Probabilistic Risk Assessment of Soil Slope Stability Subjected to Water Drawdown by Finite Element Limit Analysis
Abstract
:1. Introduction
2. Analysis Method of Seepage and Stability
2.1. Darcy Seepage
2.2. Equilibrium Equation and Strain-Displacement Relationships
2.3. Constitutive Relationship in Effective Stress Space
2.3.1. Effective Stress Principle
2.3.2. Rigid-Plastic Constitutive Relationship
2.4. Finite Element Limit Analysis with Strength Reduction Technology
2.4.1. Lower Bound Limit Analysis
2.4.2. Upper Bound Limit Analysis
2.4.3. Strength Reduction Technology
3. Random Field Generation
3.1. Spatial Correlation Model
3.2. Generation of Random Fields Using the Karhunen–Loeve Series Expansion Method
3.3. Probability Distribution of Strength Parameters
4. Results and Discussion
4.1. Monte Carlo Simulation
4.2. The Characters of a Test Embankment Slope
4.3. Deterministic Analysis Results
4.4. Analysis of Random Field Results
4.4.1. Effect of Different COV
4.4.2. Effect of Different lx
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
the body force vector | |
the cohesion | |
the cohesion after reduction | |
the separated distance in random field | |
coefficient of variation | |
the elastic modulus | |
the yield function | |
the factor of safety | |
the jth eigenfunction | |
the plastic potential function | |
the desired random field | |
Gaussian random field | |
the total head | |
the position head | |
the hydraulic conductivity | |
the correlation length | |
the lower triangular matrix | |
the number | |
the static water pressure | |
the projection matrix | |
the fluid velocity along the x and y directions | |
standard deviation | |
the boundary | |
the tractions | |
the seepage pressure | |
the displacement vector | |
the specified boundary displacement | |
the configuration of interest | |
the factor of load | |
the dry and saturate weight of soil | |
the water gravity | |
the strain tensor | |
the plasticity strain rate tensor | |
the plastic multiplier | |
the jth eigenvalue | |
mean value | |
the stochastic vector | |
the correlation coefficient | |
the matrix of correlation coefficient | |
the total stress tensor | |
the effective stresses | |
shear stress | |
the Poisson ratio | |
the internal friction angle | |
the internal friction angle after reduction | |
the stochastic matrix | |
the dilation angle | |
the slack variables | |
the strain-displacement operator | |
the equilibrium operator |
Appendix A. The FOSs Obtained from Random Field Analysis
COV | WL/m | Horizontal Correlation Length | ||||
---|---|---|---|---|---|---|
1 m | 30 m | 40 m | 50 m | 500 m | ||
0.1 | 5 | 1.652 | 1.635 | 1.633 | 1.636 | 1.636 |
4 | 1.782 | 1.765 | 1.762 | 1.765 | 1.765 | |
3 | 1.882 | 1.865 | 1.863 | 1.866 | 1.866 | |
2 | 1.958 | 1.940 | 1.938 | 1.941 | 1.941 | |
1 | 2.006 | 1.984 | 1.985 | 1.987 | 1.996 | |
0.5 | 2.014 | 1.991 | 1.995 | 1.996 | 2.012 | |
0.2 | 5 | 1.586 | 1.549 | 1.546 | 1.551 | 1.551 |
4 | 1.711 | 1.674 | 1.671 | 1.676 | 1.676 | |
3 | 1.807 | 1.770 | 1.767 | 1.771 | 1.772 | |
2 | 1.877 | 1.835 | 1.834 | 1.838 | 1.843 | |
1 | 1.908 | 1.860 | 1.865 | 1.866 | 1.890 | |
0.5 | 1.912 | 1.864 | 1.870 | 1.870 | 1.903 | |
0.3 | 5 | 1.504 | 1.450 | 1.448 | 1.452 | 1.451 |
4 | 1.623 | 1.570 | 1.568 | 1.573 | 1.572 | |
3 | 1.714 | 1.659 | 1.658 | 1.662 | 1.663 | |
2 | 1.774 | 1.706 | 1.712 | 1.716 | 1.729 | |
1 | 1.792 | 1.724 | 1.731 | 1.733 | 1.768 | |
0.5 | 1.795 | 1.725 | 1.734 | 1.734 | 1.778 | |
0.4 | 5 | 1.414 | 1.348 | 1.346 | 1.350 | 1.350 |
4 | 1.527 | 1.464 | 1.462 | 1.466 | 1.466 | |
3 | 1.611 | 1.545 | 1.543 | 1.547 | 1.551 | |
2 | 1.659 | 1.582 | 1.585 | 1.588 | 1.610 | |
1 | 1.671 | 1.588 | 1.597 | 1.599 | 1.644 | |
0.5 | 1.672 | 1.587 | 1.598 | 1.598 | 1.651 | |
0.5 | 5 | 1.321 | 1.248 | 1.247 | 1.250 | 1.252 |
4 | 1.427 | 1.359 | 1.358 | 1.360 | 1.364 | |
3 | 1.504 | 1.427 | 1.428 | 1.431 | 1.442 | |
2 | 1.541 | 1.454 | 1.460 | 1.464 | 1.495 | |
1 | 1.547 | 1.457 | 1.468 | 1.470 | 1.523 | |
0.5 | 1.548 | 1.454 | 1.468 | 1.470 | 1.528 |
References
- Bishop, A.W. The use of the slip circle in the stability analysis of slopes. Geotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Duncan, J.M.; Wright, S.G. The accuracy of equilibrium methods of slope stability analysis. Eng. Geol. 1980, 16, 5–17. [Google Scholar] [CrossRef]
- Mahmood, K.; Kim, J.M.; Ashraf, M. The effect of soil type on matric suction and stability of unsaturated slope under uniform rainfall. KSCE J. Civ. Eng. 2016, 20, 1294–1299. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.; Rehman, Z.U.; Dai, F.; Ijaz, Z. Numerical study on stability of lignosulphonate-based stabilized surficial layer of unsaturated expansive soil slope considering hydro-mechanical effect. Transp. Geotech. 2022, 32, 100697. [Google Scholar] [CrossRef]
- Elkateb, T.; Chalaturnyk, R.; Robertson, P.K. An overview of soil heterogeneity: Quantification and implications on geotechnical field problems. Can. Geotech. J. 2003, 40, 1–15. [Google Scholar] [CrossRef]
- Phoon, K.K.; Kulhawy, F.H. Characterization of geotechnical variability. Can. Geotech. J. 1999, 36, 612–624. [Google Scholar] [CrossRef]
- Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; John Wiley & Sons Ltd: ChiChester, UK, 2003. [Google Scholar]
- Srivastava, A.; Babu, G.L.S.; Haldar, S. Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Eng. Geol. 2010, 110, 93–101. [Google Scholar] [CrossRef]
- Li, J.H.; Zhou, Y.; Zhang, L.L.; Tian, Y.; Cassidy, M. Random finite element method for spudcan foundations in spatially variable soils. Eng. Geol. 2016, 205, 146–155. [Google Scholar] [CrossRef]
- Cassidy, M.J.; Uzielli, M.; Tian, Y. Probabilistic combined loading failure envelopes of a strip footing on spatial variable soil. Comput. Geotech. 2013, 49, 191–205. [Google Scholar] [CrossRef]
- Li, D.Q.; Yang, Z.Y.; Cao, Z.J.; Au, S.-K.; Phoon, K.-K. System reliability analysis of slope stability using generalized Subset Simulation. Appl. Math. Model. 2017, 46, 650–664. [Google Scholar] [CrossRef]
- Tang, C.; Phoon, K.K.; Zhang, L.; Li, D.-Q. Model uncertainty predicting the bearing capacity of sand overlying clay. Int. J. Geomech. 2017, 17, 04017015. [Google Scholar] [CrossRef]
- Xiao, T.; Li, D.Q.; Cao, Z.J.; Tang, X.-S. Full probabilistic design of slopes in spatially variable soils using simplified reliability analysis method. Georisk 2017, 11, 146–159. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Gokceoglu, C. Probabilistic risk assessment in medium scale for rainfall-induced earthflows: Catakli Catchment Area (Cayeli, Rize, Turkey). Math. Probl. Eng. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Rosenblueth, E. Point estimates for probability moments. Proc. Natl. Acad. Sci. USA 1975, 72, 3812–3814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor Langford, J.; Diederichs, M.S. Reliability based approach to tunnel lining design using a modified point estimated method. Int. J. Rock Mech. Min. Sci. 2013, 60, 263–276. [Google Scholar] [CrossRef]
- Chen, Z.; Du, J.; Yan, J.; Sun, P.; Li, K.; Li, Y. Point estimation method: Validation, efficiency improvement, and application to embankment slope stability reliability analysis. Eng. Geol. 2019, 263, 105232. [Google Scholar] [CrossRef]
- Lanzafame, R.; Sitar, N. Reliability analysis of the influence of seepage on levee stability. Environ. Geotech. 2019, 6, 284–293. [Google Scholar] [CrossRef]
- Jia, J.; Wang, S.; Zheng, C.; Chen, Z.; Wang, Y. FOSM-based shear reliability analysis of GSGR dams using strength theory. Comput. Geotech. 2018, 97, 52–61. [Google Scholar] [CrossRef]
- Cho, S.E. Effects of spatial variability of soil properties on slope stability. Eng. Geol. 2007, 92, 97–109. [Google Scholar] [CrossRef]
- Ahmed, A.; Soubra, A.H. Probabilistic analysis at the serviceability limit state of two neighboring strip footings resting on a spatially random soil. Struct. Saf. 2014, 49, 2–9. [Google Scholar] [CrossRef]
- Fenton, G.A.; Griffiths, D.V. Statistics of block conductivity through a simple bounded stochastic medium. Water Resour. Res. 1993, 29, 1825–1830. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.V.; Fenton, G.A. Probabilistic slope stability analysis by finite element. J. Geotech. Geoenviron. Eng. 2004, 130, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.V.; Huang, J.; Fenton, G.A. Influence of spatial variability on slope reliability using 2-D random fields. J. Geotech. Geoenviron. Eng. 2009, 135, 1367–1378. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Griffiths, D.V.; Fenton, G.A. System reliability of slope by RFEM. Soils Found. 2010, 50, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.V.; Huang, J.; Fenton, G.A. Probabilistic infinite slope analysis. Comput. Geotech. 2011, 38, 577–584. [Google Scholar] [CrossRef]
- Cho, S.E. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Eng. Geol. 2012, 133–134, 30–39. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, L.M.; Zhang, L.L.; Zhou, C.B. Two-dimensional probabilistic infiltration analysis with a spatial varying permeability function. Comput. Geotech. 2013, 48, 249–259. [Google Scholar] [CrossRef]
- Tan, X.; Wang, X.; Khoshnevisan, S.; Hou, X.; Zha, F. Seepage analysis of earth dams considering spatial variability of hydraulic parameters. Eng. Geol. 2017, 228, 260–269. [Google Scholar] [CrossRef]
- Mouyeaux, A.; Carvajal, C.; Bressolette, P.; Peyras, L.; Breul, P.; Bacconnet, C. Probabilistic analysis of pore water pressures of an earth dam using a random finite element approach based on field data. Eng. Geol. 2019, 259, 105190. [Google Scholar] [CrossRef]
- Wang, M.Y.; Liu, Y.; Ding, Y.N.; Yi, B.-L. Probabilistic stability analyses of multi-stage soil slopes by bivariate random fields and finite element methods. Comput. Geotech. 2020, 122, 103529. [Google Scholar] [CrossRef]
- Li, D.; Li, L.; Cheng, Y.; Hu, J.; Lu, S.; Li, C.; Meng, K. Reservoir slope reliability analysis under water level drawdown considering spatial variability and degradation of soil properties. Comput. Geotech. 2022, 151, 104947. [Google Scholar] [CrossRef]
- Sloan, S.W. Lower bound limit analysis using finite elements and linear programming. Int. J. Numer. Anal. Methods Geomech. 1988, 12, 61–77. [Google Scholar] [CrossRef]
- Sloan, S.W. Upper bound limit analysis using finite elements and linear programming. Int. J. Numer. Anal. Methods Geomech. 1989, 13, 263–282. [Google Scholar] [CrossRef]
- Huang, J.; Lyamin, A.V.; Griffiths, D.V.; Krabbenhoft, K.; Sloan, S. Quantitative risk assessment of landslide by limit analysis and random fields. Comput. Geotech. 2013, 53, 60–67. [Google Scholar] [CrossRef]
- Krabbenhoft, K.; Lyamin, A.V. Strength reduction finite-element limit analysis. Géotech. Lett. 2015, 5, 250–253. [Google Scholar] [CrossRef]
- Chen, Z.H.; Lei, J.; Huang, J.H.; Cheng, X.H.; Zhang, Z.C. Finite element limit analysis of slope stability considering spatial variability of soil strengths. Chin. J. Geotech. Eng. 2018, 40, 985–993. [Google Scholar]
- Qian, Z.G.; Li, A.J.; Chen, W.C.; Lyamin, A.; Jiang, J. An artificial neural network approach to inhomogeneous soil slope stability predictions based on limit analysis methods. Soils Found. 2019, 59, 556–569. [Google Scholar] [CrossRef]
- Krabbenhoft, K.; Lyamin, A.; Krabbenhoft, J. OptumG2: Theory, Optum Computational Engineering, Version 2016; Optum Computational Engineering: Copenhagen, Denmark, 2018. [Google Scholar]
- Makrodimopoulos, A.; Martin, C. Limit analysis using large-scale SOCP optimization. In Proceedings of the 13th ACME conference: University of Sheffield, Sheffield, UK, 21–22 March 2005. [Google Scholar]
- Zhang, X.; Krabbenhoft, K.; Pedroso, D.M.; Lyamin, A.; Sheng, D.; da Silva, M.V.; Wang, D. Particle finite element analysis of large deformation and granular flow. Comput. Geotech. 2013, 53, 133–142. [Google Scholar] [CrossRef]
- Krabbenhoft, K. OptumG2; OptumCE Optum Computational Engineering: Copenhagen, Denmark, 2020; Available online: www.optumce.com (accessed on 1 September 2020).
- Liu, S.Y.; Shao, L.T.; Li, H.J. Slope stability analysis using the limit equilibrium method and two finite element methods. Comput. Geotech. 2015, 63, 291–298. [Google Scholar] [CrossRef]
- Green, D.K.E.; Douglas, K.; Mostyn, G. The simulation of discretization of random fields for probabilistic finite element analysis of soils using meshes of arbitrary triangular elements. Comput. Geotech. 2015, 68, 91–108. [Google Scholar] [CrossRef]
- Jiang, S.H.; Huang, J.S. Efficient slope reliability analysis at low-probability levels in spatially variable soils. Comput. Geotech. 2016, 75, 18–27. [Google Scholar] [CrossRef]
- Halder, K.; Chakraborty, D. Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope. Geomech. Eng. 2020, 23, 15–30. [Google Scholar] [CrossRef]
- Fenton, G.A.; Vanmarcke, E.H. Simulation of random fields via local average subdivision. J. Eng. Mech. 1990, 116, 1733–1749. [Google Scholar] [CrossRef] [Green Version]
- Frimpong, S.; Achireko, P.K. Conditional LAS stochastic simulation of regionalized variables in random fields. Comput. Geosci. 1998, 2, 37–45. [Google Scholar] [CrossRef]
- Shi, L.S.; Yang, J.Z.; Chen, F.L.; Zhou, F.C. Research on application of Karhunen-Loeve expansion to simulating anisotropic random field of soil property. Rock Soil Mech. 2007, 28, 2303–2308. [Google Scholar]
- Johari, A.; Sabzi, A. Reliability analysis of foundation settlement by stochastic response surface and random finite-element method. Sci. Iran. Trans. A Civ. Eng. 2017, 24, 2741–2751. [Google Scholar] [CrossRef]
- Tan, X.H.; Dong, X.L.; Fei, S.Z.; Gong, W.P.; Xiu, L.T.; Hou, X.L.; Ma, H.C. Reliability analysis method based on KL expansion and its application. Chin. J. Geotech. Eng. 2020, 42, 808–816. [Google Scholar]
Parameter | Mean | Coefficient of Variation | Horizontal Correlation Length |
---|---|---|---|
c (kPa) | 15 | 0.1, 0.2, 0.3, 0.4, 0.5 | 1 m, 30 m, 40 m, 50 m, 500 m |
20 | 0.1, 0.2, 0.3, 0.4, 0.5 | 1 m, 30 m, 40 m, 50 m, 500 m | |
E (MPa) | 40 | - | - |
0.3 | - | - | |
) | 18 | - | - |
) | 20 | - | - |
ks (m/s) | 2 × 10−6 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xia, X.; Zhang, X.; Gu, X.; Zhang, Q. Probabilistic Risk Assessment of Soil Slope Stability Subjected to Water Drawdown by Finite Element Limit Analysis. Appl. Sci. 2022, 12, 10282. https://doi.org/10.3390/app122010282
Wang X, Xia X, Zhang X, Gu X, Zhang Q. Probabilistic Risk Assessment of Soil Slope Stability Subjected to Water Drawdown by Finite Element Limit Analysis. Applied Sciences. 2022; 12(20):10282. https://doi.org/10.3390/app122010282
Chicago/Turabian StyleWang, Xiaobing, Xiaozhou Xia, Xue Zhang, Xin Gu, and Qing Zhang. 2022. "Probabilistic Risk Assessment of Soil Slope Stability Subjected to Water Drawdown by Finite Element Limit Analysis" Applied Sciences 12, no. 20: 10282. https://doi.org/10.3390/app122010282
APA StyleWang, X., Xia, X., Zhang, X., Gu, X., & Zhang, Q. (2022). Probabilistic Risk Assessment of Soil Slope Stability Subjected to Water Drawdown by Finite Element Limit Analysis. Applied Sciences, 12(20), 10282. https://doi.org/10.3390/app122010282