Reliable Integrity Preservation Analysis of Video Contents with Support of Blockchain Systems
Abstract
:1. Introduction
- This article proposes a trace scheme of multimedia integrity preservation for retouched but not-tampered videos. To the best of our knowledge, this study is the first to record the transforming history from original videos to their retouched videos in order to trace the integrity preservation of the retouched videos.
- To guarantee the reliability, the proposed scheme stores its main code parts and the transforming history of retouched videos into the public blockchain system. When they are stored in a blockchain system, they become immutable, whereas they can be changed at any time when they are stored in a centralized server. The proposed scheme stores its main codes in the form of smart contract upon the public blockchain system The smart contract is a digital programming code suitably designed for the public blockchain system.
- To evaluate the practical feasibility of the proposed scheme, we implement the scheme upon a commercial public blockchain system and confirm that the scheme verifies the integrity preservation of retouched videos with 100% accuracy within a reasonable execution time. To avoid the maximum size constraint of a single smart contract, the scheme consists of twenty smarts contracts, and they are linked to their blockchain addresses.
2. Related Works
3. Proposed Scheme
3.1. Analyzing Integrity of Original Video Files
3.2. Integrity Preservation Trace of Reretouched Video Files
4. Evaluation
4.1. Implemented Software Tool
4.2. Experiment Results
4.3. Hardware and Blockchain Platform Dependency
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanh, T.V.; Chong, K.S.; Emmanuel, S.; Kankanhalli, M.S. A Survey on Digital Camera Image Forensic Methods. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Beijing, China, 2–5 July 2007; pp. 16–19. [Google Scholar]
- Singh, R.D.; Aggarwal, N. Video Content Authentication Techniques: A Comprehensive Survey. Multimed. Syst. 2018, 24, 211–240. [Google Scholar] [CrossRef]
- Pahade, R.; Singh, B.; Singh, U. A Survey on Multimedia File Carving. Int. J. Comput. Sci. Eng. Surv. 2015, 6, 27–46. [Google Scholar] [CrossRef]
- Husain, F. A Survey of Digital Watermarking Techniques for Multimedia Data. Int. J. Electron. Commun. Eng. 2011, 2, 37–43. [Google Scholar]
- Kk, S.; Mehtre, B. Digital video tampering detection: An overview of passive techniques. Digit. Investig. 2016, 18, 8–22. [Google Scholar]
- Lee, S.; Song, J.E.; Lee, W.Y.; Ko, Y.W.; Lee, H. Integrity Verification Scheme of Video Contents in Surveillance Cameras for Digital Forensic Investigations. IEICE Trans. Inf. Syst. 2015, E98-D, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Poisel, R.; Tjoa, S. Forensic Investigations of Multimedia Data: A Review of the State-of-the-Art. In Proceedings of the International Conference on IT Security Incident Management and IT Forensics (IMF), Stuttgart, Germany, 10–12 May 2011; Volume 6, pp. 48–61. [Google Scholar]
- Song, J.; Lee, K.; Lee, W.Y.; Lee, H. Integrity Verification of the Ordered Data Structures in Manipulated Video Content. Digit. Investig. 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Sim, S.G.; Kim, E.S.; Kim, D.S.; Lee, S.W.; Lee, W.Y. Apparatus and Method for Verifying the Integrity of Video File. U.S. Patent US15/976,754, 10 May 2018. [Google Scholar]
- Klaytn Foundation. Available online: https://docs.klaytn.foundation/ (accessed on 15 August 2022).
- Kingra, S.; Aggarwal, N.; Singh, R.D. Inter-frame forgery detection in H.264 videos using motion and brightness gradients. Multimed. Tools Appl. 2017, 76, 25767–25786. [Google Scholar] [CrossRef]
- Singh, R.D.; Aggarwal, N. Optical Flow and Pattern Noise-based Copy-Paste Detection in Digital Videos. Multimed. Syst. 2021, 27, 449–469. [Google Scholar] [CrossRef]
- Kobayashi, M.; Okabe, T.; Sato, Y. Detecting Forgery From Static-Scene Video Based on Inconsistency in Noise Level Functions. IEEE Trans. Inf. Forensics Secur. 2010, 5, 883–892. [Google Scholar] [CrossRef]
- He, P.; Jiang, X.; Sun, T.; Wang, S. Detecting of double compression in MPEG-4 videos based on block artifact measurement. Neurocomputing 2017, 228, 84–96. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, R. Double JPEG compression forensics based on a convolutional neural network. EURASIP J. Inf. Secur. 2016, 23, 30879–30906. [Google Scholar] [CrossRef] [Green Version]
- Chuah, J.H.; Khaw, H.Y.; Soon, F.C.; Chow, C.O. Detection of Gaussian Noise and Its Level using Deep Convolutional Neural Network. In Proceedings of the IEEE Region 10 Conference (TENCON), Penang, Malaysia, 5–8 November 2017; pp. 2447–2450. [Google Scholar] [CrossRef]
- Bae, W.; Nam, S.H.; Yu, I.J.; Kwon, M.J.; Yoon, M.; Lee, H.K. Dual-path Convolutional Neural Network for Classifying Fine-Grained Manipulations in H.264 Videos. Multimed. Tools Appl. 2021, 80, 30879–30906. [Google Scholar] [CrossRef]
- Carrier, B. File System Forensic Analysis; Addison-Wesley: Boston, MA, USA, 2005. [Google Scholar]
- Yoo, B.; Park, J.; Lim, S.; Bang, J.; Lee, S. A study on multimedia file carving method. Multimed. Tools Appl. 2012, 61, 243–261. [Google Scholar] [CrossRef]
- Na, G.H.; Shin, K.S.; Moon, K.W.; Kong, S.G.; Kim, E.S.; Lee, J. Frame-based recovery of corrupted video files using video codec specifications. IEEE Trans. Image Process. 2013, 23, 317–326. [Google Scholar]
- Alghafli, K.; Martin, T. Identification and recovery of video fragments for forensics file carving. In Proceedings of the IEEE International Conference for Internet Technology and Secured Transactions (ICITST), Barcelona, Spain, 5–7 December 2016; Volume 11, pp. 267–272. [Google Scholar]
- Yang, Y.; Xu, Z.; Liu, L.; Sun, G. A security carving approach for AVI video based on frame size and index. Multimed. Tools Appl. 2017, 76, 3293–3312. [Google Scholar] [CrossRef]
- Lee, W.Y.; Kim, K.H.; Yang, H.; Ko, Y.W. Automatic reconstruction of deleted AVI video files composed of scattered and corrupted fragments. Multimed. Tools Appl. 2020, 79, 28355–28367. [Google Scholar] [CrossRef]
- Gloe, T.; Fisher, A.; Kirchner, M. Forensic Analysis of Video File Formats. Digit. Investig. 2014, 11, S68–S76. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.Y. Practical Video Authentication Scheme to Analyze Software Characteristics. IEICE Trans. Inf. Syst. 2021, E104-D, 212–215. [Google Scholar] [CrossRef]
- Huanman, C.Q.; Orozco, A.L.S.; Villalba, L.J.G. Authentication and Integrity of Smartphone Videos through Multimedia Container Structure Analysis. Future Gener. Comput. Syst. 2020, 108, 15–33. [Google Scholar] [CrossRef]
- Wood, G. Ethereum: A Secure Decentralized Generalized Transaction Ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32. [Google Scholar]
- Yatskiv, V.; Yatskiv, N.; Bandrivskyi, O. Proof of Video Integrity Based on Blockchain. In Proceedings of the International Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czech Republic, 5–7 June 2019; Volume 9, pp. 431–434. [Google Scholar] [CrossRef]
- Ghimire, S.; Choi, J.Y.; Lee, B. Using Blockchain for Improved Video Integrity Verification. IEEE Trans. Multimed. 2020, 22, 108–121. [Google Scholar] [CrossRef]
- Mercan, S.; Cebe, M.; Aygun, R.S.; Akkaya, K.; Toussaint, E.; Danko, D. Blockchain-based Video Forensics and Integrity Verification Framework for Wireless Internet-of-Things Devices. Secur. Priv. 2021, 4, 1–17. [Google Scholar] [CrossRef]
- Khan, G.; Jabeen, S.; Khan, M.Z.; Khan, M.U.G.; Iqbal, R. Blockchain-enabled Deep Semantic Video-to-video Summarization for IoT Devices. Comput. Electr. Eng. 2020, 81, 106524. [Google Scholar] [CrossRef]
- Lee, W.Y. Cost Mimization of Solidity Smart Contract on Blockchain Systems. Int. J. Adv. Smart Converg. 2020, 9, 157–163. [Google Scholar]
- Raspberry Pi Foundation. Available online: https://www.raspberrypi.org/ (accessed on 1 October 2022).
- Tirumala, S.S.; Nepal, N.; Ray, S.K. Raspberry Pi-based Intelligent Cyber Defense Systems for SMEs and Smart-homes: An Exploratory Study. EAI Endorsed Trans. Smart Cities 2022, 6, e4. [Google Scholar] [CrossRef]
- Tron Developer Hub. Available online: https://developers.tron.network/ (accessed on 1 October 2022).
- Hyperledger Fabric. Available online: https://www.hyperledger.org/projects/fabric (accessed on 1 October 2022).
- Build on Quorum. Available online: https://consensys.net/goquorum/ (accessed on 1 October 2022).
- Chaabane, F.; Ktari, J.; Frikha, T.; Hamam, H. Low Power Blockchained E-Vote Platform for University Environment. Future Internet 2022, 14, 269. [Google Scholar] [CrossRef]
- Ktari, J.; Frikha, T.; Ben Amor, N.; Louraidh, L.; Elmannai, H.; Hamdi, M. IoMT-Based Platform for E-Health Monitoring Based on the Blockchain. Electronics 2022, 11, 2314. [Google Scholar] [CrossRef]
- Gururaj, H.L.; Kumar, V.R.; Goundar, S.; Elngar, A.A.; Swathi, B.H. The Convergence of Internet of Things and Blockchain Technologies. In AI/Springer Innovations in Communication and Computing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 57–75. [Google Scholar] [CrossRef]
Measure | Original Video | Non-Modified | Inter-Frame Forgery | Intra-Frame Forgery |
---|---|---|---|---|
Accuracy | 100.0% | 100.0% | 100.0% | 100.0% |
Avg exec. time | 221 ms | 227 ms | 228 ms | 232 ms |
Allowed Difference Ratio | Non-Modified | Inter-Frame Forgery | Intra-Frame Forgery |
---|---|---|---|
0.0% | 0.0% | 0.0% | 0.0% |
0.025% | 99.0% | 99.0% | 96.0% |
0.05% | 100.0% | 100.0% | 100.0% |
0.10% | 100.0% | 100.0% | 100.0% |
0.20% | 100.0% | 100.0% | 100.0% |
0.30% | 100.0% | 100.0% | 100.0 % |
0.40% | 100.0% | 100.0% | 100.0% |
0.50% | 100.0% | 100.0% | 99.0% |
0.60% | 100.0% | 100.0% | 98.0% |
Range of Video File Size (Mbytes) | Analyzing Integrity | Comparing Videos | Storing Result | Searching Result |
---|---|---|---|---|
10∼50 | 212 ms | 19,233 ms | 1744 ms | 637 ms |
50∼100 | 218 ms | 38,568 ms | 2824 ms | 938 ms |
100∼200 | 221 ms | 71,201 ms | 3424 ms | 1180 ms |
200∼500 | 223 ms | 136,119 ms | 4026 ms | 1315 ms |
500∼1024 | 226 ms | 293,744 ms | 5725 ms | 1974 ms |
1024∼1536 | 233 ms | 586,983 ms | 7332 ms | 2876 ms |
1536∼2048 | 234 ms | 722,726 ms | 9154 ms | 3527 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.Y.; Choi, Y.-S. Reliable Integrity Preservation Analysis of Video Contents with Support of Blockchain Systems. Appl. Sci. 2022, 12, 10280. https://doi.org/10.3390/app122010280
Lee WY, Choi Y-S. Reliable Integrity Preservation Analysis of Video Contents with Support of Blockchain Systems. Applied Sciences. 2022; 12(20):10280. https://doi.org/10.3390/app122010280
Chicago/Turabian StyleLee, Wan Yeon, and Yun-Seok Choi. 2022. "Reliable Integrity Preservation Analysis of Video Contents with Support of Blockchain Systems" Applied Sciences 12, no. 20: 10280. https://doi.org/10.3390/app122010280
APA StyleLee, W. Y., & Choi, Y. -S. (2022). Reliable Integrity Preservation Analysis of Video Contents with Support of Blockchain Systems. Applied Sciences, 12(20), 10280. https://doi.org/10.3390/app122010280