at a CAGR (compound annual growth
rate) of 5% [1]. Due to the growing sensitivity of society to ecological problems and the
growing trend in the field of a healthy lifestyle [2], de novo synthesis with the use of
microorganisms or biotransformations, i.e., synthesis from natural resources, in reactions
catalyzed by enzymes, is gaining importance in the production of fragrances [3–5].

Among the wide group of compounds synthesized by microorganisms, we can dis-
tinguish lactones, including the gamma-decalactone (GDL) C10H18O2, a peach-like aroma
compound. Its biotechnological synthesis is based on peroxisomal β-oxidation of ricinoleic
acid (R-12-hydroxy-9-octadecanoic acid), the main component of castor oil obtained from
Ricinus communis seeds. Ricinoleic acid in the form of ester of coenzyme A is degraded in a
four-step β-oxidation, resulting each time in a two-carbon chain-shortening. Finally, from
ricinoleyl-CoA, 4-hydroxy-decanoyl-CoA is obtained, which undergoes intramolecular
esterification—lactonization (after acidification to pH 2.0 and/or heating) [6,7]. A graphic
illustration of the γ-decalactone biosynthesis pathway appears in many publications [6,8,9].

Despite the relatively long history of research on the biosynthesis of GDL (the possibil-
ity of producing GDL via yeast Candida tropicalis was discovered in 1963) [10], two issues
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are still a matter of investigation by the scientific community: the efficiency of the biopro-
cess [11–14] as well as the optimization of conditions for the separation of the compound
from the biotransformation medium [15–17].

Previous studies on the parameters of GDL biosynthesis indicated many factors af-
fecting the biotransformation yield. The selection of appropriate species and strains of
microorganisms as well as environmental conditions, including, e.g., temperature, acidity
of medium, its composition (including concentration and type of carbon source used),
and oxygenation level, seem to have a significant impact. The presence of surfactants,
the oxidation–reduction potential of the medium, and the applied technology of biotrans-
formation (step-wise fed-batch cultures, immobilization of cells) could be also crucial for
obtaining the maximum lactone concentration [18–24].

Cultivation in a medium with non-optimized pH reduces access to the carbon substrate
and limits cell growth and lactone production [18]. Improper acidity of the medium may
affect the intracellular pH of yeast and thus its metabolism. The concentration of GDL
also depends on the NAD+/NADH ratio, because NAD+ is a cofactor of 3-hydroxyacyl-
CoA dehydrogenase, the activity of which shifts the reaction towards the formation of
3-hydroxy-γ-decalactone. The level of FAD and NAD+ regeneration depends on the proper
aeration of the medium [21]. Oxygen plays an important role in the activity of enzymes
acyl-CoA oxidase and 3-hydroxyacyl-CoA dehydrogenase, participating in the regeneration
of the above-mentioned cofactors. Moreover, it determines the course of the metabolism of
hydrophobic substrates by contributing to the production and reconsumption reactions
of GDL [25]. In aerobic cultivation processes, the oxygen transfer conditions depend on
several factors such as temperature, pressure, composition of the culture medium, air flow
rate, medium viscosity, aeration, stirring speed, and configuration of the medium. The
studies show that the increase in the oxygen mass transfer rate (kLa) increases the rate of GDL
production; however, the final concentration of aroma decreases [26]. Therefore, the mixing
rate should also be properly selected to ensure not only the appropriate oxygen concentration
in the medium, but also the proper dispersion of hydrophobic substrates [23,27].

The major difficulty in the described process is the great number of various factors
determining the growth rate of microorganisms and thus influencing the efficiency of
GDL synthesis. Despite the interest in the optimization of biotechnological methods for
the biotransformation of castor oil into peach-like fragrance, most experiments have been
carried out by means of comprehensive experimental plans. There are only a few scientific
reports applying a design of experiment protocols in order to choose the batch culture
conditions [21,28]. In one study, it was attempted to optimize the conditions for the
biotransformation of castor oil to GDL by yeast Yarrowia lipolytica using the Taguchi robust
design method. The approach allowed the researchers to determine the influence of several
factors on the efficiency of the process provided in a laboratory-scale bioreactor, with a
small number of experiments, based on orthogonal array design [29]. Yarrowia lipolytica,
used in the research, is one of the best known “unconventional” yeasts. It is considered
non-pathogenic, and the biotechnological processes involving it are generally recognized as
safe (GRAS status) by the Food and Drug Administration (FDA, Silver Spring, MD, USA).
The unique physiological and biochemical properties of these microorganisms contribute
to their wide application in food biotechnology [30,31]. Yarrowia lipolytica is characterized
by, among others, high extracellular lipolytic activity, which allows the use of castor oil
(a cheap and easily available substrate) in GDL biosynthesis. The yeast produces three
extracellularly lipases, named Lip2, Lip7, and Lip8 [32,33].

This article presents the results from batch cultures in which the impacts of medium
pH, mixing speed, and castor oil concentration were analyzed based on the statistical
Taguchi method. Although this method has already been applied [22], to the best of
our knowledge, no study has used the minimal orthogonal array design in the batch
bioreactor cultures.
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2. Materials and Methods
2.1. Materials

γ-decalactone >98% and γ-undecalactone 98% were purchased from Sigma-Aldrich
(Burlington, MA, USA). Diethyl ether, ethyl alcohol 96%, acetone, and ammonia solution
were purchased from Avantor Performance Materials (Gliwice, Poland). Tween 20 was
purchased from Acros Organics (Belgium, Geel), and castor oil was purchased from Carl Roth
(Karlsruhe, Germany). The media ingredients were purchased from BTL Łódź (Lodz, Poland).

2.2. Microorganism and Culture Conditions

In this study, we used Yarrowia lipolytica strain KKP 379 from the Collection of In-
dustrial Microorganisms at the Prof. Wacław Dąbrowski Institute of Agricultural and
Food Biotechnology—State Research Institute (Warsaw, Poland). The strain was stored in
cryovials containing ceramic beads with a cryoprotective agent at −20 ◦C (Protect Select,
Technical Service Consultants Ltd., Heywood, UK).

Inoculum culture of Y. lipolytica was provided in Erlenmeyer flasks containing 50 mL
YPG medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L glucose) at 27 ◦C for 24 h
on a rotary shaker at the speed of 140 rpm. Biotransformation medium for GDL production
was inoculated with the cells in logarithmic growth phase at an initial concentration
of OD600 ≈ 0.25.

The composition of the medium for GDL production was as follows: 50 g or 75 g/L
of castor oil, 20 g/L of peptone, and 5 g/L of Tween 20. The pH of the medium was
corrected with a 25% ammonia solution. Batch cultures were provided in a 4 L operating
volume bioreactor Bioflo 3000 (New Brunswick Scientific, Edison, NJ, USA) at 28 ◦C for
about 44–64 h, mixed using the Rushton turbine, and aerated with compressed air at a
flow of 100 L/h/L of medium. During culture, the following parameters were monitored:
dissolved oxygen (DO2) in the medium, agitation speed, pH, and GDL concentration. Dif-
ferent modes of agitation speed, castor oil concentration (biotransformation substrate), and
pH of medium were used in four yeast bioreactor cultures, according to the L4 orthogonal
array for trials (Tables 1 and 2). Each culture in the bioreactor was performed twice.

Table 1. The L4 orthogonal array for bioreactor cultures.

Factors
Bioreactor Culture Number

1 2 3 4

pH Level 1 Level 2 Level 1 Level 2
Agitation speed Level 1 Level 1 Level 2 Level 2

Substrate
concentration Level 1 Level 2 Level 2 Level 1

Table 2. Levels of factors used in the batch cultures of Y. lipolytica.

Level pH Regulation Agitation Speed (rpm)
Substrate

Concentration
(g/L)

1 Initially 7, without regulation Variable (200–500) 75
2 Regulated Constant (500) 50

2.3. Gamma-Decalactone Extraction and Quantification

In order to determine the content of GDL, a sample of the medium was taken and
homogenized for 3 min (approx. 4000 rpm) using an IKA T25 homogenizer (Königswinter,
Germany). Next, 1.5 mL samples were collected. In order to maximize the yield of lactoni-
sation of 4-hydroxydecanoic acid, HCl was used in an amount of 10 µL. γ-undecalactone
was used as an internal standard and amounted to 20 µL. Lactone was extracted from the
biotransformation medium with 1.5 mL diethyl ether. The organic phase was recovered and
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analyzed with gas chromatography (YL 6100 Young Lin Instrument, Anyang, Gyeonggi-do,
Korea) equipped with a capillary column BPX (30 m × 0.25 mm) and a flame ionization
detector (280 ◦C), with nitrogen as a gas vector, at a flow rate of 1.1 mL/min. The split
injector temperature was changed as follows: 165 ◦C to 180 ◦C at a rate of 3 ◦C/min and
230 ◦C at a rate of 5 ◦C/min. Identification of γ-decalactone and γ-undecalactone was
realized on the basis of their retention time (11.5 min and 12.4 min, respectively). All assays
were performed in duplicate.

Kinetic parameters of GDL biosynthesis in a batch culture were calculated according
to Papanikolaou and Aggelis [34].

2.4. Determination of Biomass Yield

Yeast cells were separated from culture medium by centrifugation (8000 rpm, 10 min,
Centrifuge MPW-351R, Warsaw, Poland) and degreased by washing with acetone/ethanol
(1:1, v/v) and then with distilled water. Biomass was dried at 105 ◦C until constant weight.
Biomass yield was expressed as cell dry weight in a volume of 1 L of medium (g CDW/L).

2.5. Growth Parameters

For measuring the optical density, 1 mL of culture was centrifuged in an Eppendorf
microcentrifuge (5418, ROTH). The supernatant was replaced with 1 mL of distilled water.
Samples were diluted (OD between 0.7 and 1.3), and the light scattering property of
the solution was measured with a UV-VIS THERMO Scientific Helios spectrophotometer
(Waltham, MA, USA) at 600 nm (OD600). Then, the obtained value of the optical density
was corrected with the dilution factor. To determine the number of yeast cells, 10 dilutions
in sterile 0.85% NaCl were executed. Yeast cells were grown on solid YPD medium at 28 ◦C
for 48 h.

2.6. Hydrophobicity of Cells

The surface hydrophobicity of cells of Y. lipolytica was evaluated using the MATH
(Microbial Adhesion to Hydrocarbons) test according to Aguedo et al. [35]. Yeast cells
were centrifuged (8000× g, 10 min; Centrifuge MPW-351R) and washed twice with phos-
phate buffer (0.1 M, pH 7). Then, the cells were resuspended in the buffer to an A600 of
0.70 ± 0.05 (A0). A tube was filled with a 5 mL sample of this suspension and 1 mL decane.
The tube was vortexed for 60 s in order to form an emulsion and left for 15 min to allow the
separation. The absorbance of the aqueous phase was measured (A). The hydrophobicity
of cells was calculated according to the formula:

% adhesion = [(A0 − A)/A0] × 100% (1)

2.7. Statistical Analysis

Four independent bioreactor cultures were carried out in the study, and three input
parameters were tested, each at two levels: the concentration of the substrate, the pH
regulation of the biotransformation medium, and the intensity of mixing. A tabulated set of
a standard orthogonal array was designed (Table 1). The controlled factors used in the study
were set at two levels presented in Table 2. After performing all 4 experiments, optimal
parameters were determined using the method indicated by Genichi Taguchi [36]. “The
larger, the better” method was applied. Higher values of the signal-to-noise ratio (S/N, Eta)
identified control factor settings that minimized the effects of the noise factors. The goal
was to maximize the response. The results were analyzed using STATISTICA 13.1 software
equipped with software supplement DoE—Design of Experiment (TIBCO Software Inc.,
Palo Alto, CA, USA).



Appl. Sci. 2022, 12, 10231 5 of 16

3. Results
3.1. Impact of Concentration of Castor Oil, pH of the Medium, and Agitation Speed on Synthesis of
γ-Decalactone in the Batch Culture Carried Out in the Bioreactor

Four bioreactor batch cultures were carried out according to the Taguchi design
method (Table 1) aimed at optimizing three parameters of the biotransformation process in
terms of GDL synthesis. In each culture, apart from lactone concentration (Figure 1), yeast
growth parameters were also monitored, namely optical density, biomass yield, and the
number of yeast colonies, as well as their hydrophobicity, by performing the MATH test
(Figure 2). These parameters were selected as significant based on literature data and our
previous research on GDL synthesis [13,37].

In the first batch culture (Figure 1a), the substrate (castor oil) concentration was 75 g/L,
a variable agitation rate ranging from 200 to 500 rpm was used, and the substrate pH ini-
tially at 7 was not corrected throughout the process cycle. The use of such parameters made
it possible to obtain a maximum of 1.56 ± 0.04 g/L of GDL in 37 h of biotransformation. On
the first day of the biotransformation, the concentration of lactone increased exponentially,
reaching the level of 1.26 ± 0.13 g/L already in the 20th hour of the reaction. After reaching
the maximum (37 h), the concentration decreased, reaching the value of 1.01 ± 0.11 g/L
in the 64th hour of cultivation. Literature data confirm a decrease in GDL concentration
in biotransformation reactions conducted by wild-type yeast strain Y. lipolytica [13,23,38].
Therefore, in order to fully capture the kinetics of γ-decalactone biosynthesis by Yarrowia
yeast, cultures in bioreactor 1 were performed for 64 h. Observing the maximum concen-
tration of the aroma compound at about 37 h of cultivation, the time of biotransformation
reactions in subsequent bioreactors was reduced to two days.

When analyzing the changes in GDL concentration in relation to the process param-
eters, it can be noticed that only after lowering the pH value below 5 in the medium,
the concentration of GDL exceeding 1 g/L was recorded. The maximum concentration
of lactone occurred during the period of intensive mixing (500 rpm), with the dissolved
oxygen content in the medium at the level of approx. 10%. The parameters of yeast growth
in bioreactor 1 (Figure 2a) indicated that on the first day of the experiment, the yeast cells
were in the log phase. The OD increased dynamically, reaching the value of 14.06 ± 1.79 in
20 h. During the second day of biotransformation, the cells went into the stationary phase,
and since the 40th hour of cultivation, the OD value remained at approx. 20. The biomass
yield correlated with the OD values. Within 38 h of culture, a more than threefold increase
in cellular biomass was observed, from the level of 7.22 ± 1.87 g CDW/L in the 14th hour
of culture to 24.43 ± 1.73 g CDW/L in 38 h. The number of cells in the initial period of the
exponential phase, expressed as log CFU/mL, was less than 6 (16 h). After 48 h of culture,
the number of colonies increased 100 times.
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Figure 1. Changes in dissolved oxygen, agitation speed, and concentration of γ-decalactone in the batch cultures of Y. lipolytica yeast carried out in accordance 
with L4 orthogonal array. Batch culture parameters: (a) bioreactor culture 1—agitation speed of 200–500 rpm, unregulated pH, castor oil concentration of 75 g/L; 
(b) bioreactor culture 2—agitation speed of 200–500 rpm, regulated pH, castor oil concentration of 50 g/L; (c) bioreactor culture 3—agitation speed of 200 rpm, 
regulated pH, castor oil concentration of 50 g/L; (d) bioreactor culture 4—agitation speed of 200 rpm, regulated pH, castor oil concentration of 75 g/L.  

Figure 1. Changes in dissolved oxygen, agitation speed, and concentration of γ-decalactone in the batch cultures of Y. lipolytica yeast carried out in accordance
with L4 orthogonal array. Batch culture parameters: (a) bioreactor culture 1—agitation speed of 200–500 rpm, unregulated pH, castor oil concentration of 75 g/L;
(b) bioreactor culture 2—agitation speed of 200–500 rpm, regulated pH, castor oil concentration of 50 g/L; (c) bioreactor culture 3—agitation speed of 200 rpm,
regulated pH, castor oil concentration of 50 g/L; (d) bioreactor culture 4—agitation speed of 200 rpm, regulated pH, castor oil concentration of 75 g/L.
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In the second bioreactor culture (Figure 1b), the acidity of the medium and the con-
centration of the introduced substrate were modified. The pH was kept constant at 7 
throughout the biotransformation process, and the concentration of castor oil was reduced 
from 75 g/L to 50 g/L. This cultivation variant allowed us to obtain approx. 2.15 ± 0.04 g/L 
of GDL, which was an approx. 38% higher value in relation to bioreactor 1. The maximum 
concentration was recorded in 45 h of the reaction, and the cultivation was not carried out 
any longer. Therefore, it can be assumed that it was possible to obtain a higher concentra-
tion of lactone while extending the time of the biotransformation reaction. During this 
cultivation, the highest concentration of the fragrance compound was obtained, unlike for 
bioreactor 1, during slow mixing (200 rpm) and at a much higher concentration of dis-
solved oxygen in the medium, approx. 76%. Both the oxygenation level of the medium 
and the analyzed yeast growth parameters (Figure 2b) indicated that the highest observed 
concentration of lactone in the medium was at the final stage of the stationary phase. Com-
paring the data from bioreactors 1 and 2, it can be seen that on the first day of the experi-
ment, the growth of yeast cells in both cultures was similar—after 21 h in bioreactor 2, the 
biomass yield was 11.95 ± 3.04 g CDW/L, while in bioreactor 1, it was 14.13 ± 0.04 g 
CDW/L. The number of live cells was also comparable, at the level of approx. 8–8.2 log 
CFU/mL. The difference in cell growth became apparent on the second day of biotrans-
formation. In bioreactor 2, cells died faster, so that after 43 h, the living cell population 
had decreased by almost four log orders—to 4.58 ± 0.65 log CFU/mL. The hydrophobicity 
of yeast cells correlated with their growth phases. During the first 24 h of culture, the 
degree of cell adhesion to decane was over 60%, while at the end of the stationary/slow 
dying phase, it was only about 20.1% (42 h of culture). 
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Figure 2. Growth curves illustrating of either OD600 readings (blue line) and biomass yield (violet 
line) or viable cell counts (CFU/mL) (black line) and percentage of adhesion to decane (yellow line) 
for culture 1 (a), culture 2 (b), culture 3 (c), and culture 4 (d). 

The third bioreactor culture (Figure 1c) was carried out by modifying the agitation 
speed (set at a constant level of 200 rpm) and the pH of the medium (initial pH = 7, not 
corrected during the cultivation) relative to the second bioreactor. The castor oil concen-
tration was 50 g/L. Under these conditions, the maximum recorded concentration of GDL 
was 0.19 ± 0.01 g/L (45 h of biotransformation). It was over 8 times lower than in the first 
culture and over 11 times lower than in the second culture. The concentration of dissolved 
oxygen in the medium was close to zero since the 12th hour of cultivation. Following the 
yeast growth parameters (Figure 2c), it is clearly visible that between 15 h and 23 h, there 
was a relatively small increase in OD compared to the previous bioreactor cultures, from 
the value of 4.04 ± 0.03 to 5.79 ± 0.94. After 39 h of culture, the optical density was only 
6.30 ± 1.06. In this culture, the yield of yeast dry matter did not exceed 7.2 g CDW/L. The 
slight increase in biomass was accompanied by a small number of colonies. After 15 h of 
culture, the number of viable cells was 5.56 ± 0.28 log CFU/mL and during the second day 
of culture, it increased statistically insignificantly to the value of 5.91 ± 0.41 log CFU/mL. 
Between 15 h and 39 h, the hydrophobicity of Yarrowia cells decreased from 49.7 ± 5.3% to 
24.4 ± 4.1%. This may be related to the very low content of dissolved oxygen in the me-
dium [39]. 

Figure 1d shows the data on the fourth bioreactor setting. This culture used a con-
stant pH of 7 (throughout the cultivation period) and a constant agitation speed of 200 
rpm, with a castor oil content of 75 g/L. As a result of the fourth biotransformation, 0.55 ± 
0.01 g/L of lactone was obtained in 46 h. Between 16 h and 25 h, the concentration of GDL 
increased from 0.09 ± 0.01 g/L to 0.20 ± 0.01 g/L, and the level of dissolved oxygen in the 
medium was 2–3%. On the second day of the reaction, the lactone concentration doubled 
(0.46 ± 0.02 g/L), and the dissolved oxygen concentration in the medium was about 15–
20%, which was more conducive to lactone synthesis. With regard to the first and second 
biotransformations, the concentrations of lactone were nearly 3 and 4 times lower, respec-
tively. Cells multiplied slightly better than in bioreactor 3, but significantly weaker com-
pared to bioreactors 1 and 2. Optical density (Figure 2d) was correlated to the biomass 
yield. OD increased from 5.19 ± 0.32 on the first day of biotransformation to 9.60 ± 0.91 on 

Figure 2. Growth curves illustrating of either OD600 readings (blue line) and biomass yield (violet
line) or viable cell counts (CFU/mL) (black line) and percentage of adhesion to decane (yellow line)
for culture 1 (a), culture 2 (b), culture 3 (c), and culture 4 (d).

In the second bioreactor culture (Figure 1b), the acidity of the medium and the concentra-
tion of the introduced substrate were modified. The pH was kept constant at 7 throughout the
biotransformation process, and the concentration of castor oil was reduced from 75 g/L to
50 g/L. This cultivation variant allowed us to obtain approx. 2.15 ± 0.04 g/L of GDL, which
was an approx. 38% higher value in relation to bioreactor 1. The maximum concentration
was recorded in 45 h of the reaction, and the cultivation was not carried out any longer.
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Therefore, it can be assumed that it was possible to obtain a higher concentration of lactone
while extending the time of the biotransformation reaction. During this cultivation, the
highest concentration of the fragrance compound was obtained, unlike for bioreactor 1,
during slow mixing (200 rpm) and at a much higher concentration of dissolved oxygen in
the medium, approx. 76%. Both the oxygenation level of the medium and the analyzed
yeast growth parameters (Figure 2b) indicated that the highest observed concentration of
lactone in the medium was at the final stage of the stationary phase. Comparing the data
from bioreactors 1 and 2, it can be seen that on the first day of the experiment, the growth
of yeast cells in both cultures was similar—after 21 h in bioreactor 2, the biomass yield was
11.95 ± 3.04 g CDW/L, while in bioreactor 1, it was 14.13 ± 0.04 g CDW/L. The number
of live cells was also comparable, at the level of approx. 8–8.2 log CFU/mL. The difference
in cell growth became apparent on the second day of biotransformation. In bioreactor 2, cells
died faster, so that after 43 h, the living cell population had decreased by almost four log
orders—to 4.58 ± 0.65 log CFU/mL. The hydrophobicity of yeast cells correlated with their
growth phases. During the first 24 h of culture, the degree of cell adhesion to decane was
over 60%, while at the end of the stationary/slow dying phase, it was only about 20.1% (42 h
of culture).

The third bioreactor culture (Figure 1c) was carried out by modifying the agitation
speed (set at a constant level of 200 rpm) and the pH of the medium (initial pH = 7,
not corrected during the cultivation) relative to the second bioreactor. The castor oil
concentration was 50 g/L. Under these conditions, the maximum recorded concentration
of GDL was 0.19 ± 0.01 g/L (45 h of biotransformation). It was over 8 times lower than
in the first culture and over 11 times lower than in the second culture. The concentration
of dissolved oxygen in the medium was close to zero since the 12th hour of cultivation.
Following the yeast growth parameters (Figure 2c), it is clearly visible that between 15 h
and 23 h, there was a relatively small increase in OD compared to the previous bioreactor
cultures, from the value of 4.04 ± 0.03 to 5.79 ± 0.94. After 39 h of culture, the optical
density was only 6.30 ± 1.06. In this culture, the yield of yeast dry matter did not exceed
7.2 g CDW/L. The slight increase in biomass was accompanied by a small number of
colonies. After 15 h of culture, the number of viable cells was 5.56 ± 0.28 log CFU/mL
and during the second day of culture, it increased statistically insignificantly to the value
of 5.91 ± 0.41 log CFU/mL. Between 15 h and 39 h, the hydrophobicity of Yarrowia cells
decreased from 49.7 ± 5.3% to 24.4 ± 4.1%. This may be related to the very low content of
dissolved oxygen in the medium [39].

Figure 1d shows the data on the fourth bioreactor setting. This culture used a constant
pH of 7 (throughout the cultivation period) and a constant agitation speed of 200 rpm, with
a castor oil content of 75 g/L. As a result of the fourth biotransformation, 0.55 ± 0.01 g/L
of lactone was obtained in 46 h. Between 16 h and 25 h, the concentration of GDL in-
creased from 0.09 ± 0.01 g/L to 0.20 ± 0.01 g/L, and the level of dissolved oxygen in
the medium was 2–3%. On the second day of the reaction, the lactone concentration
doubled (0.46 ± 0.02 g/L), and the dissolved oxygen concentration in the medium was
about 15–20%, which was more conducive to lactone synthesis. With regard to the first
and second biotransformations, the concentrations of lactone were nearly 3 and 4 times
lower, respectively. Cells multiplied slightly better than in bioreactor 3, but significantly
weaker compared to bioreactors 1 and 2. Optical density (Figure 2d) was correlated to
the biomass yield. OD increased from 5.19 ± 0.32 on the first day of biotransformation to
9.60 ± 0.91 on the second day, and the biomass yield increased from 5.80 ± 0.85 g CDW/L
to 9.60 ± 0.95 g CDW/L. As in culture 3, extending the reaction time resulted in a decrease
in the hydrophobic properties of the cells from 54.2 ± 7.0% to 28.4 ± 4.2%.

Data are presented as the mean ± standard deviation of three replicates.
Comparing the kinetic parameters of all four cultures (Table 3), it can be noticed that

the intensity of mixing and aeration of the medium were important in cell proliferation as
well as in lactone biosynthesis [40–42]. In the first two cultures, in which a variable speed of
agitation was used, taking into account the level of dissolved oxygen in the medium, better
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results of GDL biosynthesis were obtained. The best parameters for both conversion yield
of GDL per biomass formed (YL/X) or per carbon substrate (YL/S) and for volumetric rate of
GDL production (qLv) or specific rate of GDL production (qL) were obtained in bioreactor 2.
The yield of GDL synthesis in terms of carbon substrate in this culture was 0.043 g/g
and was twice as high than in culture 1 and more than 10 times higher than in culture 3.
Comparing the volumetric rate of GDL production (qLv) g/L/h in individual cultures, it
can be seen that between the most efficient and the least efficient biotransformation, the
volumetric rate was 12.5 times lower. Similarly, in the case of the specific rate of GDL
production efficiency, between the best culture (bioreactor 2) and the worst (bioreactor 3),
the specific rate of GDL production differed by 6.5-fold.

Table 3. Kinetic parameters of γ-decalactone biosynthesis in batch bioreactor cultures of Y. lipolytica,
according to the L4 orthogonal array.

Parameter Unit
Bioreactor Batch Cultures

1 * 2 3 4

Initial concentration of carbon source (S) g/L 75 50 50 75

Time (t) h 37
(64) 45 45 46

Biomass yield (X) gd.w./L 24.43 ± 1.73 12.93 ± 1.31 7.17 ± 1.45 9.60 ± 0.95
Maximum concentration of GDL (Lmax) g/L 1.56 ± 0.04 2.15 ± 0.04 0.19 ± 0.01 0.55 ± 0.01
Conversion yield of biomass per carbon

substrate (YX/S) gd.w./g 0.326 0.259 0.143 0.128

Conversion yield of GDL per biomass
formed (YL/X) g/gd.w. 0.064 0.166 0.026 0.057

Conversion yield of GDL per carbon
substrate (YL/S) g/g 0.021 0.043 0.004 0.007

Volumetric rate of GDL production (qLv) g/L/h 0.042
(0.024) 0.050 0.004 0.011

Specific rate of GDL production (qL) g/gd.w./h 0.0017
(0.0010) 0.0039 0.0006 0.0012

* in the case of bioreactor 1, in which the maximum γ-decalactone biosynthesis did not coincide with the end of
the culture, for a better comparison of parameters, the yeast cultures and the kinetic values of lactone biosynthesis
were related to the time when the maximum concentration of lactone was reached (values without brackets) or
the total cultivation time (values with brackets).

3.2. Evaluation of Optimal Conditions for γ-Decalactone Biosynthesis in Bioreactor Culture Means
of the Taguchi Statistical Design Method

Performing four experiments in accordance with the assumptions of the Taguchi
method of experimental design allowed for the selection of optimal parameters of GDL
biosynthesis. The statistical analysis took into account the influence of three parameters,
substrate acidity, mixing speed, and substrate concentration (castor oil), on the following
initial values: maximum GDL concentration in the medium, dry biomass yield, and yeast
cell viability. The results of the statistical analysis are visualized graphically in the form of
mean Eta values, marginal means, informing about the input values for which it is forecast
to obtain the most desirable value of the selected output parameter. Figure 3 shows the
average Eta values obtained on the second day of the biotransformation reaction, on average
after 45 h. The data in Figure 3a show that the most important factor influencing the increase
in GDL concentration in the medium was the intensity of mixing. Variable mixing speed
(200–500 rpm) allowed us to avoid complete oxygen depletion in the substrate, and ensuring
adequate oxygenation of the substrate increases the efficiency of biotransformation of castor
oil to GDL, because oxygen is a substrate of the β-oxidation pathway. The remaining factors
ensuring the maximum concentration of lactone are presented in Table 4. The optimal
parameters were revealed during the Taguchi design experiment. Taking into account
the obtained cellular biomass yield (Figure 3b), the substrate concentration was the most
important factor. Castor oil was the only source of carbon in the media, necessary for
the growth of microorganisms and maintenance of vital functions, and was a substrate of
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the β-oxidation pathway leading to the synthesis of GDL. From the point of view of cell
viability (Figure 3c), the optimal conditions were natural acidity at pH 7, no regulation,
constant intensity of mixing, and a substrate concentration of 75 g/L.
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number of living cells of Y. lipolytica in batch culture. The values of the controlled factors used in the
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Table 4. Indication of parameters in S/N group, “the larger, the better”, under which the concentration
of γ-decalactone in biotransformation medium at 45 h of Y. lipolytica batch can reach the highest values.

pH Mixing Intensity Substrate Concentration

regulated variable 75 g/L

To verify the accuracy of the indicated parameters, a fifth biotransformation reaction
was performed. In the bioreactor culture, the parameters presented in Table 4 were used as
optimal in obtaining the highest concentration of lactone. The course of this culture along
with the obtained GDL concentration is shown in Figure 4. The data analysis confirmed that
the statistically selected culture parameters allowed for more efficient biotransformation.
The concentration of GDL in this reaction was approx. 36% higher than that of the best
bioreactor culture from the first stage (Figure 1b). In this experiment, after 24 h of reaction,
over 2 g of lactone/L was obtained, and in 41 h, the concentration of lactone was close
to 3 g/L (2.93 ± 0.33 g/L).
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Figure 4. Changes in dissolved oxygen, agitation speed, and concentration of γ-decalactone in the
batch culture of Y. lipolytica yeast carried out in accordance with parameters of Table 4 (agitation
speed of 200–500 rpm, regulated pH, castor oil concentration of 75 g/L).

The kinetic parameters for this biotransformation reaction (Table 5) confirm the validity
of the assumptions of the Taguchi method. The conversion yield of GDL per biomass
formed (YL/X) was higher than the most efficient reaction from the previous stage (Table 3)
by approx. 8%. It was similar in the case of the volumetric rate of GDL production (qLv) and
the specific rate of GDL production (qL)—these parameters were higher in this reaction by
approx. 42% and 13%, respectively. Only the conversion yield of GDL per carbon substrate
(YL/S) decreased in this culture.
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Table 5. Kinetic parameters of γ-decalactone biosynthesis in a bioreactor batch culture of Y. lipolytica,
according to the parameters in Table 4, determined on the basis of the Taguchi method.

Parameter Unit Bioreactor Batch Culture

Initial concentration of carbon source (S) g/L 75
Time (t) h 45

Biomass yield (X) gd.w./L 16.35 ± 2.1
Maximum concentration of GDL (Lmax) g/L 2.93 ± 0.33

Conversion yield of GDL per biomass formed (YL/X) g/gd.w. 0.179
Conversion yield of GDL per carbon substrate (YL/S) g/g 0.039

Volumetric rate of GDL production (qLv) g/L/h 0.071
Specific rate of GDL production (qL) g/gd.w./h 0.0044

4. Discussion

Three factors with two levels were chosen for the optimization of GDL production by
the Taguchi method as a fractional factorial experiment design. The conducted bioreactor
cultures, supported by the Taguchi method, confirmed that the selection of appropriate
cultivation conditions has a significant impact on the level of GDL biosynthesis. One of
the factors determining the concentration of lactone in the medium is the carbon source.
Biotransformations leading to the production of GDL described in the literature use castor
oil, ricinoleic acid, or methyl ricinoleate [18]. These compounds are sources of carbon in
the culture medium, necessary for the growth of microorganisms and maintenance of vital
functions, as well as activators for enzymes in the pathway of GDL synthesis. The most
widely used is castor oil (as in our research), a cheap, non-toxic, and readily available
substrate. Moradi et al. [22] optimized the synthesis of GDL by Y. lipolytica cells using
castor oil at the concentration of 10–40 mL/L (v/v). The results of their research indicated
that the highest concentration of aroma, at the level of approx. 0.053 g/L, occurred at
the dose of castor oil in the range of 10–25 mL/L. The yeast Rhodotorula aurantiaca A19
synthesized within 10 days of the biotransformation of 5.5 g/L, at the oil dose of 20 g/L.
The concentration of lactone in the culture of these microorganisms did not increase in
proportion to the concentration of the substrate. Higher concentrations of castor oil, in
the range of 30–60 g/L, reduced the level of aroma synthesis [20]. Different conclusions
result from the studies by Braga and Belo [23]. According to the authors, the use of higher
concentrations of hydrophobic substrate, on the order of 60 g/L, in a 25 h cultivation of
Yarrowia yeast, enables the synthesis of approx. 5.4 g/L. At lower oil concentrations, a
decrease in lactone concentration was observed after some time, until it was completely
depleted. A similar relationship was observed in the culture of Y. lipolytica Y-VTP5, where
the concentration of 100 g/L made it possible to obtain 1.3 g/L of GDL [43]. In the case of
ricinoleic acid, it has been shown that its high concentration may inhibit cell growth and,
indirectly, lactone synthesis [22].

As shown by the Taguchi method, the factor that mainly influenced the GDL biosynthe-
sis was the intensity of mixing. Appropriate mixing speed supports the proper oxygenation
of the substrate and ensures the dispersion of the hydrophobic substrate (castor oil) in the
water phase. The contact surface of fat droplets with the cells of multiplied organisms and
the contact surface between the two liquid phases is considered to be a factor determin-
ing the degradation of the hydrophobic substrate, and thus the growth of cells and their
aroma production [44]. Indications of the Taguchi method, confirmed by bioreactor culture
(Figure 4, Table 5), showed that in the analyzed range of three parameters, the highest con-
centration of lactone was obtained at a variable mixing speed in the range of 200–500 rpm.
This is also supported by literature data. Variable stirring speed, ranging from 300 to
600 rpm, used to maintain the proper level of dissolved oxygen in the medium, allowed
the fed-batch culture of Y. lipolytica to obtain the highest concentration of 70 mg/L [45].
Mixing at the level of 600 rpm was optimal for productivity and obtaining the maximum
concentration of GDL in the study by Gomes et al. [46]. Under these conditions, more
than 1 g of lactone per liter of medium was obtained, and the yield was at the level of
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87.6 mg/L. The authors report that faster mixing provides a better oxygen transfer to the
medium. Similar relationships were shown in the study by Aguedo et al. [40]. The most
advantageous in terms of GDL production (110 mg/L) was the mixing speed of 600 rpm
(with 0.9 vvm aeration). With 300 rpm slower mixing, the product concentration decreased
by nearly 30% (80 mg/L). Increasing the mixing speed is not always associated with in-
creasing the lactone concentration in the medium. However, it may increase its volumetric
rate of GDL production. This is evidenced by the team of Braga and Belo [23], who, by
increasing the mixing intensity from 400 to 600 rpm, observed a 4.5-fold increase in the
aroma productivity (from 16 to 75 mg/L). The different speed of mixing did not affect the
differentiation of the emulsification level, but it ensured better dispersion of air bubbles
in the medium, increasing the interfacial surface. The emulsification of the medium is
extremely important from the point of view of yeast growth (including growth rate). In
a non-homogeneous medium, the lag phase can be even 60% longer [47]. The effects of
worse homogenization of the substrates, resulting from low mixing values (200 rpm), on
the growth of yeast and the duration of the lag phase can be seen in Figure 1 and Table 3.
The yield of biomass in these cultures did not exceed 10 g CDW/L, and the lag phase lasted
more than 10 h (Figure 1c,d).

The lower efficiency of GDL biosynthesis in the media with agitation at the level of
200 rpm may also be the result of the lower hydrophobicity of yeast cells from these cultures
(Figure 2c,d). In biotransformation reactions, there is direct contact of yeast cells with the
substrate by adhesion of microorganisms to the surface of larger droplets or by adsorption
of smaller droplets on the surface of yeast cells. Lower cell hydrophobicity results in lower
levels of intermolecular interactions [35,44].

The third parameter influencing the efficiency of GDL biosynthesis, according to the
indicated Taguchi methods, is the pH of the substrate. Acidity influences the activity of
enzymes in the β-oxidation pathway. Moreover, in the granulometric tests, it was proved
that the size of hydrophobic substrate droplets in the medium also depends on the medium
acidity—the droplet size decreases proportionally with the decrease in pH [48]. The optimal
pH of lactone biosynthesis depends on the species and type of microorganisms. According
to Gomes et al. [28], the yeast Y. lipolytica, despite the different pH of the medium, can
regulate the relatively constant intracellular pH. Garcia et al. [21] report that the optimal
pH in terms of lactone synthesis by Y. lipolytica W29 is approx. 6.35. Higher acidity of
the substrate (pH = 4.45 and lower) combined with a low concentration of dissolved
oxygen selectively switches to other pathways in the β-oxidation cycle and affects acyl-
CoA hydratase and 3-hydroxy-acyl-CoA dehydrogenase, resulting in 3-hydroxy-gamma-
decalactone, dec-2-en-4-olide, and dec-3-en-4-olide. Timoumi et al. [49] also draw attention
to the fact that pH influences the morphological changes in Yarrowia lipolytica cells, and
thus indirectly their metabolic activity. At pH 7 (used in the cultures described in this
article), specifically in batch bioreactors where cells proliferate at their maximum growth
rate, mycelia are mainly formed.

5. Conclusions

Research on biotechnological synthesis of γ-decalactone has been conducted for sev-
eral years and is aimed increasing biosynthesis efficiencies. The influence of many factors
(including the biphasic nature of the substrate) on the growth and catalytic activity of
microorganisms makes it still difficult to optimize the processes. Complex experimental
designs are being used in attempts to determine the optimal conditions for GDL biosyn-
thesis. The Taguchi robust design method used in this study allowed us to determine the
influence of three factors (castor oil concentration, pH regulation of growth medium, and
mixing intensity) on the lactone yield. A relatively small number of provided experiments
can be underlined as an advantage in the proposed approach. Improved GDL recovery
was achieved and the facilitated process parameters were tested in bioreactor culture. The
concentration of the fragrance compound was 1.4 to 15 times higher than in non-optimized
cultures and amounted to 2.93 g/L. The volumetric rate and specific rate of GDL pro-
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duction were higher than in many of the quoted literature examples. This confirms the
correctness of comprehensive process optimization. The use of the Taguchi method allowed
us to identify the most important factors influencing the analyzed process parameters and
prioritize factors having the greatest impact on the lactone concentration obtained in the
biotransformation, which was the intensity of mixing. It could also be concluded that the
yield of yeast dry matter most strongly depended on the concentration of the lipid substrate
in growth medium. The future application of a robust design could consider other factors
affecting biotransformation yield, e.g., the intensity of oxygenation and the toxic effect of
metabolites. Attempts in the field of fed-batch cultures with immobilized cells should also
be considered.
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