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Abstract: Hypersonic targets have complex motion states and high maneuverability. The traditional
interactive multi-model (IMM) has low tracking accuracy and a slow convergence speed. Therefore,
this paper proposes a strong tracking cubature Kalman filter (CKF) adaptive interactive multi-model
(AIMM) based on multiple fading factors. Firstly, this paper analyzes the structure of the CKF
algorithm, introduces the fading factor of the strong tracking algorithm into the covariance matrix of
the time update and measurement update, and adjusts the filter gain online and in real time, which
can reduce the decline infilter accuracy caused by model mismatch. Secondly, Singer model, “current”
statistical (CS) model, and Jerk model are selected in the model set of IMM and introduced singular
value decomposition (SVD) decomposition to solve the problem that Cholesky decomposition cannot
be performed in the CKF due to the model dimension expansion. Last, an adaptive algorithm for the
Markov matrix in the IMM is proposed. The transition probability was adaptively modified by the
value of the model likelihood function to enhance the proportion of matching models. The simulation
results show that the proposed algorithm enhanced the proportion of matching models in the IMM
and improved the tracking accuracy by 16.51% and the convergence speed by 37.5%.

Keywords: hypersonic target; cubature Kalman filter; strong tracking filtering; fading factor; adaptive
interactive multiple model

1. Introduction

A hypersonic glide target (HGT) [1] has a flight Mach number greater than 5. It has
the characteristics of a fast flight speed, strong penetration capability, strong mobility, and
high accuracy. It adopts an aerodynamic shape with a large lift-drag ratio, and its trajectory
is complex and changeable, so it is difficult to achieve effective defense. Therefore, tracking
and locating the target have always been difficult and hot issues in the field of target
tracking.

With the continuous deepening of the research on the characteristics of maneuvering
targets, experts and scholars have proposed a variety of single-model motion models to fit
maneuvering targets: A. W. B. et al. proposed the constant velocity (CV) model and constant
acceleration (CA) model in 1973 [2]. The Singer model, also known as the time-dependent
model, was first developed by R Singer and proposed in 1970 [3]. Professor Hongren
Zhou of China put forward the CS model in the 1980s [4]. In 1997, Indian scholar Kishore
proposed the Jerk model [5], with reference to the Singer model, expanded the dimension
of traditional acceleration, and proposed the concept of acceleration. Some experts and
scholars have improved these models alone, but for highly maneuvering targets such as
hypersonic targets, it is difficult for a single model to match their motion states. When the
difference between motion states is large, it will lead to filtering divergence and tracking
failure [6].

To solve the above problems, in 1965, Magill proposed multiple models (MM) [7] to
improve the limitation of single models. On the basis of the multi-model algorithm, Bar
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Shalom and Blom proposed the IMM algorithm by using the pseudo-Bayesian algorithm,
and used the Markov transformation matrix to overcome the filtering divergence caused by
the fixed model [8]. It tracks the uniform motion process, significantly reduces the noise, and
has high tracking accuracy and a fast convergence speed [9]. Since the IMM algorithm was
proposed, scholars have applied it to the target tracking field and conducted a significant
amount of research. For the tracking of hypersonic gliding targets, Ref. [10] proposed
a self-adaptive algorithm of maneuvering frequency in the Singer model, which uses
filtering information to calculate and adjust the maneuvering frequency in the Singer model.
Compared with the IMM Singer algorithm, it has high tracking accuracy and requires a
small amount of calculation. The nonlinear filtering algorithm plays an important role in
the field of target tracking, such as multi-base radar positioning [11] and nonlinear filtering
vehicle adaptive navigation [12]. Since the measurement model of hypersonic target radar
is also nonlinear, Ref. [13] proposed the use of the unscented Kalman filter (UKF) [14]
combined with the IMM algorithm to realize the tracking filtering of hypersonic targets.
For the problem of model interaction, Ref. [15] proposed an improved AIMM algorithm
with Markov parameters. The tracking accuracy is improved, but it is only applicable
to slow maneuvering targets with prior information. On this basis, Ref. [16] proposed
an adaptive variable structure interactive multi-model (AVSIMM), which improves the
tracking accuracy of hypersonic targets.

To sum up, there are three main problems in the IMM tracking algorithm for highly
maneuvering targets such as hypersonic targets: The first is, the selection of models. The
conventional CV, CA, and other models are weak in mobility, and cannot match the motion
state of hypersonic targets. The second is the filtering algorithm. Most of the measurements
of hypersonic targets are nonlinear measurement equations, which are not suitable for
the linear Kalman filter (KF) in the IMM model; at the same time, the accuracy of the
filtering algorithm needs to be improved. The third is the model interaction problem.
The Markov matrix of the conventional IMM algorithm is fixed, the model probability
interaction adaptability is weak, and the matching accuracy is low.

On the basis of previous algorithms, this paper analyzed the structure of the CKF [17]
and proposes a strong tracking CKF algorithm with multiple fading factors to improve
the filtering accuracy. To solve the problem that Cholesky decomposition fails due to
the different model dimensions in the CKF algorithm, an improved strong tracking CKF
algorithm based on SVD [18] is proposed. The aim of the algorithm is to improve the
standard Markov matrix to improve the adaptability of the algorithm. The simulation
results show that, compared with the single-model algorithm and the standard IMM
algorithm, the proposed algorithm can significantly improve the tracking accuracy and
convergence speed of the hypersonic target.

2. Modeling of Hypersonic Target Motion Characteristics
2.1. Motion Equation of Hypersonic Target

In the process of establishing the motion equation of hypersonic targets, the following
coordinate systems need to be considered (Figure 1):

(1) Earth-centered, Earth-fixed (ECEF) coordinate system: The origin O is located at the
Earth’s center, OX points to the zero degrees longitude in the equatorial plane, the OZ
axis points to the north pole, and the OY axis is perpendicular to the OX and OZ axes
in the equatorial plane. The unit vectors on the three O− XYZ axes are expressed as i,
j, and k.

(2) Longitude, latitude, altitude (LLA) coordinate system: This is the geodetic coordinate
system. The coordinate origin is located at the geo-center O, and the longitude µ,
latitude λ, and altitude h of the target location.

(3) Aircraft position coordinate system: The origin O is located at the center of the Earth.
The Ox axis is the connecting line from the center of the Earth to the hypersonic
target, and it is positive upward. The Oy axis is perpendicular to the axis and is in
the equatorial plane. The due east direction is positive, and the Oz axis is determined
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by the other two axes and the right-hand law. The O− xyz coordinate system can
be obtained by combining the O − XYZ coordinate system with the latitude and
longitude of the hypersonic target position.

(4) East-north-up (ENU): This is the radar coordinate system. The radar position R is the
origin of the coordinate system, and the RE, RN, and RU axes point to the east, north,
and sky directions perpendicular to each other. It can be used to represent the pitch
angle a and azimuth angle e of the hypersonic target.
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Assuming the Earth is a homogeneous sphere with rotation [19], the aerodynamic
force and gravity of the hypersonic target are converted into the same coordinate system
through the flight heading angle, aerodynamic angle, attitude angle, and other important
angles to obtain the six-degree-of-freedom motion equation of the hypersonic target. Due
to the complex structure of the equation, it is simplified when analyzing the scene, and the
target trajectory model is obtained as follows [20]:

.
r = V sin γ
.
µ = V cos γ cos ξ

r cos λ.
λ = V cos γ sin ξ

r.
V = −D

m − g sin γ + w2
e r cos λ(sin γ cos λ− cos γ sin λ sin ξ)

.
γ = L cos σ

mV +
(

V
r −

g
V

)
cos γ + 2we cos λ cos ξ

+w2
e r

V cos λ(cos γ cos λ + sin γ sin λ sin ξ)
.
ξ = L sin σ

mV cos γ −
V
r cos γ cos ξ tan λ+

2we(tan γ cos λ sin ξ − sin λ)− w2
e r

V cos γ sin λ cos λ cos ξ

(1)

where r is the distance between the center of mass of the target aircraft and the geo-center, µ
is the geocentric longitude, and λ is the geocentric latitude. These three parameters describe
the location of the target. V is the target velocity, γ is the trajectory inclination angle, and ξ
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is the trajectory deflection angle. These three parameters describe the target velocity. D
and, L are the aerodynamic resistance and aerodynamic lift, σ is the inclination angle, we is
the value of the Earth’s rotation angle velocity, and g is the local gravity acceleration.

In the main movement process of the hypersonic target, the complex aerodynamic
force is the main factor to be considered. The common flight aerodynamic lift L and drag D
are as follows: 

L = CLqS
D = CDqS
q = 0.5ρV2

(2)

where CL is the lift coefficient, and CD is the drag coefficient. These two coefficients
are usually related to the flight Mach number and angle of attack of the target. S is the
aerodynamic reference area of the hypersonic target, and ρ is the air density at the flight
altitude. The atmospheric index model is used to describe this as follows:

ρ = ρ0e
− h

ρβ (3)

where ρ0 = 1.225 kg/m3 is the standard sea-level atmospheric density, and ρβ is 6700 m [21].
This paper took Falcon Hypersonic Technology Vehicle 2 (HTV-2) as the research object.

Since the aerodynamic parameters of HTV-2 are similar to those of Currency Aerodynamic
Vehicle H (CAV-H) [22], the aerodynamic parameters of CAV-H can be cited [23], and the
least square method can be used to identify the model parameters:{

CD = CD0 + CD1α2 + CD2 exp(CD3Ma)
CL = CL0 + CL1α + CL2 exp(CL3Ma)

(4)

where Ma refers to the flight Mach number, which is the ratio of the flight speed to the local
sound speed. Other coefficients are as follows:

CD0 = 0.024, CD1 = 7.24× 10−4, CD2 = 0.406, CD3 = −0.323
CL0 = −0.2317, CL1 = 0.0513, CD2 = 0.2945, CD3 = −0.1028

(5)

2.2. Measurement Model

The measurement of the single-station radar includes the pitch angle a, azimuth angle
e, and relative distance r. According to the geometric relationship shown in Figure 2, the
following systematic observation equations can be established:

Zk =

 a
e
r

 =

 arctan( z√
x2+y2

)

arctan( y
x )√

x2 + y2 + z2

+ vk (6)

where vk is the measurement noise, vk ∼ N(0, Rk), and Rk is the noise covariance matrix.
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The radar measurement equation is established in the ENU coordinate system, while
the HTV-2 ballistic reference coordinate system in the previous text is the LLA coordinate
system. Therefore, coordinate transformation is required for the hypersonic target state
information, as shown in Figure 3.
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Assuming that the coordinates of the hypersonic target are (µ, λ, h) in the LLA coordi-
nate system and (X, Y, Z) in the ECEF coordinate system, the conversion relationship is as
follows: 

X = (N + h) cos(µ) cos(λ)
Y = (N + h) cos(µ) sin(λ)
Z = (N(1− e2) + h) sin(µ)

(7)

{
e2 = a2−b2

a2

N = a√
1−e2 sin2(µ)

(8)

where N is the radius of the reference ellipsoid, e is the eccentricity of the ellipsoid, a is the
long half-axis of the Earth, and b is the short half-axis of the Earth.

Similarly, the LLA coordinates (µ0, λ0, h0) of the radar can be converted into ECEF
coordinates (X0, Y0, Z0) by Equations (6) and (7). Therefore, the position information of the
hypersonic target in the ENU coordinate system can be obtained: x

y
z

 =

 e
n
u

 = TENU
ECEF

 X− X0
Y−Y0
Z− Z0

 (9)

TENU
ECEF =

 − sin(λ0) cos(λ0) 0
− sin(µ0) cos(λ0) − sin(µ0) sin(λ0) sin(µ0)
cos(µ0) cos(λ0) cos(µ0) sin(λ0) sin(µ0)

 (10)

3. Strong Tracking CKF Based on Multiple Fading Factors
3.1. CKF Algorithm

Taking the hypersonic target motion model as the state equation and the single-station
radar observation model as the measurement equation, the following nonlinear system
model is formed: {

xk = f(xk−1) + wk−1
zk = h(xk) + vk

(11)

where:
xk =

[
x ẋ ẍ

...
x y ẏ ÿ

...
y z ż z̈

...
z
]T ∈ Rn (12)

It refers to the flight state of the hypersonic target at time k, including the position,
speed, acceleration, and other n dimensional state information of the target. zk = [a e r]T is
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the observation vector of the radar system at time k, representing the measurement element
of the radar. Additionally, f(·) is the process function and h(·) is the measurement function
of the nonlinear tracking system. wk and vk are uncorrelated zero-mean Gaussian white
noise, and the corresponding covariance matrices are Qk and Rk.

CKF is a nonlinear Gaussian filtering algorithm, whose core is to select the sampling
points through the spherical radial cubature criterion. The traditional calculation process is
as follows [17].

3.2. Multiple Fading Factor Strong Tracking CKF

The strong tracking filter (STF) can adjust the state prediction covariance matrix Pk+1|k
in real time by introducing the changing fading factor λk, it can keep the filtering residual
matrix orthogonal, in order to deal with the problem of the sudden change of the target
motion state and improve the robustness. The core idea is to adjust the gain matrix Kk
online to meet the following two conditions:

(1) E[(xk+1 − x̂k+1)(xk+1 − x̂k+1)
T ] = min;

(2) E[ek+1+jeT
k+1] = 0 k = 0, 1, 2, · · · j = 1, 2, · · · , where ek+1 = zk+1 − ẑk+1|k is the

residual at time k + 1. That is, it is required that the residual sequences should remain
orthogonal to each other at all times.

The traditional STF algorithm is based on expend Kalman filter (EKF). In this paper,
the STF algorithm and CKF algorithm were combined to establish the STF algorithm for
nonlinear systems. The core structure of the algorithm is the calculation of the residual:

x̂k = x̂k|k−1 + Kkek (13)

ek = zk − h
(

x̂k|k−1

)
(14)

The fading factor λk+1 is calculated as follows:

λk = max
(

1,
tr[Nk]

tr[Mk]

)
(15)

Nk = V0,k −HkQk−1HT
k − βRk (16)

Mk = HkPx
k|k−1HT

k (17)

Hk =
(

Pxz,l
k|k−1

)(
Pl

k|k−1

)−1
(18)

Pxz,l
k|k−1 =

1
m

m

∑
i=1

xi,l
k|k−1hT

(
xi,l

k|k−1

)
− x̂k|k−1hT

(
x̂k|k−1

)
(19)

V0,k =

{
e1eT

1 , k = 0
εV0,k+ekeT

k
1+ε , k > 0

(20)

where Px
k|k−1 is the variance matrix of the state prediction error when the fading factor is

not introduced and the system noise variance matrix is not considered; Pl
k|k−1 is the state

prediction error variance matrix considering the system noise variance matrix; β ≥ 1 is the
weakening factor; and ε is the forgetting factor, usually taken as 0.95 ≤ ε ≤ 0.995.

The nonlinear system variables of hypersonic targets are multi-dimensional and com-
plex, so it is difficult to determine the optimal fading factor, and the accuracy of a single
fading factor is limited. Therefore, a strong tracking cubature Kalman filter (STCKF)
algorithm based on multiple fading factors is introduced:
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(1) In the time update process, the symmetric fading factor is introduced into the state
prediction error covariance matrix, and P−k is changed to the following formula:

P−k = λk+1[
1
m

m

∑
i=1

(
χ−i,k − x̂−k

)(
χ−i,k − x̂−k

)T
]λk+1

T + Qk−1 (21)

(2) In the measurement update process, a fading factor is introduced into the innovation
covariance matrix and the measurement autocovariance matrix:

Pz = λk+1[
1
m

m

∑
i=1

Z−i,k
(

Z−i,k
)T
− ẑ−k

(
ẑ−k
)T

] + Rk (22)

Pxz = λk+1[
1
m

m

∑
i=1

X−i,k
(

Z−i,k
)T
− x̂−k

(
ẑ−k
)T

] (23)

Compared with [10], the algorithm in this paper adds a fading factor in the time
updating process, which can adjust the prediction covariance matrix in real time and
the gain matrix more obviously. With a slight increase in the amount of calculation, the
algorithm accuracy can be improved.

In nonlinear systems, the system noise covariance matrix Qk is often time-varying
and uncertain [24]. A suboptimal unbiased MAP constant noise estimator can be designed
according to the maximum a posteriori estimation principle and the exponential weighting
method. The fading factor is added to the filter to adjust the system noise, and the following
recursive formula is given:

Q̂k+1 = (1− dk+1)Q̂k−1 + dk+1[Kk+1ek+1ek+1
TKk+1

T + Pk+1 −
m

∑
i=1

1
m

(
χ−i,k − x̂−k

)(
χ−i,k − x̂−k

)T
] (24)

where dk = (1− b)/(1− bk), b is the noise fading factor, and the value range is 0<b<1.
Through multiple simulations, it can be seen that a better tracking filtering effect can be
obtained when b is 0.89.

Substitute the selected b value into the formula to acquire:

Qk = (1− dk)Qk−1 + dk[Kkekek
TKk

T ]k ≥ 2 (25)

Add Qk to the multi fading factor strong tracking algorithm, the filtering value of the
target is closer to the real value and the filtering accuracy is improved.

4. AIMM Algorithm
4.1. IMM Algorithm

The IMM algorithm is mainly composed of an interactor, multiple filters, a state
estimation fusion device, and a model probability estimator. The main calculation process
is as follows (Figure 4):

The traditional IMM algorithm has four calculation steps, it can refer to the litera-
ture [8].

4.2. AIMM Algorithm

In the IMM algorithm, model switching is a Markov process, so it is very dependent
on the Markov matrix of the model transformation. In the standard IMM algorithm, the
Markov matrix is given in advance. Due to the uncertainty of prior information such as
the mobility of the target, it is generally determined based on experience. Therefore, for
highly maneuvering targets such as hypersonic targets, the fixed Markov matrix cannot
sufficiently reflect the real motion state of the target and the switching process between the
models. Therefore, based on traditional IMM algorithm, we proposed to use the posterior
information to adaptively modify the Markov matrix.
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Figure 4. Computational steps of the interactive multi-model algorithm. Each filter is an independent
model. The observation information is introduced, the target motion state is obtained by filtering,
and finally the state fusion is carried out by weighting.

The model likelihood function value Λj(k) contains the residual and residual covari-
ance between the predicted state and the real state at time k, so it can sufficiently reflect
the matching degree between model j and the current motion state. The degree of model
matching is proportional to the value of the likelihood function. Therefore, based on
the model likelihood function, this paper proposes a transfer probability matrix adaptive
algorithm based on the likelihood function. The calculation process is as follows:

ϕij(k) = (
Λj(k)
Λi(k)

)
γ

(26)

Pij(k) = P′ij(k)/
u

∑
j=1

P′ij(k) (27)

P′ij(k) = ϕij(k)Pij(k− 1) (28)

where ϕij(k) is the ratio of the model likelihood function, which is used as the adjustment
factor to adjust the model conversion rate, and γ is the correction rate, 0 ≤ γ ≤ 1, which
is used to control the speed of correction. It can be seen from Equation (24) that at time
k, when the likelihood function index Λj(k) is greater than Λi(k), model j has a higher
matching degree with the real motion than model i, and the probability from model j to
model i increases after the correction. Therefore, the model with a larger likelihood function
value accounts for a larger proportion in the next moment. On the contrary, the proportion
of the model with a small likelihood function decreases in the next moment. Therefore, it
can be concluded that this method enhances the proportion of matching models by using
the measurement information to adaptively modify the transfer probability matrix.

However, it can be found through substitution calculation that Formula (25) has
defects. During iterative calculation, some elements of the main diagonal may become
larger and larger, and the transition probability between models may be reduced. Therefore,
when the model state needs to be switched, the efficiency will be reduced. Therefore, the
thresholds M and N are set for the main diagonal element and the non-main diagonal
element, respectively, and the following improvements are made.
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If the main diagonal element is too large, i.e., Pii(k) > M, let P′ii(k) = M, and redis-
tribute the non-main diagonal elements of its row according to the original ratio:

P′′ij (k) = Pij(k)

1− M− Pii(k)
m
∑

j=1
Pii(k)− P′′ii (k)

 (29)

Similarly, if the non-main diagonal element is too small, i.e., Pij(k) < N(i 6= j), let
P′ij(k) = N(i 6= j), and redistribute the other elements of its row according to the original
proportion (refer to Formula (27)).

The correction of the elements by Equation (27) still satisfies
m
∑

j=1
Pij(k) = 1 and

0 ≤ Pij(k) ≤ 1, and can enhance the stability and adaptability of the model transfor-
mation.

4.3. SVD Algorithm

The selection of the IMM model set needs to meet the highest matching degree between
the model and the motion state at any time. The existing models include the CV model, CA
model, constant turning (CT) model, Singer model, CS model, and Jerk model, which are
applicable to different scenarios. Among them, the CV and CA models are applicable to
the non-maneuvering or weak maneuvering movement state of the target, CT models are
applicable to the turning movement of the target, the Singer and CS models can describe the
normal movement, and the Jerk model, as the model with the highest order, can describe
the acceleration of the target, which is mainly used to track strong maneuvering targets.
Literature [25] proposed the single model to target tracking, but the hypersonic target has
high maneuverability, which is difficult to tracking. Therefore, this paper selected three
models with high maneuverability, namely, the Singer model, CS model, and Jerk model,
to build the IMM model set.

The state equation of the target motion model can be expressed as

xk = F1xk−1 + wk−1 (30)

where xk−1 is the motion state of the target at the previous time, xk is the motion state of
the current target, and F1 is the state transition matrix.

Singer model: Singer model is time related, that is, the target acceleration can be set
as a first-order time correlation function with the mean value of 0, and its corresponding
function can be expressed as:

Ra(τ) = E[a(t)a(t + τ)] = σa
2e−α|τ| (α ≥ 0) (31)

where a(t) is the target acceleration, σa
2 is the variance, α is the maneuvering frequency.

The probability density function can be used to solve σa
2:

σa
2 =

∫ amax

−amax
P(a)a2da =

amax
2

3
(1 + 4Pmax − P0) (32)

The state transition matrix and state noise covariance matrix in one dimension are as
follows:

F1 =

1 T (αT − 1 + e−αT)/α2

0 1 (1− e−αT)/α

0 0 e−αT

 (33)

In the formula, α refers to the maneuvering frequency, which is usually selected accord-
ing to experience: generally, 1, 1/20, and 1/60 are taken according to the maneuverability
of the target. The state noise covariance matrix can be found in [26].
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CS model: The state transition matrix and state noise covariance matrix are the same
as in the Singer model. Compared with the Singer model, the CS model has a control input
matrix, and its discrete state equation can be expressed as:

xk = F1xk−1 + Uka + wk−1 (34)

where a is the average value of acceleration, and the one-step prediction of the acceleration
state can be taken as the average value of the current acceleration, i.e., ax =

..
x−k ; according

to the average value of the “current” acceleration, the variance of the current acceleration
can be obtained:

σ2
a =

{
(4− π)/π·(amax − a)2, a > 0
(4− π)/π·(a− amin)

2, a < 0
(35)

where amax and amin are the maximum and minimum accelerations set for each axis, which
are generally set according to prior conditions.

Jerk model: Based on the Singer model, zero-mean colored noise is introduced to
express the acceleration. The exponential autocorrelation function of target acceleration
j(t) is:

rj(τ) = E[j(t)j(t + τ)] = σj
2e−α|τ| (α ≥ 0) (36)

where, σj
2 is the variance of acceleration of maneuvering target, and αm is the maneuvering

frequency. By Laplace transformation of the above equation, we can acquire:

R(s) = Laplace
{

Rj(τ)
}
=

−2αmσj
2

(s− αm)(s + αm)
= H(s)H(−s)V(s) (37)

where,
H(s)= 1/(s + a) (38)

V(s)= 2αmσj
2 (39)

Then change the above equation in time domain to obtain the differential equation as
follows:

j(t)= −αj(t) + v(t) (40)

where the correlation function of white noise a is v(t):

rv(τ)= 2ασj
2δ(τ) (41)

The discrete state transition matrix and state noise covariance matrix are as follows:

F2 =


1 T T2

2 p1
0 1 T q1
0 0 1 r1
0 0 0 s1

 (42)

The elements of the state noise covariance matrix can be found in [27].
Since the Jerk model is of the fourth order and the Singer and CS models are of the

third order, it is necessary to expand the dimension of their state transition matrix and state
noise variance matrix. All zero rows will appear in the traditional dimension expansion
method, which leads to the fact that Cholesky in the CKF algorithm cannot be decomposed
due to the loss of the positive definiteness of the matrix. Therefore, in order to enhance
the stability of the calculation, SVD decomposition was considered to replace Cholesky
decomposition in this paper. The specific process is as follows:
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Cholesky decomposition of the covariance matrix in the time update process was
rewritten into SVD decomposition:

Pk−1 = Uk−1

[
Sk−1 0

0 0

]
UT

k−1 (43)

where Sk−1 is a diagonal matrix, Sk−1 = diag[s1, s2, · · · sn], and si is the singular value of
the matrix. The cubature point can be expressed as:

Xi,k−1 = x̂k−1 + Uk−1
√

Sk−1ξi, i = 1, 2, · · ·m (44)

where ξi =
√

m/2[1]i.
The measurement update is similar to the time update.

P−k−1 = U−k−1

[
S−k−1 0

0 0

]
U−k−1

T (45)

Xi,k−1 = x̂k−1 + U−k−1

√
S−k−1ξi, i = 1, 2, · · ·m (46)

This algorithm takes into account the representation of the Jerk model in the IMM
model set and the reasonable decomposition of the covariance matrix in the CKF algorithm
and enhances the stability of the algorithm.

5. Simulation and Analysis
5.1. Simulation Environment Settings

(1) Construction of real trajectory of HTV-2 trajectory

In this paper, the trajectory model of hypersonic target is simulated, and the real
water drift trajectory model is constructed. Using the characteristic data of HTV-2 given
by the United States, the mass of the aircraft was 907 kg, the aerodynamic reference area
S = 0.4837 m2, and the gravity acceleration g was taken as 9.8 m/s2. In order to obtain the
motion state of the hypersonic target, the initial test state of the target was set as follows:
the geocentric distance was 6426 km, the longitude and latitude were 0 degrees, the initial
velocity of the target was 17 Mach, the target trajectory inclination angle was 0.25 rad, and
the trajectory deflection angle was −0.42 rad. The angle of attack setting followed that
presented in [28]:

α =


αmax, V1 < V ≤ Ve

αmid + αbal sin
[
(V−Vmid)π

V1−V2

]
, V2 ≤ V ≤ V1

αmax(K) Vf ≤ V < V2

(47)


αmid =

(
αmax + αmax(K)

)
/2

αbal =
(

αmax − αmax(K)

)
/2

Vmid = (V1 + V2)/2

(48)

where the maximum angle of attack αmax was set to 20 degrees, and the angle of attack
αmax(K) was set to 11 degrees at the maximum lift–drag ratio. The target motion trajectory
can be obtained through the fourth-order Runge–Kutta method simulation, as shown in
the Figure 5.
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Figure 5. HTV-2 trajectory. The blue track part shows the entire movement process of the hype-sonic
target in a step jump process, and the red track part shows the radar observation period.

(2) Radar simulation condition setting

The coordinates in the radar longitude, latitude, altitude coordinate system were
(37.45

◦
,−15

◦
, 0 m), the detection range of the single-station radar was 400 km, the standard

deviations of the angle measurement and range were 500 m and 0.5 degrees, respectively,
the radar sampling period was 1 s, and the tracking period was 710 s–1060 s. The tracking
track is shown in the red track part in Figure 5.

5.2. Algorithm Simulation and Analysis

(1) Algorithm simulation verification
The strong tracking algorithm is verified against the state mutation of maneuvering

target (Figure 6):
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Figure 6. Tradition target maneuver trajectory. The traditional target has two state changes during
maneuver, and IMM-CKF and IMM-STCKF track it.

As can be seen from Figure 7, the target has a state mutation at time 40 and 135. The
RMSE of the traditional IMM-CKF is obvious when the state mutation occurs, and the
tracking accuracy is reduced. The strong tracking algorithm based on multiple fading
factors proposed in this paper can improve the tracking accuracy by adjusting the gain
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matrix in real time, so that it can reduce the impact of state mutation residual. Therefore,
the following simulation results can be obtained by applying the algorithm in this paper to
the strong maneuver phase of the hypersonic target trajectory.
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Figure 7. RMSE of position (a) and velocity (b). The red line is RMSE of IMM-CKF, the blue line is
RMSE of IMM-STCKF.

As shown in the Figure 8, three algorithms are used to simulate and verify the strong
maneuvering segment of the hypersonic target. It can be seen from the trajectory tracking
graph of X, Y, Z axes that the three algorithms have achieved effective tracking. The
algorithm proposed in this paper has the highest tracking accuracy in the three axes. It is
obvious from the z-axis tracking process that the hypersonic target has a strong maneuver in
about 150 s. The algorithm proposed in this paper can reduce the impact of state mutation
and improve the tracking accuracy. According to the strong maneuvering phase of the
hypersonic target, the algorithm in this paper is compared with the recent literature:
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Figure 8. Trajectory tracking of hypersonic target. (a) Hypersonic target strong maneuver phase;
(b) X-axis trajectory tracking; (c) Y-axis trajectory tracking; (d) Z-axis trajectory tracking.
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Compared with the reference [13], this paper proposed adaptive IMM. The compara-
tive simulation results are as follows (Figure 9):
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Figure 9. Comparison of algorithm with reference [13]. (a) RMSE of position; (b) Change of trace
value Kk of position gain matrix of Jerk model.

From the experimental simulation results, it can be seen that the tracking accuracy
of the algorithm in reference [13] is lower than AIMM in this paper, and the mean square
error variance is large. Take the Jerk model as an example, it can be seen from the change
trend of the trace value of the position gain matrix in the figure that at time t = 158–164 s,
the trace value of the position gain matrix has a sudden change, and the model state has
changed; The gain matrix Kk trace value of the algorithm in this paper changes less than
that of the algorithm in reference [13], so the adaptability of the model matching degree is
enhanced.

(2) Hypersonic target tracking simulation

Take the weak maneuver phase as an example, the hypersonic target tracking algo-
rithm is simulated. The initial value of the hypersonic target was set as x0 = [−719,000,
4270, 1, 0.2, 233,000, −1530, −0.6, 0.3, 199,000, 1030, −5.9, 0.5], and the target maneuvering
frequency was set as α = 1/20. In the CS model, the maximum and minimum accelerations
of the x axis, y, axis and z axis were, respectively, ±700 m/s2, ±500 m/s2, and ±200 m/s2,
and the observation noise covariance matrix was set as R = diag[0.52 0.52 5002]. In the
IMM algorithm, the initial probability matrix of the model was u1 =

[
1/3 1/3 1/3

]
,

and the initial Markov transition probability matrix was

P1 =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

 (49)

After conducting 100 Monte Carlo simulations, the performance of the algorithm was
measured by the root mean square error (RMSE) and the mean value of the RMSE.

RMSEi =

√√√√ 1
N

N

∑
k=1

(
Xi − X̂i

)2
+
(
Yi − Ŷi

)2
+
(
Zi − Ẑi

)2 (50)

where N refers to the number of Monte Carlo simulations, Xi, Yi, Zi refer to the real state of
each axis in the i simulation, and X̂i, Ŷi, Ẑi refer to the filter estimation value of each axis.
The simulation results are as follows.

The tracking trajectory of the target is shown in Figure 6. It can be seen that the three
algorithms could effectively track the hypersonic target. In order to compare the tracking
accuracy of the three algorithms, the position and speed root mean square errors of each
axis were simulated, as shown in Figures 10 and 11. Additionally, the comparison table of
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the root mean square error and mean value of the three algorithms was obtained through
calculation, as shown in Table 1. The model transition probability of IMM-CKF is shown in
Figure 12a, and the model transition probability of the algorithm in this paper is shown in
Figure 12b.
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Figure 10. Position RMSE of three algorithms: (a) RMSE of position in the x-axis direction; (b) RMSE
of position in the y-axis direction; (c) RMSE of position in the z-axis direction; (d) RMSE of position.
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Figure 11. Velocity RMSE of three algorithms: (a) RMSE of velocity in the x-axis direction; the RMSE
is about 400 m/s; (b) RMSE of velocity in the y-axis direction; (c) RMSE of velocity in the z-axis
direction; (d) RMSE of velocity.
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Table 1. Table of the mean RMSEs of the three algorithms.

Algorithm IMM-CKF IMM-STCKF AIMM-STCKF

Position/m

x 449.2 447.9 381.9
y 213.7 207 171.3
z 164 158.2 97.1
r 537.3 530.2 448.6

Velocity/(m/s)

vx 52.7 37.9 19.4
vy 56.2 56.3 27.7
vz 51.9 49.5 41.4
v 104.1 92.7 66.9
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As defenders, the velocity tracking error and position tracking error are the main
indicators for HTV-2 tracking performance [29–31]. According to Figures 10 and 11 and
Table 1, the RMSE of the x, y, z positions and speed can be found:

(1) The IMM-CKF and IMM-STCKF algorithms converged faster because the setting error
of the initial value of the axis position and speed was small. Due to the large error
of the initial value, the convergence time of the two algorithms was about 40 s. In
contrast, the AIMM-STCKF algorithm has model adaptability, so the convergence time
was significantly faster. Overall, it was about 25 s, and the convergence speed was
increased by about 37.5%.

(2) The AIMM-STCKF algorithm proposed in this paper significantly improved the ac-
curacy of the algorithm after adding the Markov adaptive matrix. Among the three
algorithms, the root mean square error of the speed and position was the smallest, the
tracking accuracy was the highest and the variance was small. Overall, the position
tracking accuracy was about 16.51% higher than that of the IMM-STCKF algorithm,
and the speed tracking accuracy was about 35.74%.

(3) Since there was no obvious mutation in the state of the hypersonic target, the accuracy
of the strong tracking algorithm was low. In contrast, the strong tracking algorithm
based on adaptive model interaction could accelerate the model transformation and
enhance the adaptive matching ability, so the convergence speed and tracking accuracy
were better.

By comparing the probability transfer diagram of the model, the following can be
found:

(1) As the maneuverability of the hypersonic target decreased, the probability of the
Singer model with weak maneuverability gradually increased. As the maneuverability
of the hypersonic target increased, the probability of the Jerk model with strong
maneuverability gradually increased.
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(2) It can be found through comparison that the algorithm in this paper enhanced the
proportion of matching models in the IMM algorithm, reduced the probability variance
in the model, and made the model transformation more robust.

6. Concluding Remarks

A strong tracking adaptive IMM algorithm based on CKF was proposed to solve the
problem of the low tracking accuracy or even failure of the traditional IMM algorithm
under the high maneuverability of hypersonic targets.

Firstly, the six-degree-of-freedom equation was established for the dynamics of HTV-2.
The jump glide trajectory of HTV-2 was obtained by using the fourth-order Runge–Kutta
method and the angle of attack model, and the radar measurement model was established
according to the coordinate axis transformation relationship. After analyzing the structure
of CKF, the gain matrix was adjusted in real time by adding multiple pairs of fading factors,
and the strong tracking filter was combined with CKF to improve the filtering accuracy
when the model is out of order. Aiming at the problem that the model dimension in the
IMM is expanded, which makes Cholesky decomposition impossible in the CKF algorithm,
SVD decomposition was proposed to replace Cholesky decomposition. Aiming at the
shortcomings of the IMM in estimating the Markov matrix, an IMM with an adaptive
transition probability was proposed. The transition probability was adaptively modified
by posterior information to enhance the proportion of matching models.

The multi-fading factor strong tracking algorithm proposed in this paper adjusts the
filtering gain in real time and improves the tracking accuracy. The adaptive interaction
multi-model proposed in this paper improves the matching degree of the motion state of the
hypersonic target and speeds up the convergence of the algorithm. The SVD decomposition
of CKF in this paper improves the stability of the algorithm. The simulation results show
that the proposed algorithm enhanced the proportion of matching models in the IMM and
improved the tracking accuracy by 16.51% and the convergence speed by 37.5%. It has
engineering application value.
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