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Abstract: The coupling with external mechanical systems such as oscillating masses working as
tuned mass dampers, dynamic mass absorbers, elasto-plastic dampers, and rigid walls is an effective
method to reduce the displacements and drifts of structures under external loads. An alternative
method is provided by the coupling of the structure with an independent, auxiliary elasto-plastic
system. This paper investigates the dynamic and seismic behaviour of a structure rigidly coupled
with an auxiliary yielding mechanical system under harmonic and seismic ground excitation. A two-
degree-of-freedom model is used to describe the dynamic and seismic behaviour of the main structure
rigidly coupled to the yielding system, which is described by a one-degree-of-freedom model. The
auxiliary system has an elasto-plastic constitutive behaviour that is modelled by a Bouc-Wen model.
The equations of motion of the coupled system are obtained by a direct approach. The coupling with
the yielding system is considered beneficial if the displacements of the coupled system reduce with
respect to those of the stand-alone frame structure. An extensive parametric analysis is performed to
point out the role of the mechanical parameters that describe the elasto-plastic constitutive behaviour
of the auxiliary system. Results reveal that in large ranges of the parameters’ values, the coupling
with the elasto-plastic system improves the performance of the frame structure.

Keywords: frame structure; yielding exoskeleton; coupling; dynamic and seismic performances

1. Introduction

In the last few years, multiple studies proposed the coupling with external mechanical
systems as a means to reduce displacements and drifts of structures under external ground
excitation. Examples of such external mechanical systems are rocking structures and rigid
blocks. In [1], the authors investigated the effect of placing a structure on a rocking podium.
Similarly, in [2], the authors analysed the effects of rocking isolation. Researchers also
studied couplings between frames and rocking walls. In some cases [3,4], frames and
rocking walls have a rigid coupling; in other cases [5–8], the connection between the frame
and rocking wall was achieved by using visco-elastic devices. It was found that the rigid
wall can work as an enhanced tuned mass damper for the frame.

Other studies proposed to improve the performance of structures by coupling them
with adjacent structures. For instance, in [9], the seismic performances of frame structures
connected with adjacent towers were investigated. Instead, in [10,11], improvement of the
galloping motion under turbulent wind of two similar adjacent towers was obtained by
a nonlinear viscous coupling. In [12], coupling between adjacent structures was used to
increase the seismic performance of both structures.

Two-degree-of-freedom models (2-DOF) were often used in the literature to study
the conceptual aspects related to seismic protection methodologies. For example, the
conceptual aspects of Base Isolation (BI) were studied in [13], and those of the Tuned Mass
Damper (TMD) systems were studied in [14–16]. Such low-dimensional models were also
used to analyse various modifications and combinations of the two techniques. In [17,18],
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the reduction of the base displacement in a base isolated system through the use of a TMD
was investigated. The same objective was lately pursued in [19–21] by means of a TMD
and an inerter device.

This paper investigates the dynamic and seismic behaviour of a structure rigidly cou-
pled with a yielding, elasto-plastic system, representing a short exoskeleton. A two-degree-
of-freedom model (2-DOF) is used to capture the main dynamic and seismic behaviour of
the structure, whereas a single-degree-of freedom model (1-DOF) is used for the yielding
system. A rigid link connects the bottom mass of the 2-DOF model of the structure to the
yielding system.

The yielding system has an elasto-plastic constitutive behaviour that is described
by the Bouc-Wen model [22]. Such a model is chosen for its versatility, since the Bouc-
Wen model is able to describe several different hysteretic behaviours by varying a few
constitutive parameters, and it has already been used in combination with simplified 2-DOF
models, as in [23]. Additionally, it is possible to find several generalisations of the original
Bouc-Wen model that furtherly increase the range of hysteretic behaviours that such models
can describe. Due to the rigid link between the structure and yielding system, the coupled
system is described by a 2-DOF mechanical model. The nonlinear equations of motion
are obtained by a direct approach and successively numerically integrated to analyse the
behaviour of the coupled system. The coupling with the yielding system is considered
beneficial for the structure when there is a reduction in its displacements or drifts.

An extensive parametric analysis is performed to point out the role of the mechanical
parameters describing the elasto-plastic constitutive behaviour of the yielding system.
Both harmonic and seismic base excitations are considered. The results are summarised
in behaviour maps plotted in the plane of the system’s parameters. The maps provide
the ratio between the maximum displacements of the coupled system and the stand-alone
structure. A ratio less than unity highlights the effectiveness of the yielding system in
improving the dynamics of the structure. Results reveal that such effectiveness can be
achieved in large ranges of the parameters’ values.

2. Motivation of the Study

Many researchers used low-dimensional mechanical models to capture the main
dynamic and seismic behaviour of real structures. It is a common practice in structural
mechanics in the field of Civil Engineering.

In this paper, a 2-DOF model represents a general, sufficiently regular, N-storey frame
structure, whereas a 1-DOF model represents a yielding, elasto-plastic exoskeleton. The
dynamics of such a reduced model is studied via the numerical integration of the governing
equations of motion and provide preliminary information on the possibility of improving
the seismic response of real frame structures by rigidly coupling them with an external
structure. Neither technological nor building aspects are studied in this paper and, in
general, they would require further studies and experimental tests.

Some studies already focused on the coupling between a structure and an exoskeleton.
For instance, in [24], adaptative exoskeletons were used to improve the performances of
existing buildings or, in [25], a special type of steel exoskeletons, named diagrid structures,
were analysed. Some papers studied the optimal connection between parallel structures,
where one of these can be an external exoskeleton [26,27].

The majority of papers propose the use of exoskeletons that have the same height as
the structure. In this case, the height of the exoskeleton may raise issues related to both
the realisation process and a possible strong aesthetic impact of the exoskeleton. This
paper considers an exoskeleton shorter than the structure to be protected (see Figure 1).
Moreover, the exoskeleton is considered to be rigidly connected to the first or second storey
of the structure. In such a way, the aesthetic impact could be negligible if, for instance, the
existing building had an underground level so that the exoskeleton could be connected at
the ground level. It is worth observing that a rigid connection to an elasto-plastic external
structure is conceptually similar to the use of braced and/or knee-braced frames [28–35],
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since the coupling adds a higher dissipation energy capability to the structure. However,
contrarily to the use of braced and/or knee-braced frames, which are usually distributed in
the whole structure, the coupling with the external structure affects only a small part of the
structure to be protected (the first storey or first two storeys).

This paper focuses of understanding whether it is possible to improve the dynamic
and seismic performances of both the part of the structure below the connection level,
namely the sub-structure, and the part above the connection, namely the super-structure.
Additionally, since the exoskeleton is considered as a yielding structure with elasto-plastic
constitutive behaviour, a parametric analysis is performed to find the values of the con-
stitutive parameters of the exoskeleton that minimise the displacements and drifts of
the structure.

0.00 0.00

Figure 1. Indicative scheme of the connection between frame structure and exoskeleton.

3. Mechanical System

Regardless of the number of storeys, the structure is modelled by an equivalent 2-DOF
system (Figure 2a), in which the first DOF, u1, is associated with the sub-structure and
the second one, u2, is associated with the super-structure (Figure 2b). The exoskeleton
is modelled by a 1-DOF yielding system. Due to the rigid connection between mass m1,
which is associated with the displacement u1 of the equivalent 2-DOF system, and the
yielding system, the coupled system has the same number of degrees of freedom as the
model of the stand-alone structure.

Starting from a given multiple-degree of freedom (M-DOF) sufficiently regular frame
structure, the mechanical characteristics of the equivalent 2-DOF system derive from the
procedure presented in [36–38]. Such a procedure is applied to derive the equivalent
stiffnesses, k1 and k2, that are associated to the two DOF. Masses m1 and m2 coincide with
the physical masses of the sub-structure and super-structure, respectively. According to the
same procedure, the two DOF, u1 and u2, represent the displacements of the floor connected
to the yielding system and of the top floor of the structure, respectively. The two damping
coefficients of the 2-DOF model, c1 and c2, are derived from the Rayleigh formulation,
assuming a damping ratio ξ = 0.05 for both the oscillation modes of the model.

The mechanical characteristics of the yielding 1-DOF system mexo and kexo are the
parameters varied in the analyses. In particular, kexo is the linear elastic stiffness, before
the plastic deformation, whereas the damping coefficient cexo is obtained by treating the
stand-alone yielding system as a 1-DOF elastic system. Specifically, cexo = 2ξexomexoωexo,
with ωexo =

√
kexo/mexo (ξexo = 0.02).
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Figure 2. Mechanical system: (a) geometric and mechanical characteristics of the system; (b) deformed
configuration and positive directions of the Lagrangian parameters.

3.1. Equations of Motion

The equations of motion are derived by imposing the equilibrium of the forces acting
on m1 and m2,

(m1 + mexo)ü1(t) + (c1 + c2 + cexo)u̇1(t)− c2u̇2(t)+
(k1 + k2)u1(t)− k2u2(t) + fexo(t) = −(m1 + mexo)ẍg(t)
m2ü2(t)− c2u̇1(t) + c2u̇2(t)− k2u1(t) + k2u2(t) = −m2 ẍg(t)

(1)

where ẍg is the external base excitation, and fexo is the restoring force describing the
constitutive behaviour of the yielding system.

3.2. Elasto-Plastic Description of the Yielding System

The elasto-plastic constitutive behaviour of the yielding system is described by the
Bouc-Wen model [22]. According to this model, the restoring force fexo can be expressed as

fexo(t) = ψkexou1(t) + kexouy(1− ψ)zexo(t) (2)

where ψ is the ratio between the post-yielding stiffness kplast and the pre-yielding stiffness
kexo, i.e., kplast = ψkexo. The case ψ = 0 represents the elastic–perfectly plastic constitutive
behaviour of the yielding system, whereas the case ψ = 1 describes its fully elastic constitu-
tive behaviour. Quantity uy is the yield displacement, beyond which the yielding system
undergoes plastic deformations. It is worth observing that the product kexouy represents
the yielding force of the structure, Fy. Finally, zexo is an auxiliary variable the describes the
post-yielding behaviour and is defined by an ordinary differential equation

żexo(t) =
1

uy

[
A− |zexo(t)|n(β1 + γ1sign(u̇1(t) · zexo(t)))

]
u̇1(t) (3)

where parameters A, β1, and γ1 depend on the shape of the hysteretic cycles.
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The parameters of the Bouc-Wen model are functionally redundant; there are multiple
sets of values of the parameters that produce identical responses for a given excitation. This
redundancy can be removed by fixing one of the parameters. A possibility is to fix A = 1
so that the physical meaning of the initial stiffness kexo = Fy/uy is restored [39].

Parameters β1 and γ1 control the shape and size of the hysteretic loop, as demonstrated
in [22]. However, they lack any physical interpretation. As suggested in [40], it is assumed
β1 + γ1 = 1. The two constraints β1 + γ1 = 1 and A = 1 reduce the Bouc-Wen model to a
strain-softening formulation with a defined meaning of the mechanical quantities Fy, uy,
ψ. Under such constraints, the dimensionless hysteretic parameter zexo takes values in the
range [−1, 1]. Finally, the exponential parameter n governs the abruptness of the transition
between the elastic and post-elastic branch of the hysteresis model. For large values of n,
the response approaches that of a bilinear model. All simulations presented in this paper
are performed considering n = 2.

The equations of motions, Equations (1)–(3), are solved numerically, using the Runge–
Kutta method, embedded in the command NDSolve inside the Wolfram Mathematica®

environment. The used integration time-step is 0.001 s.

4. Parametric Analysis

Parametric analyses are performed to evaluate the dynamic and the seismic effective-
ness of the coupling. To simulate cases close to reality, two structures with characteristics
reported in Table 1 are used as references. For each structure, all storeys have the same
mass, height, and stiffness. The characteristics reported in Table 1 are used in the reducing
order technique adopted in [36–38] to derive the mechanical characteristics of equivalent
2-DOF models of the structures.

Table 1. Geometric and mechanical characteristics of the two reference multi-degree-of-freedom
frames (M-DOF).

Storeys Storey Area Storey Mass ms Storey Height Main Period

3 100 m2 120.6× 103 kg 3 m 0.390 s
6 300 m2 361.8× 103 kg 3 m 0.655 s

It is worth observing that the values of k1 and k2 change with the yielding system
connection level, even if the equivalent 2-DOF models refer to the same building (see
the second and the third rows of Table 2). In Table 2, ξ shows the modal damping ratio
adopted for the two oscillation modes of the stand-alone 2-DOF equivalent model. The
value ξ = 0.05 is commonly used in various building codes for structural frame structures,
independently of the material of the structure, and it is the value used in this paper.

Table 2. Mechanical characteristics of the 2-DOF equivalent systems.

Storeys Connection k1 [N/m] k2 [N/m] m1 [kg] m2 [kg] ξ

3 1 2.19219× 108 0.93951× 108 120.6× 103 241.2× 103 0.05
6 1 1.02972× 109 1.99300× 108 361.8× 103 1809.0× 103 0.05
6 2 9.30067× 108 1.99300× 108 723.6× 103 1447.2× 103 0.05

The parameters that are varied in the analyses are the following:

• Mechanical characteristics of the 2-DOF system mi and ki (i = 1, 2), representing real
M-DOF frame structures;

• Post- and pre-yielding stiffness ratio

ψ =
kplast

kexo
; (4)
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• Ratio between pre-yielding stiffness of the yielding system and stiffness of the sub-
structure

µ =
kexo

k1
; (5)

• Ratio between yielding force and weight of the yielding system wexo (obtained multi-
plying the mass mexo by the gravitational acceleration g)

η =
Fy

wexo
=

kexouy

mexog
; (6)

• Ratio between mass of the yielding system and total mass of the structure

γ =
mexo

m1 + m2
. (7)

The comparison between the displacement u1 and the drift ∆u = u2 − u1 of the cou-
pled system and those of the stand-alone structure provides an indication of the efficiency of
the coupling. The above-mentioned comparison is performed by means of two gain indexes

α1 =
max|u1(t)|
max|ũ1(t)|

, α2 =
max|u2(t)− u1(t)|
max|ũ2(t)− ũ1(t)|

=
max|∆u(t)|
max|∆ũ(t)| (8)

where the displacements ũ1 and ũ2 are those of the 2-DOF model of the stand-alone
structure. According to Equation (8), the effectiveness of the coupling increases as the
values of α1 and α2 become smaller and smaller compared to unity.

The parametric analysis is performed by evaluating the gain indexes α1 and α2 for
each set of variable parameters and a single base motion and plotting such values in a
specific parameters plane, thus creating gain maps.

5. Harmonic Excitation

A harmonic excitation
ẍg(t) = As sin(Ωt) (9)

is used to compare the dynamics of the coupled system and stand-alone structure. In
Equation (9), Ω = 2π/Ts is the circular frequency of the excitation, Ts is the period of the
harmonic cycle, and As is its amplitude.

5.1. The Role of the Elastic Stiffness and of the Yielding Force

The role of kexo and Fy in the dynamic response of the coupled system is investigated
by plotting the gain indexes in the parameters’ plane (µ–η) (see Equations (5) and (6)). The
harmonic analysis is carried out for the three-storey frame structure whose geometric and
mechanical characteristics are reported in the first row of Tables 1 and 2. The main period
of the coupled system depends on the mass of the exoskeleton, which is considered fixed
(γ = 0.1), and on the stiffness of the exoskeleton, which is accounted for by the parameter
µ. Since the gain maps are represented in the parameter plane µ–η, the range of the main
period of the coupled system depends only on µ, which is varied in the range 0–10. Hence,
in the parametric analyses performed on the three-storey frame structure, the range of the
main periods of the coupled system is approximately 0.32–0.39 s.

As shown in Figure 3a, the yielding system is connected to the first storey of the
structure. The gain maps in Figure 3b are contour plots of the gain indexes α1 and α2 in the
parameters’ plane (µ–η). The light grey colour regions (named advantage regions) are the
regions where the gain coefficient is lower than unity, i.e., the coupling with the yielding
system reduces the displacements of the structure. In Figure 3b, the two maps of each row
refer to the α1 (left map) and α2 (right map) indexes, which are evaluated for a different Ω.
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Figure 3. Gain maps: (a) geometric coupling scheme; (b) Gain maps α1 and α2 for different frequencies
Ω of the harmonic excitation (ψ = 0.1, γ = 0.1, As = 0.7g m/s2); Points A–D and P1–P4 denote
reference cases examined in the analyses.

The maps in the first column of Figure 3b show that the coupling with the yielding
system leads to a significant reduction in u1. In the α1 maps, the advantage regions cover
almost all the parameters plane, reaching values smaller than 0.1 (i.e., the coupling has the
effect to reduce u1 up to 90% of its original value). The α2 maps show that the reduction in
∆u is significantly smaller that the reduction in u1. Although α2 has higher values than α1,
up to Ω = 15 rad/s, the advantage regions still cover almost the entire parameters plane.
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For frequencies higher than Ω = 15 rad/s, the advantage region shrinks, and the value of
α2 increases. However, contrarily to α1, α2 has an absolute minimum inside the investigated
parameters’ range. Such minimum depends on Ω; the smallest value among the minimums
(α2 = 0.42) is obtained for Ω = 15 rad/s. Such points of minimum provide the optimal
design characteristics of the yielding system that lead to the maximum reduction in the
drift of the super-structure.

To gain a better understanding of the changes in the dynamics of the coupled system,
different mechanical characteristics of the coupling are considered. Specifically, points
A, B, and C on the maps referring to Ω = 15 rad/s of Figure 3b are investigated. The
results are shown in Figure 4, which is arranged in three sub-figures (a, b, and c). Each sub-
figure shows (i) ) the comparison among time-histories of u1(t) and ∆u(t) of the coupled
system and stand-alone structure (upper ad lower-left graphs), (ii) the hysteretic cycle of
the yielding system (upper right graph), and (iii) the comparison of the frequency-response
curves of u1(t) and ∆u(t), referring to the coupled system and stand-alone structure (lower
right graph). In the figure, a thick line is used for the coupled system, whereas a thin line is
used for the stand-alone structure.

Figure 4a shows the behaviour of the system having mechanical characteristics given
by point A, which is the point that corresponds to the absolute minimum of α2 in the map
obtained for Ω = 15 rad/s. The comparisons between the time-histories of the coupled
system and those of the stand-alone structure reveal that the yielding system reduces both
u1 and ∆u. The hysteretic cycle shows a significant energy dissipation due to the plastic
deformation of the yielding system. The observation of the frequency-response curves
reveals a slight increase in the main frequency of the coupled system with respect to the
stand-alone structure and a reduction in the amplitude of the displacements, mostly for u1.
The two vertical dashed lines reported in all the frequency-response curves correspond to
Ω = 15 and Ω = 17.5 rad/s. Along the line that refers to Ω = 15, both u1 and ∆u of the
coupled system have maximum amplitudes smaller than those of the stand-alone structure,
since the frequency-response curves of the coupled system are below the curves of the
stand-alone structure. In fact, point A is inside the advantage regions of both maps obtained
for Ω = 15 rad/s. On the contrary, along the vertical line passing through Ω = 17.5 rad/s,
the drift of the coupled system has a maximum value slightly higher than that of the
stand-alone structure, and point A is outside the advantage region of the α2 map obtained
for Ω = 17.5 rad/s (see Figure 3b).

Figure 4b shows the behaviour of the system having mechanical characteristics repre-
sented by point B. In this case, such a point is inside the advantage regions of both the α1
and α2 maps, although it is close to the boundaries of these regions, and the values of the
gain indexes approach the unity. In this case, the difference between the maximum ampli-
tudes of the coupled system and stand-alone structure is smaller than the corresponding
difference for the structures identified by point A. Instead, the hysteretic cycle shows a
small energy dissipation, because the yielding system has very small plastic deformations.
Compared to the case described by point A, the frequency-response curves show a smaller
reduction in the amplitudes of u1 and ∆u due to the coupling. Along the lines that refer
to Ω = 15 and Ω = 17.5 rad/s, both u1 and ∆u of the coupled system have maximum
amplitudes slightly smaller than those of the stand-alone structure. In fact, point B is
inside the advantage regions in both maps obtained for Ω = 15 and Ω = 17.5 rad/s (see
Figure 3b).
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Figure 4. Time-histories, hysteretic cycles and frequency-amplitude curves: (a) Point A; (b) Point B;
(c) Point C (points labelled in Figure 3b, ψ = 0.1, γ = 0.1, As = 0.7g m/s2).
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Figure 4c shows the behaviour of the coupled system with mechanical characteristics
represented by point C. Such a point is inside the advantage regions of both the α1 and
α2 maps. The comparisons among time-histories show results coherent with the values
of α1 and α2 at point C. By referring to the hysteretic cycle, due to the small value of
the parameter η at point C (i.e., small value of the yield displacement uy), there are large
plastic deformations of the yielding system that, nevertheless, provide limited energy
dissipation. The frequency-response curves show that the coupling does not affect the
maximum amplitude of ∆u but provides only a shift towards higher values of the main
frequency of the coupled system. Along the lines for Ω = 15 rad/s, both u1 and ∆u of
the coupled system have maximum amplitudes smaller than those of the stand-alone
structure and, coherently, point C is inside the advantage regions of both maps obtained
for Ω = 15. On the contrary, along the lines for Ω = 17.5 rad/s, only u1 slightly decreases
after the coupling. Instead, the ∆u of the coupled system is significantly higher than the
one of the stand-alone structure. This occurrence is coherent with point C being inside the
advantage region of the α1 map and outside the advantage region of the α2 map obtained
for Ω = 17.5 rad/s (see Figure 3b). Additionally, an almost resonance condition occurs at
point C for the coupled system, since the main frequencies of the system and harmonic
excitation are close to each other.

During the harmonic excitation, after the transient dynamics, the coupled system
reaches a dynamic motion characterised by stationary hysteretic cycles. To further explain
the effects of the coupling, the equivalent damping ratio ξeq of such stationary hysteretic
cycles is evaluated. The value of ξeq is obtained by equating the area of the hysteretic
cycle Eh and the area of the cycle Ev of an equivalent linear viscous damped system under
the same excitation. As in [41], the area of the equivalent viscous cycle is evaluated as
Ev = πceqωeqũ1, where ceq and ωeq are the damping coefficient and the frequency of
the equivalent viscous system, respectively, and ũ1 is the maximum displacement of the
hysteretic system that corresponds to the maximum strain of the equivalent system. For
a linear viscous 1-DOF system ceq = 2ξeqωeqm, ωeq =

√
keq/m, and keq can be related to

the maximum restoring force reached in the hysteretic cycle f̃exo and to ũ1 (keq = f̃exo/ũ1);
thus, the equivalent damping ratio reads

ξeq =
Eh

2πũ1 f̃exo
(10)

Figure 5 shows the stationary hysteretic cycles and the frequency-response curves of
∆u that are related to points A and Pi(i = 1, . . . , 4). Such points are shown in the α2 map
obtained for Ω = 15 rad/s of Figure 3b. Specifically, A is located at the point of absolute
minimum, whereas the other points Pi are in the vicinity of A. For each investigated point,
ξeq is reported near the plot of the limit cycle. For each plot, the frequency-response curves
of the drift show (i) the main frequency of the coupled system and the maximum value of
drift (thick curve), and (ii) the difference between the maximum drift of the coupled system
and stand-alone structure at Ω = 15 rad/s (the same frequency of the map on which points
A and Pi are located). Along the horizontal direction (from point P1 to P3, passing through
A), although numerically close to each other, the values of ξeq slightly increase. Moreover,
the increase in the pre-yielding stiffness of the yielding system, measured by the parameter
µ, causes an increase in the main frequency of the coupled system and a minor increase in
its maximum drift. These different effects combine in such a way that the largest difference
between the drifts of the coupled system and stand-alone system along Ω = 15 rad/s
occurs at point A.

Along the vertical direction (from point P2 to P4, passing through A), the increase of
the yielding displacement, which is measured by the parameter η, causes a decrease in
the equivalent damping of the hysteretic cycles. Additionally, the main frequency of the
coupled system increases, and the maximum drift in correspondence of the main frequency
decreases. Along the vertical direction, the different effects combine so that the coupling is
more effective for the characteristics of the coupled system defined by point A. Figure 5
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also shows that the frequency-response curves have significantly different shapes of the
descending branches (i.e., the branch on the right of the main frequency).
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Figure 5. Stationary hysteretic cycles and frequency-amplitude curves of the drift (points labelled in
Figure 3b, ψ = 0.1, γ = 0.1, As = 0.7g m/s2).

5.2. The Role of the Post-Elastic Stiffness and of the Mass of the Yielding System

This subsection analyses the sensitivity of the dynamics of the coupled system to
ψ. Since the coupling with the yielding system is always beneficial for the sub-structure,
Figure 6 shows only the α2 maps that are related to the super-structure. The maps are
arranged in matrix form, where the rows refer to different Ω and the columns refer to
different values of ψ. For both values of Ω, the increase in ψ results in a decrease in the
effectiveness of the coupling. As general effect of the increase in ψ, the contour levels of the
maps tend to become vertical, and the point of absolute minimum of the drift disappears
from the investigated range of the parameters. When ψ = 1, the yielding system has a
linear elastic behaviour, and the response of the coupled system does not depend on uy or
equivalently on η.

A second analysis shows the dependence of the dynamics of the coupled system on
the mass of the yielding system, which is parametrically measured by γ. In addition, in
this case, Figure 7 only shows the α2 maps referring to the super-structure. Such maps
are arranged in matrix form, where the rows refer to different Ω and the columns refer to
different values of γ. For both values of Ω, the increase in γ significantly changes the maps.
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Nevertheless, the effectiveness of the coupling is not affected by γ, since the minimum
values reached by α2 when γ changes remain the same. The increase in γ mainly affects the
vertical position of the absolute minimum of α2. Specifically, as γ increases, the value of η
that corresponds to the minimum value of α2 decreases. Finally, it is worth observing that
the value of µ where the minimum of α2 occurs does not significantly depend on γ.
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5.3. The Role of the Amplitude of the Harmonic Excitation

The coupled system is described by nonlinear equations due to the hysteretic constitu-
tive behaviour of the yielding system. Consequently, the response of the coupled system
depends on As. This subsection analyses the sensitivity of the dynamics of the coupled
system to As. Figure 8a shows the α2 gain maps, referring to the harmonic frequency
Ω = 12.5 rad/s, and obtained for different values of As (from left to right, As varies from
0.5 to 1.0 g). The effectiveness of the coupling is not affected by As, since the minimum
values reached by α2 are the same in all of the maps. When As increases, the value of η
at which the minimum value of α2 occurs increases as well. It is worth observing that the
value of µ for which the minimum of α2 occurs does not depend on As. Figure 8b shows the
stationary hysteretic cycles corresponding to the minimum points A indicated in Figure 8a.
It is interesting to note that although the areas of these cycles are very different to each
other, ξeq remains almost constant (ξeq ∼=0.301).
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6. Seismic Excitation

A set of four earthquake records is used as excitation for the seismic analyses. The
selection of the records is performed accounting for the differences in the spectral charac-
teristics of the earthquake records. The limited number of earthquake records does not
directly allow assessing the sensitivity of the results on the features of the records but
provides a significant indication about the ability of the exoskeleton to improve the seismic
performance of frame structures. Figure 9 shows the time-histories of the selected records
in the left column and the corresponding pseudo-acceleration elastic spectra on the right
column. The considered earthquake records are

(a) Kobe, Takarazuka-000 station, ground motion recorded during the 1995 Japan earth-
quake;

(b) L’Aquila, IT.AQV.HNE.D.20090406.013240.X.ACC station, ground motion recorded
during the 2009 Italian earthquake;

(c) Pacoima, Dam-164 ground motion recorded during the 1971 San Fernando, California
earthquake;

(d) Parkfield, CO2-065 ground motion recorded during the California earthquake 1966.

In the following, each record is called with the underlined name of the above list.
In this case, the results are obtained by numerically integrating the equations of motion
(Equation (1)).
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Figure 9. Time-histories and acceleration response spectra of the earthquakes analysed: (a) Kobe;
(b) L’Aquila; (c) Pacoima; (d) Parkfield.

Discussion of the Results

The first seismic analysis considers the structure whose geometric and mechanical
characteristics are reported in the first rows of Tables 1 and 2, i.e., the three-storey frame
structure. For this structure, the range of the main periods of the coupled system is
approximately 0.32–0.39 s , as for the analysis with harmonic excitation. As shown in
Figure 10a, the coupling with the yielding system is performed at the first storey of the
structure. Both the α1 and α2 gain maps are reported in Figure 10b. When the coupled
system is excited by the four records, the coupling reduces the displacements of the sub-
structure. The gain index α1 reaches values of about 0.1, which means a reduction of
u1 of about 90% with respect to the stand-alone structure. As occurs for the harmonic
excitation, also under seismic excitation, the α2 maps present points with absolute minima.
The position of these points and the corresponding values of α2 vary with the records.
Nevertheless, for all records, there is a reduction in the drift of the coupled system. For
example, for the Kobe earthquake, for which the coupling is less effective, the minimum
value of α2 is about 0.66, which entails about a 30% reduction of the drift compared to the
stand-alone structure.
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Figure 10. Gain maps: (a) Geometrical coupling scheme; (b) Gain maps α1 and α2 for different
earthquakes (ψ = 0.1, γ = 0.1). Point A denotes a reference case examined in the analyses.

Figure 11 shows the time-histories of u1(t) and ∆u(t) together with the hysteretic
cycle. Such curves refer to the point labelled with A in the Pacoima maps of Figure 10. The
comparison between the time-histories of the coupled system (thick line) and those of the
stand-alone structure (thin line) shows a notable reduction in both the displacement of
the sub-structure and the drift of the super-structure due to the coupling. Moreover, the
hysteretic cycle in Figure 11 clearly shows the yielding of the system and the consequent
energy dissipation.
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Figure 11. Time-histories and hysteretic cycle of the system with characteristics labelled with A in
Figure 10 (ψ = 0.1, γ = 0.1).

The last seismic analysis considers a structure whose geometric and mechanical char-
acteristics are reported in the second row of Table 1 (six-storey building). Figure 12 shows
only the α2 maps because also in this case, the coupling is always beneficial for the sub-
structure. The results refer to three different earthquakes records (Kobe, L’Aquila, and
Parkfield). In this analysis, the connection between the structure and the yielding system
is placed at either the first or second storey. In this case, the main period of the coupled
system varies in the range 0.60–0.66s when the connection with the exoskeleton is at the
first storey of the frame structure and in the range 0.61–0.66 s when the connection is at
the second storey. The mechanical characteristics of the 2-DOF system that represent the
coupled system are reported in the second and third row of Table 2.
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Figure 12. Gain maps: (a,c) Geometrical coupling schemes; (b,d) Gain maps α2 for different earth-
quakes (ψ = 0.1, γ = 0.1).

Figure 12a shows the scheme of the connection. The α2 maps of this structural scheme
are shown in Figure 12b. The advantage regions cover a limited portion of the parameters
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plane and reach minimum values close to unity. This means that the reduction of the drift
of the super-structure is negligible. The dimension of the yielding system (one storey) is
too small with respect to that of the super-structure (five storeys) to be able to change the
response of the super-structure. Therefore, a change in the structural scheme is needed.
Figure 12c shows a scheme where the connection between the structure and the yielding
system is at the second storey. The α2 maps referring to this coupled system are shown
in Figure 12d. The increase in the dimension of the yielding system (two storeys) and the
consequent decrease in the dimension of the super-structure (four storey) with respect to
the case in Figure 12a causes the enlargement of the advantage regions. Moreover, the
minimum value of α2 reduces.

7. Conclusions

In this paper, a 2-DOF model, representing a general N-DOF frame structure, was
coupled with an external yielding 1-DOF system, representing an exoskeleton, to improve
the dynamic and seismic behaviour of the 2-DOF model. A rigid link connects the bottom
mass of the 2-DOF model to the 1-DOF yielding system. Such a yielding system was
assumed to have an elasto-plastic constitutive behaviour that was modelled by the Bouc-
Wen model. Due to the rigid link between the 2-DOF model of the structure and yielding
system, the coupled system was still described by a 2-DOF mechanical model. The nonlinear
equations of motion were obtained by a direct approach and successively numerically
integrated to analyse the dynamics of the coupled system. The coupling with the yielding
system was considered beneficial for the structure in the occurrence of a reduction in the
displacements and drifts of the structure.

An extensive parametric analysis was performed, considering both harmonic and
seismic excitations. The parameters varied in the analysis were those characterising the
elasto-plastic constitutive behaviours of the yielding system. The results were summarised
in behaviour maps that provided the ratios between the maximum displacements (or the
drift) of the coupled system and the stand-alone structure. In these maps, a ratio less than
unity shows that the yielding system is effective in improving the dynamics of the structure.

The analysis showed wide regions of the parameter plane where the coupling is
beneficial for the structure. In correspondence of the points of the maps where the best
performances occur, the yielding system exhibits a behaviour with hysteretic cycles that
have a high value of equivalent damping coefficient. As expected, the performance of
the coupled system also depends on its characteristics and on the spectral content of the
excitation. Since, in all cases, the coupling with the yielding system is beneficial for the
sub-structure, the coupling may be particularly effective in structures with the so-called
soft storey, which is usually located at the lower levels of structures. The coupling can
reduce the displacement of such storeys up to 90% of their initial values and, at the same
time, could improve the dynamic and seismic performances of the super-structure. The
results encourage checking the effectiveness of such a method for real structures by using
more accurate FEM models. However, the results reveal that if the frame structure to be
protected is sufficiently regular, the used low-dimensional models can properly capture the
dynamic and seismic behaviour of the structure.

Finally, the main novelties and advantages of the study are summarised below:

• Differently to the use of braced and/or knee-braced frames that are usually distributed
in the whole structure, the proposed method uses an exoskeleton that involves only a
small part of the structure to be protected.

• Since the connection between the structure and the exoskeleton is performed by
rigid links at the level of the first (or second) storey, the mechanical and geometric
characteristics of the structure to be protected remain unchanged.

• Although the exoskeleton is shorter than the frame structure, it has the ability to
improve the dynamic and seismic response of both the part below the connection with
the exoskeleton and the part above such a connection.
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• The stiffness and the mass of the exoskeleton are parameters that can be varied easily
and that can be used to improve the performances of the coupled system. This
possibility is harder to exploit in braced and/or knee-braced frames.

On the contrary, the proposed method has the following limitations:

• The exoskeleton requires some space around the frame structure to protect and could
have an undesired aesthetic impact.

• The limited height of the exoskeleton may undermine the effectiveness of the proposed
protection for high-rise buildings. For significantly taller frame structures, there may
be the need to connect the two structures at higher storeys in order to achieve a
significant reduction of the displacements of the superstructure.
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