Fully Nonlinear Small Amplitude Dynamical Waves for Multicomponent Complex Plasma with Kappa Distributed Electrons and Ions
Abstract
:1. Introduction
2. Governing Equations
3. Small Amplitude Wave Approximation
3.1. Case 1 ()
3.2. Case 2 ()
4. Results and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merlino, R.L.; Goree, J. Dusty Plasmas in the Laboratory, Industry, and Space. Phys. Today 2004, 57, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Merlino, R. Dusty plasmas: From Saturn’s rings to semiconductor processing devices. Adv. Phys. X 2021, 6, 1873859. [Google Scholar] [CrossRef]
- Winter, J. Dust in fusion devices—A multi-faceted problem connecting high- and low-temperature plasma physics. Plasma Phys. Control. Fusion 2004, 46, 583–592. [Google Scholar] [CrossRef]
- Ratynskaia, S.; Bortolon, A.; Krasheninnikov, S.I. Dust and powder in fusion plasmas: Recent developments in theory, modeling, and experiments. Rev. Mod. Plasma Phys. 2022, 6, 1–50. [Google Scholar] [CrossRef]
- Melandsø, F.; Aslaksen, T.; Havnes, O. A new damping effect for the dust-acoustic wave. Planet. Space Sci. 1993, 41, 321–325. [Google Scholar] [CrossRef]
- Barkan, A.; d’Angelo, N.; Merlino, R.L. Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 1996, 44, 239–242. [Google Scholar] [CrossRef]
- Merlino, R.L.; Barkan, A.; Thompson, C.; d’Angelo, N. Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 1998, 5, 1607–1614. [Google Scholar] [CrossRef] [Green Version]
- Kaw, P.K.; Sen, A. Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 1998, 5, 3552–3559. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.K. Low-frequency modes in dusty plasmas. Phys. Scr. 1992, 45, 504–507. [Google Scholar] [CrossRef]
- D’Angelis, U.; Formisano, V.; Giordano, M. Ion plasma waves in dusty plasmas: Halley’s comet. J. Plasma Phys. 1988, 40, 399–406. [Google Scholar] [CrossRef]
- Rao, N.N.; Shukla, P.K.; Yu, M.Y. Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 1990, 38, 543–546. [Google Scholar] [CrossRef]
- Pilch, I.; Reichstein, T.; Piel, A. Toroidal dust motion in magnetized plasmas. Phys. Plasmas 2010, 17, 093701. [Google Scholar]
- Menzel, K.O.; Arp, O.; Piel, A. Spatial frequency clustering in nonlinear dusty-density waves. Phys. Rev. Lett. 2010, 104, 235002. [Google Scholar] [CrossRef] [PubMed]
- Havnes, O.; Aslaksen, T.; Hartquist, T.W.; Melandsø, F.; Morfill, G.E.; Nitter, T. Probing the properties of planetary ring dust by the observation of Mach cones. J. Geophys. Res. 1995, 100, 1731–1734. [Google Scholar] [CrossRef]
- Tribeche, M.; Merriche, A. Non-extensive dust acoustic solitary waves. Phys. Plasmas 2011, 18, 034502. [Google Scholar] [CrossRef]
- El-Wakil, S.A.; Elgarayhi, A.; El-Shewy, E.K.; Mahmoud, A.A.; El-Attafi, M.A. Effect of nonthermality of ions on the nature of dust acoustic waves in two temperatures charged dusty grains. Astrophys. Space Sci. 2013, 343, 661–666. [Google Scholar] [CrossRef]
- Bedeir, A.M.; Abulwafa, E.M.; Elhanbaly, A.M.; Mahmoud, A.A. A fully nonlinear solitary wave in six-component dusty cometary plasma. Phys. Scr. 2021, 96, 095603. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Hammad, M.A.; Ismaeel, S.M.E.; Moustafa, D.M.; El-Awady, E.I. Impact of dust kinematic viscosity on the breathers and rogue waves in a complex plasma having kappa distributed particles. Waves Random Complex Media 2021, 31, 1708–1728. [Google Scholar] [CrossRef]
- Shohaib, M.; Masood, W.; Siddiq, M.; Alyousef, H.A.; El-Tantawy, S.A. Formation of electrostatic solitary and periodic waves in dusty plasmas in the light of Voyager 1 and 2 spacecraft and Freja satellite observations. J. Low Freq. Noise Vib. Act. Control. 2022, 41, 14613484221091340. [Google Scholar] [CrossRef]
- Rahman, O.; Bhuyan, M.D.I.; Haider, M.M.; Islam, J. Dust-Acoustic Solitary Waves in an Unmagnetized Dusty Plasma with Arbitrarily Charged Dust Fluid and Trapped ion Distribution. Int. J. Astron. Astrophys. 2014, 4, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A.; Mamun, A.A. Dust-acoustic solitary waves in a self-gravitating warm opposite polarity dusty plasma. Waves Random Complex Media 2020, 32, 2396–2415. [Google Scholar] [CrossRef]
- Rahmann, A.; Mamun, A.A.; Alam, S.M.K. Shock waves in a dusty plasma with dust of opposite polarities. Astrophys. Space Sci. 2008, 315, 243–247. [Google Scholar] [CrossRef]
- Popel, S.I.; Gisko, A.A.; Golub, A.P.; Losseva, T.V. Shock waves in charge-varying dusty plasmas and the effect of electromagnetic radiation. Phys. Plasmas 2000, 7, 2410. [Google Scholar] [CrossRef]
- Tao, L.L.; Duan, W.S. Effects of the dust size distribution on shock waves in dusty plasma. Chin. J. Phys. 2020, 68, 950–960. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Abulwafa, E.M.; Al-Araby, A.F.; Elhanbaly, A.M. Plasma Parameters Effects on Dust Acoustic Solitary Waves in Dusty Plasmas of Four Components. Adv. Math. Phys. 2018, 2018, 7935317. [Google Scholar] [CrossRef]
- Abulwafa, E.M.; Elhanbaly, A.M.; Mahmoud, A.A.; Al-Araby, A.F. Arbitrary amplitude dust-acoustic waves in four-component dusty plasma using non-extensive electrons and ions distributions-soliton solution. Phys. Plasmas 2017, 24, 013704. [Google Scholar] [CrossRef]
- Abulwafa, E.M.; Elhanbaly, A.M.; Mahmoud, A.A.; Al-Araby, A.F. Arbitrary amplitude double-layers in four-component dusty plasma using non-extensive electrons and ions distributions. Phys. Plasmas 2017, 24, 053704. [Google Scholar] [CrossRef]
- Lazar, M.; Kourakis, I.; Poedts, S.; Fichtner, H. On the Effects of Suprathermal Populations in Dusty Plasmas: The case of Dust-Ion-Acoustic Waves. Planet. Space Sci. 2018, 156, 130–138. [Google Scholar] [CrossRef]
- Binsack, J.H. Plasma Studies with the IMP-2 Satellite. Ph.D. Thesis, MIT, Cambridge, MA, USA, 1966. [Google Scholar]
- Olbert, S. Summary of experimental results from M.I.T. detector on IMP-1. In Physics of the Magnetosphere; Carovillano, R.L., McClay, J.F., Radoski, H.R., Eds.; Springer: New York, NY, USA, 1968; pp. 641–659. [Google Scholar]
- Vasyliũnas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO1and OGO3. J. Geophys. Res. 1968, 73, 2839–2884. [Google Scholar] [CrossRef]
- Akpabio, L.E.; Akpabio, S.L. Propagation of Shock Waves in a Dusty Plasma with Kappa Distributed Electrons and Ions. SCIREA J. Phys. 2019, 4, 36–50. [Google Scholar]
- Havnes, O.; Trøim, J.; Blix, T.; Mortensen, W.; Næsheim, L.I.; Thrane, E.; Tønnesen, T. First detection of charged dust particles in the Earth’s mesosphere. J. Geophys. Res. 1996, 101, 10839–10847. [Google Scholar] [CrossRef]
- Horányi, M. Charged Dust Dynamics in the Solar System. Annu. Rev. Astron. Astrophys. 1996, 34, 383–418. [Google Scholar] [CrossRef]
- Horányi, M.; Morfill, G.; Grün, E. Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature 1993, 363, 144–146. [Google Scholar] [CrossRef]
- Demiray, H. On the derivation of some non-linear evolution equations and their progressive wave solutions. Int. J. Non-Linear Mech. 2001, 38, 63–70. [Google Scholar] [CrossRef]
- Mahmoud, A.A. Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system. Astrophys. Space Sci. 2018, 363, 18. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, A.A. Fully Nonlinear Small Amplitude Dynamical Waves for Multicomponent Complex Plasma with Kappa Distributed Electrons and Ions. Appl. Sci. 2022, 12, 10288. https://doi.org/10.3390/app122010288
Mahmoud AA. Fully Nonlinear Small Amplitude Dynamical Waves for Multicomponent Complex Plasma with Kappa Distributed Electrons and Ions. Applied Sciences. 2022; 12(20):10288. https://doi.org/10.3390/app122010288
Chicago/Turabian StyleMahmoud, Abeer A. 2022. "Fully Nonlinear Small Amplitude Dynamical Waves for Multicomponent Complex Plasma with Kappa Distributed Electrons and Ions" Applied Sciences 12, no. 20: 10288. https://doi.org/10.3390/app122010288
APA StyleMahmoud, A. A. (2022). Fully Nonlinear Small Amplitude Dynamical Waves for Multicomponent Complex Plasma with Kappa Distributed Electrons and Ions. Applied Sciences, 12(20), 10288. https://doi.org/10.3390/app122010288