Influence of Laser Additive Manufacturing and Laser Polishing on Microstructures and Mechanical Properties of High-Strength Maraging Steel Metal Materials
Abstract
:1. Introduction
2. Principle of Additive and Subtractive Manufacturing of High-Strength Metal Materials
3. Materials and Methods
3.1. EOS M290 Metal Additive Manufacturing
3.2. Parameters of Dual-Beam Laser Polishing
3.3. Methods for Microstructures and Mechanical Properties
4. Experiment and Analysis
4.1. Parameters of Dual-Beam Laser Polishing
4.2. Optimized Parameters of Dual-Beam Laser Polishing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Guo, X.; Kane, S.; Deng, Y.; Jung, Y.G.; Lee, J.H.; Zhang, J. Additive manufacturing of metallic materials: A review. J. Mater. Eng. Perform. 2018, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Li, M.; Du, W. Metal Binder Jetting Additive Manufacturing: A Literature Review. J. Manuf. Sci. Eng. Trans. ASME 2020, 142, 090801. [Google Scholar] [CrossRef]
- Liu, S.Y.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Ann. Rev. Mater. Res. 2016, 46, 151–186. [Google Scholar] [CrossRef] [Green Version]
- Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Lee, J.; Park, H.J.; Chai, S.; Kim, G.R.; Yong, H.; Bae, S.J.; Kwon, D. Review on Quality Control Methods in Metal Additive Manufacturing. Appl. Sci. 2021, 11, 1966. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Garcia-Blanco, M.B.; Diaz-Fuentes, M. Comparative study of different surface treatments applied to Ti6Al4V parts produced by Selective Laser Melting. Trans. Inst. Metal Finish. 2021, 99, 274–280. [Google Scholar] [CrossRef]
- Demir, A.G.; Previtali, B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Mater. Des. 2017, 119, 338–350. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Kumar, C.S.; Nath, A.K. Effects of different surface modifications on the fatigue life of selective laser melted 15–5 PH stainless steel. Mater. Sci. Eng. A 2019, 762, 138109. [Google Scholar] [CrossRef]
- Guo, J.; Song, C.P.; Fu, Y.Z.; Au, K.H. Internal Surface Quality Enhancement of Selective Laser Melted Inconel 718 by Abrasive Flow Machining. J. Manuf. Sci. E 2020, 142, 101003. [Google Scholar] [CrossRef]
- Bhaduri, D.; Penchev, P.; Batal, A.; Dimov, S.; Soo, S.L.; Sten, S.; Harrysson, U.; Zhang, Z.; Dong, H. Laser polishing of 3D printed mesoscale components. Appl. Surf. Sci. 2017, 405, 29–46. [Google Scholar] [CrossRef]
- Zhang, D.Q. Investigation of Laser Polishing of Four Selective Laser Melting Alloy Samples. Appl. Sci. 2020, 10, 760. [Google Scholar] [CrossRef] [Green Version]
- Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 2013, 213, 589–597. [Google Scholar] [CrossRef]
- Metelkova, J.; Vanmunster, L.; Haitjema, H.; Van Hooreweder, B. Texture of inclined up-facing surfaces in laser powder bed fusion of metals. Addit. Manuf. 2021, 42, 101970. [Google Scholar] [CrossRef]
- Mooney, B.; Kourousis, K.I. A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated via Laser Powder Bed Fusion. Metals 2020, 10, 1273. [Google Scholar] [CrossRef]
- Wüst, P.; Edelmann, A.; Hellmann, R. Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing. Materials 2020, 13, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Narayan, R.L.; Tan, J.H.K.; Sing, S.L.; Yeong, W.Y. Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via Laser Powder Bed Fusion. Acta Mater. 2020, 204, 116522. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, B.; Narayan, R.L.; Wang, P.; Song, X.; Zhao, H.; Ramamurty, U.; Qu, X. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit. Manuf. 2021, 40, 101926. [Google Scholar] [CrossRef]
- Mower, T.M.; Long, M.J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 2016, 651, 198–213. [Google Scholar] [CrossRef]
- Rosa, B.; Mognol, P.; Hascoet, J.Y. Laser polishing of additive laser manufacturing surfaces. J. Laser Appl. 2015, 27, S29102. [Google Scholar] [CrossRef] [Green Version]
- Marimuthu, S.; Triantaphyllou, A. Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf. 2015, 95, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.P.; Guan, Y.C.; Zhou, W. Laser polishing of additive manufactured Ti alloys. Opt. Lasers Eng. 2017, 93, 171–177. [Google Scholar] [CrossRef]
- Yung, K.C.; Xiao, T.Y.; Choy, H.S.; Wang, W.J.; Cai, Z.X. Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J. Mater. Process. Tech. 2018, 262, 53–64. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, B.; Ma, C.P. Material Characterization, Thermal Analysis and Mechanical Performance of a Laser-Polished Ti Alloy Prepared by Selective Laser Melting. Metals 2019, 9, 112. [Google Scholar] [CrossRef]
- Bhaduri, D.; Bhaduri, D. Pulsed laser polishing of selective laser melted aluminium alloy parts. Appl. Surf. Sci. 2021, 558, 149887. [Google Scholar] [CrossRef]
- Parvez, M.M.; Patel, S.; Isanaka, S.P.; Liou, F. A Novel Laser-Aided Machining and Polishing Process for Additive Manufacturing Materials with Multiple Endmill Emulating Scan Patterns. Appl. Sci. Basel 2021, 11, 9428. [Google Scholar] [CrossRef]
- Rosa, B.; Mognol, P.; Hascoet, J.Y. Modelling and optimization of laser polishing of additive laser manufacturing surfaces. Rapid Prototyp. J. 2016, 22, 956–964. [Google Scholar] [CrossRef]
- Rosa, B.; Hascoët, J.Y.; Mognol, P. Laser polishing of additive laser manufacturing surfaces: Methodology for parameter setting determination. Int. J. Manuf. Res. 2020, 15, 181. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, R.; Zhang, C.; Mei, T.; Wu, M. Surface polishing technology for additive manufacturing of complex metal components. Acta Aeronaut. Astronaut. Sin. 2022, 43, 525202. [Google Scholar]
- Temmler, A.; Liu, D.; Preußner, J.; Oeser, S.; Luo, J.; Poprawe, R.; Schleifenbaum, J.H. Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11—ScienceDirect. Mater. Des. 2020, 192, 108689. [Google Scholar] [CrossRef]
- Braun, K.; Willenborg, E.; Schleifenbaum, J.H. Laser polishing as a new post process for 3D-printed polymer parts. Procedia CIRP 2020, 94, 134–138. [Google Scholar] [CrossRef]
- Metelkova, J.; Vanmunster, L.; Haitjema, H.; Ordnung, D.; Kruth, J.P.; Van Hooreweder, B. Hybrid dual laser processing for improved quality of inclined up-facing surfaces in laser powder bed fusion of metals. J. Mater. Process. Technol. 2021, 298, 117263. [Google Scholar] [CrossRef]
- Kumar, A.; Jayabalan, B.; Singh, C.; Jain, J.; Mukherjee, S.; Biswas, K.; Singh, S.S. Processing and properties of yttria and lanthana dispersed ODS duplex stainless steels. Mater. Sci. Eng. A 2022, 837, 142746. [Google Scholar] [CrossRef]
- Kumar, P.; Zhu, Z.; Nai, S.M.; Narayan, R.L.; Ramamurty, U. Fracture toughness of 304L austenitic stainless steel produced by laser powder bed fusion. Scr. Mater. 2021, 202, 114002. [Google Scholar] [CrossRef]
- Xiao, H.; Zhou, Y.; Liu, M.; Xu, X. Laser polishing of tool steel using a continuous-wave laser assisted by a steady magnetic field. Aip Adv. 2020, 10, 5116686. [Google Scholar] [CrossRef]
- Sarafan, S.; Wanjara, P.; Gholipour, J.; Bernier, F.; Osman, M.; Sikan, F.; Molavi-Zarandi, M.; Soost, J.; Brochu, M. Evaluation of Maraging Steel Produced Using Hybrid Additive/Subtractive Manufacturing. J. Manuf. Mater. Process. 2021, 5, 107. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Zhao, Z.Y.; Zhang, W.; Xiao, H.B.; Xu, X.M. Experiment Study of Rapid Laser Polishing of Freeform Steel Surface by Dual-Beam. Coating 2019, 9, 9050324. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Yang, Y.; Wang, D.; Zhang, M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A 2017, 703, 116–123. [Google Scholar] [CrossRef]
- Chaolin, T.; Kesong, Z.; Wenyou, M.; Panpan, Z.; Min, L.; Tongchun, K. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017, 134, 23–34. [Google Scholar]
- Chaolin, T.; Kesong, Z.; Min, K.; Wenyou, M.; Tongchun, K. Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci. Technol. Adv. Mater. 2018, 19, 746–758. [Google Scholar]
- Cui, M.; Lu, L.; Zhang, Z.; Guan, Y. A Laser Scanner-Stage Synchronized System Supporting the Large-Area Precision Polishing of Additive-Manufactured Metallic Surfaces. Engineering 2021, 7, 1732–1740. [Google Scholar] [CrossRef]
- Yung, K.C.; Zhang, S.S.; Duan, L.; Choy, H.S.; Cai, Z.X. Laser polishing of additive manufactured tool steel components using pulsed or continuous-wave lasers. Int. J. Adv. Manuf. Technol. 2019, 105, 425–440. [Google Scholar] [CrossRef]
- Tridello, A.; Fiocchi, J.; Biffi, C.A.; Rossetto, M.; Tuissi, A.; Paolino, D.S. Size-effects affecting the fatigue response up to 109 cycles (VHCF) of SLM AlSi10Mg specimens produced in horizontal and vertical directions. Int. J. Fatigue 2022, 160, 106825. [Google Scholar] [CrossRef]
- Cai, W.; Song, Q.; Ji, H.; Gupta, M.K. Multi-Perspective Analysis of Building Orientation Effects on Microstructure, Mechanical and Surface Properties of SLM Ti6Al4V with Specific Geometry. Materials 2021, 14, 4392. [Google Scholar] [CrossRef]
- Wu, S.Q.; Lu, Y.J.; Gan, Y.L.; Huang, T.T.; Zhao, C.Q.; Lin, J.J.; Guo, S.; Lin, J.X. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments. J. Alloy. Compd. 2016, 672, 643–652. [Google Scholar] [CrossRef]
- Kasperovich, G.; Becker, R.; Artzt, K.; Barriobero-Vila, P.; Requena, G.; Haubrich, J. The effect of build direction and geometric optimization in laser powder bed fusion of Inconel 718 structures with internal channels. Mater. Des. 2021, 207, 109858. [Google Scholar] [CrossRef]
- Musekamp, J.; Hoche, H. Specific Characteristics of Materials Produced by Additive Manufacturing as Compared to Those Produced by Established Manufacturing Methods taking the Example of Alloy 718. Prakt. Metallogr. 2020, 57, 228–249. [Google Scholar] [CrossRef]
- Zhihao, F.; Libin, L.; Longfei, C.; Yingchun, G. Laser polishing of additive manufactured superalloy. Procedia CIRP 2018, 71, 150–154. [Google Scholar] [CrossRef]
Parameters of the Category | Numerical Value | Parameters of the Category | Numerical Value |
---|---|---|---|
Maximum molding size | 250 mm × 250 mm × 325 mm | Optical scanning system | F-theta |
Type of laser | Yb-fiber | Scanning speed | Highest 7.0 m/s |
Laser power | 400 W | Power | Maximum 8.5 kW |
3D printing speed | 5–20 cm3/h | Thickness | 20–100 μm |
Laser spot diameter | 100–500 μm | Overall dimensions | 2500 × 1300 × 2190 mm |
Scanning system | SCANLAB galvanometer scanning system | Spread direction of powder | Horizontal, one-way powder |
XY-axes laser accuracy | ≤±6 μm | Z-axis powder accuracy | ≤±10 μm |
Fe | Ni | Co | Mo | Ti | C | Al | Ti |
---|---|---|---|---|---|---|---|
67.552 | 17.59 | 9.2 | 4.86 | 0.64 | 0.05 | 0.079 | 0.64 |
Set-Up Laser Parameters | CW Laser | Pulsed Laser |
---|---|---|
Power | 600 W | 80 W |
Wavelength | 1080 nm | 1064 nm |
Pulse duration | N/A | 1.3 µs |
Spot diameter | 0.47 mm | 0.32 mm |
Scanning speed | 800 mm/s | 2000 mm/s |
Step-over | 0.1 mm | 0.1 mm |
Scanning route | zigzag | Zigzag-square wave |
Laser Power (W) | Scanning Speed (mm/s) | Scanning Interval (mm) | Powder Thickness (μm) | Energy Density (J/mm3) |
---|---|---|---|---|
300 | 750 | 0.12 | 55 | 69.4 |
Factor Name | Optimized Value or Feature | |||||
---|---|---|---|---|---|---|
Roughness of initial state (nm) | 6198 | 6365 | 6888 | 6922 | 7128 | 7920 |
Scanning speed (mm/s) | 1000 | 900 | 850 | 800 | 750 | 650 |
CW power | 200 W, 400 W, 600 W | |||||
Pulsed laser (PW) | 60 W | |||||
Top-hat beam profile | Between medium and ideal | |||||
Polishing parameters | Wavelength: 1080 nm; step-over: 0.1 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Chen, Y.; Liu, M.; Zhou, Y.; Du, C.; Zhang, W. Influence of Laser Additive Manufacturing and Laser Polishing on Microstructures and Mechanical Properties of High-Strength Maraging Steel Metal Materials. Appl. Sci. 2022, 12, 10340. https://doi.org/10.3390/app122010340
Xiao H, Chen Y, Liu M, Zhou Y, Du C, Zhang W. Influence of Laser Additive Manufacturing and Laser Polishing on Microstructures and Mechanical Properties of High-Strength Maraging Steel Metal Materials. Applied Sciences. 2022; 12(20):10340. https://doi.org/10.3390/app122010340
Chicago/Turabian StyleXiao, Haibing, Yongzhang Chen, Mingjun Liu, Yongquan Zhou, Chenlin Du, and Wei Zhang. 2022. "Influence of Laser Additive Manufacturing and Laser Polishing on Microstructures and Mechanical Properties of High-Strength Maraging Steel Metal Materials" Applied Sciences 12, no. 20: 10340. https://doi.org/10.3390/app122010340
APA StyleXiao, H., Chen, Y., Liu, M., Zhou, Y., Du, C., & Zhang, W. (2022). Influence of Laser Additive Manufacturing and Laser Polishing on Microstructures and Mechanical Properties of High-Strength Maraging Steel Metal Materials. Applied Sciences, 12(20), 10340. https://doi.org/10.3390/app122010340