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Abstract: In this paper, we propose an elliptical anti-tetrachiral honeycombs structure (E-antitet) with
in-plane negative Poisson’s ratio (NPR) and orthogonal anisotropy. The analytical and numerical
solutions of the in-plane Poisson’s ratio and Young’s modulus are given by theoretical derivations
and finite element method (FEM) numerical simulations and are verified experimentally by a 3D
printed sample. Finally, we analyzed the influences of different parameters on the in-plane Poisson’s
ratio and Young’s modulus of E-antitet. The results show that the proposed E-antitet can achieve
a smaller Poisson’s ratio and larger Young’s modulus in the desired direction compared with the
anti-tetrachiral honeycombs structure (antitet), and moreover, the E-antitet has a more flexible means
of regulation than the antitet. The analytical results of this paper provide meaningful guidance for
the design of chiral honeycomb structures.
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1. Introduction

Negative Poisson’s ratio (NPR) honeycomb structures refer to a class of man-made
structural functional materials whose cross-sections become more expanded when stretched.
Although scholars have previously discovered some natural materials with NPR effects,
such as some metals [1], cancellous bones [2], cat skin [3] and parts of cow skin [4], the
study on NPR materials started in the 1980s: Gibson et al. [5] systematically investigated
the in-plane mechanical properties of hexagonal honeycomb structures with different
parameters and found that re-entrant hexagonal honeycomb structures could produce the
NPR effect; this result quickly attracted the attention of scholars, and different types of NPR
structures were proposed, respectively. Almgren [6] designed a structure using rods, hinges
and springs in two and three dimensions and found its Poisson’s ratio to be −1; Lakes [7]
obtained a foam material with a Poisson’s ratio of−0.7 under compression in a heated mold
using polyester foam as raw material and predicted the advantages and applications of NPR
materials; Evans et al. [8] designed NPR materials at the molecular level and named them
Auxetics. As the research progresses, many unique and novel properties of NPR materials
are gradually discovered, such as the varying porosity of NPR materials with strain [9–11]
and isotropic curvature when subjected to out-plane bending [12,13]. In addition, many
mechanical properties of NPR materials are enhanced compared to those of ordinary
materials, such as indentation resistance [14–18], shear modulus/fracture toughness [19–23]
and energy absorption [24–27]. Moreover, the properties of NPR materials are scale-
independent and can be both the overall behavior of the material and originate from its
internal structure, which means that they are both macroscopic material properties and
microscopic internal structure properties [28].

Among many of the NPR honeycomb structures, chiral honeycomb structures have
been widely studied due to their superior NPR effects and excellent designability. A typical
chiral honeycomb structure usually consists of two parts, which are the central node and the
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ligaments connected tangentially to the central node. Depending on the position and num-
ber of ligaments, chiral honeycomb structures can be classified into tri-trichiral honeycomb
structure (tri)/anti-trichiral honeycomb structure (antitri), tetrachiral honeycomb structure
(tet)/anti-tetrachiral honeycomb structure (antitet) and hexachiral honeycomb structure
(hex), as shown in Figure 1. The NPR effect of chiral honeycomb structures originates from
their unique deformation pattern, where the central node rotates when stressed in one
direction and the ligaments connected to the central node bend, which leads to a kink in
the whole structure and exhibits NPR effects. This unique deformation mode makes the
chiral honeycomb structures have stable NPR over a wide range of strains. The study of
chiral honeycomb structures by scholars began in the late 1980s: Wojciechowski [29] first
proposed that the NPR effect could be generated using rotating node topology; Lakes [30]
proposed that chiral honeycomb structures can produce NPR effects; Prall et al. [31] pro-
posed hex and determined its parameters, basic theory and calculation methods to prove
that the Poisson’s ratio of hex is -1; Alderson et al. [32] investigated the in-plane mechanical
properties of tri, antitri, tet, antitet and hex through theoretical derivations, finite element
method (FEM) simulations and experiments and discussed the deformation mechanism
of chiral honeycomb structures; Lorato et al. [33] investigated the out-plane mechanical
properties of tri, antitri, tet, antitet and hex using theoretical derivations, FEM simulations
and experiments; Mousanezhad et al. [34] conducted a theoretical derivations of Young’s
modulus for several chiral honeycomb structures and polygonal lattice sandwich honey-
comb structures based on the energy method and verified the correctness of the theoretical
derivations by combining FEM simulations; Spadoni et al. [35] and Scarpa et al. [36] stud-
ied the elastic buckling of hex using theoretical derivations and FEM simulations, on the
basis of which Miller et al. [37] proposed a complete hysteretic elastic buckling model and
mechanical characteristics of hex. In addition to the studies on the regular two-dimensional
chiral honeycomb structures, many scholars have also conducted in-depth studies on the
special two-dimensional chiral honeycomb structures [38,39] and three-dimensional chiral
honeycomb structures [40–45].
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NPR honeycomb structures have been widely used in various fields due to their per-
formance advantages [46–49], but the disadvantages of weak load-bearing capacity [50] of
two-dimensional NPR honeycomb structures limit the relevant engineering applications.
Some scholars have already made corresponding improvements based on the disadvan-
tages of the low Young’s modulus of the NPR honeycomb [51–53]. Recently, Mukhopad-
hyay et al. [54] developed microstructures that can exhibit multidirectional auxeticity
covering the in-plane and out-of-plane directions including mixed-mode modulation. The
proposed 3D microstructure could be extended to different other beam profiles with spa-
tially varying geometrical and material parameters, making it an ideal candidate for the
creation of innovative programmable structural systems. To the best of our knowledge, no
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study has been conducted in the open literature to improve the central node to enhance the
in-plane Young’s modulus of chiral honeycomb structures, so it is necessary to study new
chiral honeycomb structure. However, this area of research is still far from enough due to
the large porosity of NPR structures. In addition, conventional NPR materials are often de-
signed as isotropic structures, which limits the adjustment range of negative Poisson’s ratio
to some extent. In this paper, we design an elliptical anti-tetrachiral honeycombs structure
(E-antitet) with orthogonal anisotropic elastic constants, which can improve its material
strength in at least one direction and has a wide range of Poisson’s ratio adjustment. This
gives our proposed E-antitet a more flexible means of regulation.

The paper is organized as follows: Section 1 introduces the research advances, specific
applications and current disadvantages of NPR honeycomb structures, especially chiral
honeycomb structures; Section 2 shows the theoretical derivations, FEM simulations and
experimental validation of the in-plane mechanical properties of E-antitet; Section 3 ana-
lyzes the effects of parameters on the in-plane mechanical properties of E-antitet; Section 4
summarizes the full work.

2. Theoretical Derivations, FEM Simulations and Experimental Verification of
In-Plane Mechanical Properties of E-Antitet
2.1. Unit Cell and Parameters of E-Antitet

Figure 2a shows the schematic of the E-antitet cell and its parameters, where lx and
ly represent the lengths of the ligament in the x- and y-directions, respectively; lex and ley
represent the effective lengths of the ligaments in the x- and y-directions, respectively; a
and b represent the lengths of the long and short axis of the elliptical node ring, respectively;
t is the width of the ligaments and the elliptical node ring; and the depth of the cell in
the z-direction is d. To convenience the study, we defined nine dimensionless parameters,
which are δ = a/b, αax = lx/a, αay = ly/a, αbx = lx/b, αby = ly/a, βa = t/a, βb = t/b,
γa = d/a and γb = d/b. There are five independent parameters, which are δ, αax = 1/δαbx,
αay = 1/δαby, βa = 1/δβb and γa = 1/δγb. When a = b, E-antitet degenerates to antitet.
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2.2. Theoretical Derivations

Similar to the references [31,32,55], the elliptical node ring in the E-antitet is likewise
assumed to be a completely rigid unit of rotation, with only minor deformation occurring
within the ligament. Using the classical beam theory related to the ligament deformation
mechanism, Poisson’s ratio can be derived for all chiral honeycomb structures.

According to Figure 2b and simple geometric relations, it can be found that the E-
antitet cell produces a turning angle θ when the elliptical nodal ring is compressed in the
x- and y-directions, and the length of the ligament being rotated into the nodal ring is the
elongation ∆lx. Thus, the strain along the x- and y-directions can be expressed as:

εx =
∆lx

lx
=

2(a− t/2)θ
lx

(1)

εy =
∆ly
ly

=
2(b− t/2)θ

ly
(2)
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While the ligament bending caused by node rotation is considered as the dominant
deformation, the Poisson’s ratios vxy and vyx can be calculated from the definition [55]:

vxy = −
εy

εx
= − (b− t/2)lx

(a− t/2)ly
(3)

vyx = − εx

εy
= −

(a− t/2)ly
(b− t/2)lx

(4)

where:
a− t/2
b− t/2

> 1 (5)

which means:

−
ly
lx

> −
(a− t/2)ly
(b− t/2)lx

(6)

while the Poisson’s ratios of antitet are [55]:

vxy = −
εy

εx
= − lx

ly
(7)

vyx = − εx

εy
= −

ly
lx

(8)

Chiral honeycomb structures usually use the energy approach to obtain the Young’s
modulus of their structures. According to the principle of energy conservation, the strain
energy caused by the strain εi in i-direction is equal to the total of the energy stored in each
bending ligament in the unit volume of the cell (Wribi), which means:

U =
1
2

Eiε
2
i =

8
V

Wribi =
4
V

Wribx +
4
V

Wriby (9)

where Ei and V (V = 4lxlyd) are the Young’s modulus and volume respectively representing
the i-direction occupied by the cell, while Wribi is the energy stored in the ligament in the i-
direction. It is worth noting that since the ligament and the elliptical node ring have overlap,
and the ligament in the overlap part cannot store energy, we use the length of the effective
ligament to calculate it. By establishing a simple coordinate system in Figure 2a, we can find
the intersection point of the inner part of any ligament with the outer part of the elliptical
node ring and calculate its coordinate values as y1 = a− t and x1 = b

a

√
2at− t2 according

to the elliptic equation. Then we can obtain the effective ligament lengths (lex and ley)
calculated as:

lex = lx − 2
b
a

√
2at− t2 (10)

ley = ly − 2
a
b

√
2bt− t2 (11)

According to the classical beam theory, two equal and opposite moments M acting at
the ends of the ligament can cause the ligament to turn at the end points, which means the
same as the turning angle θ generated by the node ring. Therefore, the strain energy of the
beam can be expressed as:

Wribi = 2
∫ θ

0
Mdθ (12)

The angle at which the elliptical node ring turns through is obtained from the deflection
equation of the beam as:

θ = Mlei/2Es I (13)
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where Es and I (I = dt3/12) are the Young’s modulus and the moment of inertia of
the ligament respectively representing the base material. Substituting Equation (12) into
Equation (11), a new expression for Wribi can be obtained as:

Wribi =
Esdt3θ2

6lei
(14)

When small strains εx and εy are applied to the cell, two new energy expressions are
obtained by substituting Equations (1), (2) and (14) into Equation (9):

U =
1
2

Exε2
x =

Esdt3ε2
xl2

x

24lex(a− t/2)2lxlyd
+

Esdt3ε2
xl2

x

24ley(a− t/2)2lxlyd
(15)

U =
1
2

Eyε2
y =

Esdt3ε2
yl2

y

24lex(b− t/2)2lxlyd
+

Esdt3ε2
yl2

y

24ley(b− t/2)2lxlyd
(16)

where Ex and Ey are Young’s modulus along the x- and y-directions of the E-antitet cell,
and Equations (15) and (16) can be rewritten as:

Ex =
Est3lx

12lex(a− t/2)2ly
+

Est3lx

12ley(a− t/2)2ly
(17)

Ey =
Est3ly

12lex(b− t/2)2lx
+

Est3ly
12ley(b− t/2)2lx

(18)

Transforming Equations (17) and (18) into dimensionless form:

Ex =
Esαaxβ2

a

12(1− βa/2)2αay

 βa

αax − 2
√

2βa − β2
a/δ

+
βb

αby − 2δ
√

2βb − β2
b

 (19)

Ey =
Esαayβ2

b

12(1− βb/2)2αax

 βa

αax − 2
√

2βa − β2
a/δ

+
βb

αby − 2δ
√

2βb − β2
b

 (20)

while the Young’s modulus of antitet is [54]:

Ex =
Est3lx

12lex(r− t/2)2ly
+

Est3lx

12ley(r− t/2)2ly
(21)

Ey =
Est3ly

12lex(r− t/2)2lx
+

Est3ly
12ley(r− t/2)2lx

(22)

where r is the radius of the node ring.
Comparing Equations (3) and (4) with Equations (7) and (8), it can be seen that,

while antitet can only adjust Poisson’s ratio by the ratio of ligaments lx and ly in x- and
y-directions, E-antitet can also achieve Poisson’s ratio regulation by changing the long
axis a and short axis b of the elliptical node ring. Therefore, E-antitet has richer Poisson’s
ratio regulation measures than antitet and can also achieve a smaller Poisson’s ratio in
specific directions. For example, E-antitet can achieve a larger shrinkage deformation in the
x-direction when it is under a small displacement in the y-direction, which indicates that
E-antitet is more effective than antitet if it is used as a buffer layer in structures or members
that need to resist impacts.

Comparing Equations (17) and (18) with Equations (21) and (22), it can be seen that,
under the same conditions, if the radius r of the node ring of antitet is the same as the long
axis a of the elliptical node ring of E-antitet, then the Young’s modulus Ey of E-antitet will
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be much higher than the Young’s modulus Ey of antitet, and the difference between the
Young’s modulus Ex of the two is not much. If the radius r of the node ring of antitet is the
same as the short axis b of the elliptical node ring of E-antitet, then the Young’s modulus
Ey of E-antitet will be much higher than the Young’s modulus Ey of antitet, but the Young’s
modulus Ex of E-antitet will be smaller than the Young’s modulus Ex of antitet. Meanwhile,
because of the existence of elliptical node rings in E-antitet, E-antitet is richer than antitet in
the regulating ability of Young’s modulus, which indicates that E-antitet has a wider range
of application as a force member in certain engineering fields than antitet.

2.3. FEM Simulations

Based on the representative volume element (RVE) method, the FEM analysis software
(COMSOL Multiphysics 6.0) was used for analysis. The parameters of the E-antitet cell were
set as follows: lx = 30.00 mm, ly = 30.00 mm, a = 10.00 mm, b = 5.00 mm, t = 3.00 mm
and d = 10.00 mm, which means δ = 2.00, αax = 3.00, αay = 3.00, αbx = 6.00, αby = 6.00,
βa = 0.30, βb = 0.60, γa = 1.00 and γb = 2.00. lex and ley can be respectively calculated
by Equations (10) and (11): lex = 22.86 mm and ley = 11.67 mm. The material is set to
polylactic acid (PLA) with Young’s modulus E = 3255.43 MPa [56]. The models were
developed using 3D structural solid hexahedral elements, and the hypothesis of small
strain was also adopted in the FEM analyses. The cross-section boundary corresponding
to the ligament lx in the x-direction is set as a symmetric boundary (free displacement),
and the boundary corresponding to the ligament ly in the y-direction is set as a symmetric
boundary (normal force F = −100 N), and at this time, the vxy and Ey of the E-antitet can
be obtained. For the vyx and Ex analysis of the E-antitet, the two boundary conditions need
to be exchanged.

Figure 3 shows the stress and displacement cloud diagrams of the E-antitet cell under
compression. The axial ligament ly always bears the larger stresses and displacements.
The Poisson’s ratios vxy and vyx and Young’s modulus Ex and Ey of the E-antitet can be
obtained from the FEM simulations either in the x-direction or y-direction.

The analytic solutions derived theoretically are compared with the numerical solutions
by FEM, as shown in Table 1. The two are relatively close, and the errors are between
9.52% and 14.29%, with the average errors of 14.29% for Poisson’s ratio and 10.36% for
Young’s modulus, and the total average errors are 12.32%. The errors may be caused by the
fact that, when the elliptical node ring is twisted to wrap the ligament, the ligament will
deflect, instead of being perfectly wound on the node ring. This will lead to a lager strain
in the numerical solutions, i.e., the magnitude of Poisson’s ratio and Young’s modulus in
the numerical solution will be smaller. It is worth noting that Poisson’s ratio and Young’s
modulus obtained from both analytical and theoretical solutions satisfy the reciprocal
relationship, i.e., Exvyx = Eyvxy, which proves the correctness of the results.

2.4. Experimental Verification

To further verify the correctness of the theoretical derivations and FEM simulations,
a 3 × 3 structured E-antitet sample with PLA as the base material was fabricated using
a CREALITY 3D printer (Model: CR-6 max) with the fused deposition modeling (FDM)
process. The parameters of the 3D printer setting are shown in Table A1 in Appendix A. The
parameters of this sample are: lx = 30.00 mm, ly = 30.00 mm, a = 10.00 mm, b = 5.00 mm,
t = 3.00 mm and d = 150.00 mm, which means δ = 2.00, αax = 3.00, αay = 3.00, αbx = 6.00,
αby = 6.00, βa = 0.30, βb = 0.60, γa = 15.00 and γb = 30.00. The 3 × 3 structured
E-antitet samples were placed on the SANYU microcomputer electro-hydraulic servo
pressure test machine (Model: HYE-300B) for in-plane Poisson’s ratio and Young’s modulus
measurements (20 mm× 20 mm× 5 mm steel plates were placed on the top and bottom
surfaces of the sample in contact with the pressure test machine), as shown in Figure 4.
All in-plane compression experiments were performed at a constant displacement rate of
0.5 mm/min and no more than 3% strain. The horizontal displacements were measured by
a SHSIWI digital multimeter (Model: CS-5311F) placed on one side. Finally, the theoretical
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derivations, FEM simulations and experimental results of Poisson’s ratio vyx for the 3 × 3
structured E-antitet sample are −2.43, −2.08 and −2.48 ± 0.01, respectively, which are
shown in Table 2. The error between the experimental results and the theoretical derivations
is only 2.10%.
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Figure 3 shows the stress and displacement cloud diagrams of the E-antitet cell under 
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Table 1. Comparison of the results of theoretical derivations and FEM simulations.

Theory FEM Error

vxy −0.41 −0.35 14.29%
vyx −2.43 −2.08 14.28%

Ex (MPa ) 13.12 11.65 11.20%
Ey (MPa ) 77.40 70.03 9.52%

The experimental verification of Young’s modulus differs from the theoretical deriva-
tions and FEM simulations due to the fact that the x-direction ligaments lx on both sides of
the edges of the 3 × 3 structured E-antitet sample are not constrained, which will lead to a
decrease in Young’s modulus of the 3 × 3 structured E-antitet sample; therefore, we need
to make modifications to Equations (17) and (18) in the analytical solutions obtained from
the theoretical derivations of Young’s modulus of E-antitet:

Ex(m×n) = n(m− 1)
[

Est3lx
12lex(a−t/2)2ly

+ Est3lx
12ley(a−t/2)2ly

]
+n Est3lx

12ley(a−t/2)2ly

(23)
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Ey(m×n) = m(n− 1)
[

Est3ly
12lex(b−t/2)2lx

+
Est3ly

12ley(b−t/2)2lx

]
+m Est3ly

12lex(b−t/2)2lx

(24)

where m and n, respectively, are the number of rows and columns of the E-antitet sample.
We can see from Equations (23) and (24) that they are the same as Equations (17) and (18)
when the number of rows and columns of E-antitet sample tends to infinity, which means:

lim
n,m→∞

Ex(m×n) = Ex (25)

lim
n,m→∞

Ey(m×n) = Ey (26)
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It can be seen that the theoretical derivations of Poisson’s ratio 𝑣௬௫ are closer to the 
experimental results, because the 𝑥-direction ligaments 𝑙௫ on both sides of the edge of 
the 3 × 3 structural E-antitet sample are not constrained in the experiment, and the cross 
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However, the theoretical derivations and experiments of Young’s modulus 𝐸௬ of 3 × 3 
structured E-antitet sample have some errors, which may be caused by the FDM technique 
and the experimental conditions. Firstly, even if we set the filling rate of PLA plastic to 
100%, there will be many small holes inside the sample, especially when printing a larger 
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Table 2. Comparison of the results of theoretical derivations, FEM simulations and experiments.

Theory FEM Experiment

vyx −2.43 −2.08 −2.48 ± 0.01
Ey (MPa) 68.68 67.66 58.16 ± 0.1

The theoretical derivations, FEM simulations and experimental results of Young’s
modulus Ey for the 3 × 3 structural E-antitet sample are also shown in Table 2. They
are 68.68 MPa, 67.66 MPa and 58.16 ± 0.1 MPa, respectively. The errors between FEM
simulations and theoretical derivations, experimental and theoretical derivations, and
experimental and FEM simulations are 1.49%, 15.31% and 14.03%, respectively.

It can be seen that the theoretical derivations of Poisson’s ratio vyx are closer to the
experimental results, because the x-direction ligaments lx on both sides of the edge of
the 3 × 3 structural E-antitet sample are not constrained in the experiment, and the cross
sections of the ligaments lx in the x-direction on both sides of the edge are free, and they will
rotate with the elliptical node ring without deflection when deformation occurs. However,
the theoretical derivations and experiments of Young’s modulus Ey of 3 × 3 structured
E-antitet sample have some errors, which may be caused by the FDM technique and the
experimental conditions. Firstly, even if we set the filling rate of PLA plastic to 100%, there
will be many small holes inside the sample, especially when printing a larger size sample,
which will make the 3 × 3 structured E-antitet sample of the overall Young’s modulus
reduced. Second, the SANYU microcomputer electro-hydraulic servo pressure test machine
is a large-range pressure machine, which will provide a large pressure. Generally, the
experiments verified the correctness of the theoretical derivations and FEM simulations of
the E-antitet Poisson’s ratio vyx and Young’s modulus Ey.
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3. Parameters Analysis of E-Antitet

Because of the large number of parameters affecting the in-plane mechanical prop-
erties of the E-antitet, it is convenient to choose a basis cell and define its parameters as
a = 10.00, b = 5.00, lx = 30.00, ly = 30.00, t = 2.50 and d = 10.00, which means δ = 2.00,
αax = 1/2αbx = 3.00, αay = 1/2αby = 3.00, βa = 1/2βb = 0.25 and γa = 1/2γb = 1.00.
In addition, two special antitet basis cells are introduced: antitet-1 basis cell has a node
ring radius of r = 5, and antitet-2 has a node ring radius of r = 10, and the rest of the
structural parameters are the same as those of the E- antitet basis cell. At this time, we
have δ = 1, αrx = αax = αbx = lx/r, αry = αay = αby = ly/r, βr = βa = βb = t/r and
γr = γa = γb = d/r. This means that the other parameters of antitet-1 are twice as large as
those of antitet-2 except for δ, and increasing the long axis of antitet-1 or decreasing the
short axis of antitet-2 will result in E-antitet basis cell.

3.1. Effect of Different δ on Poisson’s Ratio and Young’s Modulus

We first discuss the effect on the E-antitet when adjusting the δ parameter. Figure 5a,b
respectively show the trend of Poisson’s ratio when changing from antitet-1 and antitet-2
base cells to E-antitet base cell, and the detailed results are listed in Table A2 in Appendix B.
It can be seen that the Poisson’s ratios of both antitet-1 and antitet-2 are close to −1. When
increasing the long axis of antitet-1, which means increasing δ, vxy and vyx respectively
decrease and increase; meanwhile, when decreasing the short axis of antitet-2, which means
increasing δ, the Poisson’s ratio changes in the same way as in Figure 5a. This is due
to the Poisson’s ratio of E-antitet mainly related to δ = a/b when the ligament length is
constant. When δ = 2, both antitet-1 and antitet-2 change to base cell and greatly increase
the adjustment range of the Poisson’s ratio.
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In particular, 𝐸௬ can be significantly improved, giving it a higher intensity in the 𝑦-di-
rection. 

Figure 5. Trends of Poisson’s ratio and Young’s modulus for E-antitet at different δ: Analytical and
numerical solutions of Poisson’s ratio for (a) antitet-1 and (b) antitet-2 to E-antitet base cell; analytical
and numerical solutions of Young’s modulus for (c) antitet-1 and (d) antitet-2 to E-antitet base cell.
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On the other hand, Figure 5c,d respectively show the trend of Young’s modulus when
changing from antitet-1 and antitet-2 base cells to E-antitet base cell, and the detailed results
are also shown in Table A2. It can be seen that, when increasing the long axis of antitet-1, Ey
will gradually increase with the increasing of δ, but Ex will gradually decrease; if decreasing
the short axis of antitet-2, Ey will increase rapidly with the increasing of δ, while Ex will
remain almost constant.

3.2. Effect of Different αx and αy on Poisson’s Ratio and Young’s Modulus

The ligament length also has a large effect on the Poisson’s ratio and Young’s modulus
of the chiral honeycomb structures, so this section mainly discusses the adjustment effect of
ligament length. In view of the orthogonal anisotropic character of E-antitet, it is necessary
to discuss the effects of changes in lx and ly on the mechanical properties individually. For
comparison’s convenience, the dimensional relationships of the E-antitet, antitet-1 and
antitet-2 basis cells can be defined as αx = αE−antitet

ax = 1/2αE−antitet
bx = 1/2αantitet−1

rx =

αantitet−2
rx as uniform variables when changing lx, where the superscript indicates the cell

type, as follows: Figure 6a,b respectively show the effects of E-antitet, antitet-1 and antitet-2
on Poisson’s ratio and Young’s modulus with different αx, and the detailed results are
shown in Table A3. It can be seen that, with increasing αx, both E-antitet and antitet show a
slow increase in vyx and Ex, while both vxy and Ey show a decrease. Due to the change of
lx and ly, antitet-1 and antitet-2 also exhibit certain orthogonal anisotropy characteristics,
but E-antitet can achieve a larger range of adjustment. In particular, Ey can be significantly
improved, giving it a higher intensity in the y-direction.
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Figure 6. Trends of Poisson’s ratio and Young’s modulus of E-antitet at different αx: Comparison of
the results of analytical and numercal solutions of E-antitet with antitet-1 and antitet-2. (a) Poisson’s
ratio and (b) Young’s modulus.

Here, we use the same definition of αy = αE−antitet
ay = 1/2αE−antitet

by = 1/2αantitet−1
ry =

αantitet−2
ry . Figure 7a,b respectively show the effect of different αy on the Poisson’s ratio and

Young’s modulus for E-antitet, antitet-1 and antitet-2, and their detailed results are shown
in Table A4. It can be seen that vxy and vyx of E-antitet, antitet-1 and antitet-2 increase and
decrease, respectively, when αy increases, which means opposite to the trend of αx. For
Young’s modulus, antitet-1 and antitet-2 also show the opposite trend to αx, which means
that Ex and Ey decrease and increase, respectively, when αy increases, but Young’s modulus
in both directions of E-antitet shows a decreasing trend. It is worth noting that the error in
the theoretical derivations and FEM simulations of the Young’s modulus Ey of E-antitet
is larger when αy = 2.60, which means the shorter ligament length ly in the y-direction
results in a shorter effective ligament length ley when the classical beam assumptions in the
theoretical derivations are no longer applicable, and thus, a larger error occurs.
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3.3. Effect of Different β and γ on Poisson’s Ratio and Young’s Modulus

The width of the ligament is also another factor that affects the Poisson’s ratio and
Young’s modulus of the chiral honeycomb structures. For the selected E-antitet, antitet-1
and antitet-2 cells, we have β = βE−antitet

a = 1/2βE−antitet
b = 1/2βantitet−1

r = βantitet−2
r .

Figure 8a,b respectively show the effect of different β on the Poisson’s ratio and Young’s
modulus of E-antitet, antitet-1 and antitet-2, and their detailed results are shown in Table A5.
It can be seen that the variation of β has a small effect on Poisson’s ratio, but the error in the
theoretical derivations and FEM simulations of Poisson’s ratio becomes larger and larger as
β increases, which means the same reason we analyzed before in Section 2.3. On the other
hand, both Ex and Ey of E-antitet, antitet-1 and antitet-2 will increase with the increase in β,
and Ey of E-antitet is significantly larger than Ey of antitet-1 and antitet-2. Similarly, the
errors in the theoretical derivations and FEM simulations of Young’s modulus increase
with increasing β. This is also because the classical beam theory assumed in the theoretical
derivations is not applicable due to the increasing width of the ligament.
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Using the same definition of γ = γE−antitet
a = 1/2γE−antitet

b = 1/2γantitet−1
r =

γantitet−2
r , Figure 9a,b respectively show the effect of different γ on the Poisson’s ratio

and Young’s modulus of E-antitet, antitet-1 and antitet-2; their detailed results are shown
in Table A6. It can be seen that the variation of γa and γb has no significant change on the
Poisson’s ratio and Young’s modulus of E-antitet, antitet-1 and antitet-2. In fact, we have
not found that the thickness of E-antitet in the z-axis direction affects the Poisson’s ratio
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and Young’s modulus in our theoretical derivations, so we speculate that the variation of
thickness does not change the Poisson’s ratio and Young’s modulus of E-antitet, which also
provides the theoretical basis for our experiments.
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4. Conclusions

In this paper, we designed and gave the analytical solutions of in-plane Poisson’s
ratio and Young’s modulus of E-antitet by theoretical derivations and verified them by
numerical solutions of FEM simulations and experimental tests of 3D printed samples.
The results verified the correctness of this theoretical model and numerical simulations.
The trends of Poisson’s ratio and Young’s modulus of E-antitet in different directions are
discussed by adjusting five different parameters, and comparisons with the conventional
antitet structures are given. The results show that E-antitet can achieve a smaller Poisson’s
ratio and larger Young’s modulus in a certain direction, and the range of the difference
between Poisson’s ratio and Young’s modulus in that direction depends on the radius
of the node ring of the antitet. A wide range of adjustment of the overall Poisson’s ratio
and Young’s modulus can be achieved by adjusting the long and short axes a and b of the
elliptical and the ligament lengths lx and ly in both directions.

It should be noted that the in-plane mechanical properties of E-antitet are studied
under the conditions of small strain and can only be used for the linear elasticity. The
in-plane mechanical properties at large strains still need further study in future work. In
addition, although E-antitet proposed in this paper shows better properties than antitet,
it still does not completely solve the disadvantage of the weak load-bearing capacity of
honeycomb structures. We hope that this problem can be completely improved in the
future research.
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Appendix A. The Parameter Setting Conditions of the 3D Printer

Table A1. 3D printer settings.

Parameters Values

Layer Height 0.10 mm
Wall Thickness 1.00 mm

Wall Line Count 3.00
Fill Gaps Between Walls Everywhere

Infill Density 100%
Infill Line Distance 10.00 mm

Printing Temperature 200 ◦C
Build Plate Temperature 60 ◦C

Print Speed 80.00 mm/s
Infill Line Distance 80.00 mm/s

Appendix B. Detailed Results of Poisson’s Ratio and Young’s Modulus of E-Antitet at
Different Parameters

Table A2. Detailed results of Poisson’s ratio and Young’s modulus of E-antitet at different δ.

Type δ
Theory FEM

vxy vyx Ex (MPa) Ey (MPa) vxy vyx Ex (MPa) Ey (MPa)

antitet-1←
E-antitet→

antitet-2

1 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.28 29.28
1.2 −0.79 1.27 18.17 29.15 −0.72 −1.13 19.03 30.22
1.4 −0.65 −1.53 12.91 30.36 −0.60 −1.37 13.40 31.27
1.6 −0.56 −1.8 9.85 31.93 −0.51 −1.62 9.99 32.47
1.8 −0.48 −2.07 7.95 33.97 −0.45 −1.86 7.83 33.94
2 −0.43 −2.33 6.73 36.66 −0.39 −2.09 6.35 35.64

1.67 −0.54 −1.84 6.53 22.17 −0.50 −1.69 6.44 22.41
1.43 −0.66 −1.52 6.44 14.91 −0.61 −1.41 6.53 15.39
1.25 −0.77 −1.30 6.43 10.80 −0.72 −1.21 6.60 11.23
1.11 −0.89 −1.13 6.48 8.27 −0.83 −1.06 6.66 8.54

1 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.76 6.76

Table A3. Detailed results of Poisson’s ratio and Young’s modulus of E-antitet at different αx.

Type αx
Theory FEM

vxy vyx Ex (MPa) Ey (MPa) vxy vyx Ex (MPa) Ey (MPa)

antitet-1

2.6 −0.87 −1.15 27.31 36.36 −0.77 −1.01 28.14 36.95
2.8 −0.93 −1.07 27.73 31.83 −0.83 −0.95 28.64 32.66
3 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.28 29.28

3.2 −1.07 −0.94 28.84 25.35 −0.95 −0.84 29.96 26.49
3.4 −1.13 −0.88 29.49 22.96 −1.01 −0.80 30.64 24.13

E-antitet

2.6 −0.37 −2.69 6.26 45.37 −0.34 −2.41 5.86 43.97
2.8 −0.40 −2.50 6.49 40.57 −0.36 −2.24 6.11 39.43
3 −0.43 −2.33 6.73 36.66 −0.39 −2.09 6.35 35.64

3.2 −0.46 −2.19 6.98 33.42 −0.42 −1.97 6.60 32.50
3.4 −0.49 −2.06 7.24 30.69 −0.45 −1.86 6.84 29.82

antitet-2

2.6 −0.87 −1.15 6.62 8.81 −0.80 −1.08 6.53 8.80
2.8 −0.93 −1.07 6.58 7.55 −0.87 −1.00 6.64 7.66
3 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.76 6.76

3.2 −1.07 −0.94 6.67 5.86 −1.00 −0.88 6.90 6.03
3.4 −1.13 −0.88 6.76 5.26 −1.07 −0.83 7.06 5.46
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Table A4. Detailed results of Poisson’s ratio and Young’s modulus of E-antitet at different αy.

Type αy
Theory FEM

vxy vyx Ex (MPa) Ey (MPa) vxy vyx Ex (MPa) Ey (MPa)

antitet-1

2.6 −1.15 −0.87 36.36 27.31 −1.01 −0.77 36.95 28.14
2.8 −1.07 −0.93 31.83 27.73 −0.95 −0.83 32.66 28.64
3 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.28 29.28

3.2 −0.94 −1.07 25.35 28.84 −0.84 −0.95 26.49 29.96
3.4 −0.88 −1.13 22.96 29.49 −0.80 −1.01 24.13 30.64

E-antitet

2.6 −0.49 −2.02 10.09 41.27 −0.44 −1.81 8.65 37.03
2.8 −0.46 −2.18 8.09 38.37 −0.41 −1.95 7.35 36.22
3 −0.43 −2.33 6.73 36.66 −0.39 −2.09 6.35 35.64

3.2 −0.40 −2.49 5.76 35.65 −0.37 −2.24 5.58 35.42
3.4 −0.38 −2.64 5.02 35.09 −0.35 −2.38 4.97 35.45

antitet-2

2.6 −1.15 −0.87 8.81 6.62 −1.08 −0.80 8.80 6.53
2.8 −1.07 −0.93 7.55 6.58 −1.00 −0.87 7.66 6.64
3 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.76 6.76

3.2 −0.94 −1.07 5.86 6.67 −0.88 −1.00 6.03 6.90
3.4 −0.88 −1.13 5.26 6.76 −0.83 −1.07 5.46 7.06

Table A5. Detailed results of Poisson’s ratio and Young’s modulus of E-antitet at different β.

Type β
Theory FEM

vxy vyx Ex (MPa) Ey (MPa) vxy vyx Ex (MPa) Ey (MPa)

antitet-1

0.19 −1.00 −1.00 10.24 10.24 −0.94 −0.94 11.30 11.30
0.22 −1.00 −1.00 17.49 17.49 −0.92 −0.92 18.71 18.71
0.25 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.28 29.28
0.28 −1.00 −1.00 43.72 43.72 −0.86 −0.86 43.71 43.71
0.31 −1.00 −1.00 65.45 65.45 −0.83 −0.83 62.58 62.58

E-antitet

0.19 −0.45 −2.23 2.53 12.63 −0.45 −2.06 2.57 13.23
0.22 −0.44 −2.28 4.25 22.14 −0.42 −2.09 4.17 22.39
0.25 −0.43 −2.33 6.73 36.66 −0.39 −2.09 6.35 35.64
0.28 −0.42 −2.39 10.18 58.09 −0.37 −2.09 9.24 54.10
0.31 −0.41 −2.45 14.81 88.87 −0.36 −2.08 13.00 78.98

antitet-2
0.19 −1.00 −1.00 2.49 2.49 −0.96 −0.96 2.65 2.65
0.22 −1.00 −1.00 4.17 4.17 −0.95 −0.95 4.37 4.37
0.25 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.76 6.76
0.28 −1.00 −1.00 9.99 9.99 −0.92 −0.92 10.07 10.07
0.31 −1.00 −1.00 14.58 14.58 −0.91 −0.91 14.33 14.33

Table A6. Detailed results of Poisson’s ratio and Young’s modulus of E-antitet at different γ.

Type γ
Theory FEM

vxy vyx Ex (MPa) Ey (MPa) vxy vyx Ex (MPa) Ey (MPa)

antitet-1

0.8 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.33 29.33
0.9 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.27 29.27
1 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.28 29.28

1.1 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.26 29.26
1.2 −1.00 −1.00 28.25 28.25 −0.89 −0.89 29.36 29.36

E-antitet

0.8 −0.43 −2.33 6.73 36.66 −0.40 −2.09 6.35 35.64
0.9 −0.43 −2.33 6.73 36.66 −0.39 −2.09 6.35 35.62
1 −0.43 −2.33 6.73 36.66 −0.39 −2.09 6.35 35.64

1.1 −0.43 −2.33 6.73 36.66 −0.39 −2.10 6.36 35.66
1.2 −0.43 −2.33 6.73 36.66 −0.39 −2.10 6.36 35.68
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Table A6. Cont.

Type γ
Theory FEM

vxy vyx Ex (MPa) Ey (MPa) vxy vyx Ex (MPa) Ey (MPa)

antitet-2

0.8 −1.00 −1.00 6.60 6.60 −0.94 −0.94 6.75 6.75
0.9 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.78 6.78
1 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.76 6.76

1.1 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.78 6.78
1.2 −1.00 −1.00 6.60 6.60 −0.93 −0.93 6.79 6.79
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