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Abstract: The intrusion detection method of power industrial control systems is a crucial aspect of
assuring power security. However, traditional intrusion detection methods have two drawbacks:
first, they are mainly used for defending information systems and lack the ability to detect attacks
against power industrial control systems; and second, although machine learning-based intrusion
detection methods perform well with the default hyperparameters, optimizing the hyperparameters
can significantly improve its performance. In response to these limitations, a random forest (RF)-based
intrusion detection model for power industrial control systems is proposed. Simultaneously, this
paper proposes an improved grid search algorithm (IGSA) for optimizing the hyperparameters of the
RF intrusion detection model to improve its efficiency and effectiveness. The proposed IGSA boosts
the speed of calculation from O(nm) to O(n × m). The suggested model is evaluated based on the
public power industrial control system dataset after hyperparameter optimization. The experiment
results show that our method achieves a superior detection performance with the accuracy of 98%
and has more outstanding performance than the same type of work.

Keywords: improved grid search; intrusion detection; hyperparameter importance; random forest;
hyperparameter optimization

1. Introduction

Smart grids will rely on advanced technologies such as big data and the Internet of
Things to fulfill the increasing demand of reliable electricity [1]. Smart grids necessitate
the use of power industrial control systems and the deployment of digital communication
networks (such as Ethernet, cellular services, and satellite signals) for data acquisition and
remote control between control centers and a large number of smart grid infrastructures
(such as smart substations and photovoltaic power plants) [2]. With the increasing intercon-
nections between power industrial equipment and the Internet, malicious attacks targeting
power industrial control systems through the Internet have followed [3].

Power critical information infrastructure is always at the forefront of cyber attacks.
Attacks and sabotage actions that result in widespread power outages, severely disrupt
social and economic processes, and even jeopardize public safety have become increasingly
common in recent years [4]. In 2010, the infamous Stuxnet malware was brought into the
Iranian nuclear facility region via a USB stick and leveraged various zero-day vulnerabilities
to insert its malicious code into Siemens programmable logic controllers (PLCs), causing
centrifuges to wear out at a much higher rate. At the same time, malware falsifies sensor
data to conceal operator attacks [5]. In 2015, a malware attack on Ukraine’s power infras-
tructure resulted in a large-scale power outage. The intruder secured legitimate credentials
for remote access prior to the cyber attack. During the attack, a denial-of-service attack was
launched on the Ukrainian Electric Power Company’s website and customer service system,
preventing users from reporting incidents and prolonging the outage. KillDisk virus was
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used to delete several systems at the end of the cyber attack, delaying recovery efforts [6].
In 2016, Israel disclosed that its electrical authority had been the target of a severe cyber
attack. In this attack, the attacker sent phishing emails to the electric power bureau workers
that contained ransomware, tricking them into running malicious malware and encrypting
the necessary content on their computers, which the electric power bureau staff must pay
to unlock. Following the incident, Israeli authorities were obliged to turn down infected
computers at power plants to prevent the ransomware from spreading further over the
network and causing a larger incident [7]. This is yet another example of a cyberattack on a
power grid. This sequence of events raised the alarm for the power system’s safety. As a
result, enhancing the detection capabilities of assaults on power industrial control systems
has become a pressing problem in academics and industry.

Intrusion detection (ID) was first used in traditional information systems to detect
attacks that exploit system design faults or vulnerabilities and offer forensic evidence to
warn system administrators about network intrusions [8]. Intrusion detection has shown
to play a significant role in the world of information systems; thus, it is possible to consider
implementing it in the field of electric power industrial control systems. A power industrial
control system’s objective and structure, on the other hand, are fundamentally different
from those of a standard information system. The following are the distinct manifestations:
(1) Using real-world equipment. (2) A wide range of tools. (3) A consistent business
process. (4) The main objective is to keep the system stable. (5) Numerous proprietary
protocols exist. (6) The timing requirements are very strict. Furthermore, the power grid
industrial control system’s traffic characteristics and significance differ from those of a
conventional network environment. The differences are as follows: (1) The data are short
and frequent. (2) Network traffic is predictable. (3) The response time is drastically reduced.
(4) Data flow is always in the same direction. (5) Because the order of control information is
defined, the timing is precise [9]. As a result, typical intrusion detection technology cannot
be used directly to a power industrial control system, and associated research is limited.
Investigation of intrusion detection technologies for power grid industrial control systems
is crucial.

To address the above-mentioned problems, this paper presents an intrusion detection
approach for power industrial control systems based on hyperparameter optimization. The
main contributions are as follows:

(1) We collect performance data that captures the roc_auc score of the random forest
(RF) classifier with hyperparameter settings. We then fit an RF model to this data and use
functional ANOVA to decompose the variance of predictions into contributions due to
every single hyperparameter. The significance of RF hyperparameters is determined by the
magnitude of variance contribution.

(2) To further improve the intrusion detection model’s performance, we propose
an improved grid search that performs a local grid search for each hyperparameter in
turn, based on the importance of the RF hyperparameters. The optimal hyperparameter
combination is obtained by substituting the optimal hyperparameter value for the matching
base classifier hyperparameter value.

(3) Based on the objective, structure and characteristics of the power industrial control
system, we built an RF-based intrusion detection model, taking full advantage of the
RF algorithm’s advantages of processing high-dimensional data, fast training speed, and
good performance. To ensure that our proposed method is effective for power industrial
control system intrusion detection and simple to validate, we use publicly available power
industrial control system datasets.

The rest of this paper is organized as follows. Section 2 provides the background in
intrusion detection. Section 3 discusses our methodology when applying our experiments.
In Section 4 we describe our results and compare with similar work. Finally, we draw a
conclusion of this article in Section 5.



Appl. Sci. 2022, 12, 10456 3 of 16

2. Related Work

The use of RF as an intrusion detection algorithm in traditional network traffic intru-
sion detection is relatively mature [10–12]. For example, Cao, L. et al. proposed a parallel
ensemble learning RF intrusion detection model for the classic NSL-KDD dataset to address
the problems of over-fitting and large generalization error in the traditional decision tree
method. The proposed model had high accuracy and outperformed the decision tree
intrusion detection model [13]. The disadvantage of this article is that it only considered
one hyperparameter of the base classifier during hyperparameter optimization, which is
obviously insufficient. Gattineni, P. et al. used three intrusion detection methods to lower
the false alarm rate: support vector machine (SVM), RF, and extreme learning machine [14].
The results demonstrated that the extreme learning machine approach had the best effect,
whereas the RF method had a very low accuracy of only 52.32%. To address the issue of
insufficient detection capacity in traditional networks, Wang, Z. et al. proposed an intrusion
detection method that combined stacked autoencoders and RF, taking full advantage of the
autoencoder feature extraction capabilities as well as the RF classification and detection
capabilities [15]. With accuracy, precision, recall, and F-score all of which are 0.998, the
model beat commonly used machine learning approaches such as Naive Bayes (NB), SVM,
and Decision Tree (DT).

In the field of industrial control system intrusion detection, Anton, S.D.D. et al. used
two machine learning-based methods, namely SVM and RF, to detect attacks. Two different
datasets were used, one Modbus-based gas pipeline control traffic and one OPC UA-based
batch processing traffic [16]. This article compared the performance of the SVM and RF
methods on the two datasets, and the results demonstrated that the RF method is more
accurate. Zhang, F. et al. analyzed data from a real-time industrial control system test
environment and evaluated four data-driven detection models: k-nearest neighbor, bagging
technique, DT, and RF, in order to deal with the increasing number of network attacks on
industrial control systems [5]. All had a low false negative and false positive rate, according
to the results.

In the topic of power industrial control systems, there are just a few related works on
intrusion detection. Wang et al. first created a power system attack model and generated a
power system network intrusion dataset using a combination of Gaussian clustering model.
Then they used the RF method to build an intrusion detection model [17]. The model had a
high accuracy and a low false positive rate, according to the dataset test results. The problem
is that the assessment indicators are incomplete, as key measures like recall and F1-score
are absent. Furthermore, the dataset used are not public, making it hard to evaluate the
performance of their intrusion detection method. Morris T. et al. investigated the efficacy of
several machine learning methods applied to intrusion detection of power industrial control
systems to overcome the problem of high artificial judgment uncertainty induced by more
complicated network attacks on power systems [18]. Experiments showed that deploying
machine learning methods to enhance existing power system security architectures has
practical implications. The problem is that the RF intrusion detection approach employed
in this study had a low evaluation index. Binary classification, for example, has an accuracy
rate of only 80%, which is insufficient in a power system with exceptionally high stability
requirements. Our study and Morris’ work both use the same dataset and use the RF
method, therefore we compare the performance of our intrusion detection method with
Morris’ method.

To summarize, machine learning-related technologies for traditional network intrusion
detection are relatively mature. Whereas, related research works in the field of industrial
control intrusion detection, particularly in the area of power grid industrial control system
intrusion detection, are extremely limited, with numerous research gaps. Specifically,
they are incapable of detecting attacks on power industrial control systems; therefore, the
performance of related intrusion detection technologies should be improved. Furthermore,
most studies collect data using their own simulation platforms, which are not open for other
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researchers to evaluate. Thus, peer-reviewed intrusion detection methods’ performance
cannot be compared to their work.

3. Methodology

The flow chart of the proposed intrusion detection method based on hyperparameter
optimization is shown in Figure 1.
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Figure 1. The overview of the proposed method.

The method consists of five steps:

1. Import the power industrial control system’s original dataset, which is then prepro-
cessed and divided into training and validation sets using 5-fold cross-validation.

2. Create a hyperparameter configuration space, build RF classifiers with the hyperpa-
rameter combinations in the space, train the classifier with the training set, and then
classify the test set to obtain the classifiers’ performance.

3. Fit a RF regression model with the combination of hyperparameters in the configuration
space as a feature and the performance of the corresponding classifier as a label and use
functional variance analysis to obtain the importance ranking of hyperparameters.

4. Based on the importance of hyperparameters, apply grid search optimization to each
hyperparameter in turn, and the optimal hyperparameter replaces the corresponding
hyperparameter value in the base classifier.

5. Obtain the best hyperparameter combination, build the best RF classifier, and validate
its classification effect using the test set.

3.1. Random Forest

The RF algorithm is a decision tree-based ensemble learning algorithm [19]. RF utilizes
the advantages of the decision tree algorithm’s high speed and accuracy when dealing with
classification problems by creating several decision tree models. Multiple decision trees
have no association, and errors are mutually minimized, resulting in more accurate and
robust classification findings. Figure 2 depicts the RF model employed in this study.

The first step in model construction is to choose a sampling method for generating a
sub-dataset. Whether to use bootstrap sampling is the first hyperparameter of RF, and the
randomness of RF data is reflected here. The second step in model construction is to con-
struct a decision tree, with the number of decision trees being the second hyperparameter.
There are four hyperparameters in the decision tree: the maximum depth of the decision
tree, the splitting standard, the minimum number of samples for internal node splitting,
and the minimum number of samples for leaf nodes. The characteristics of each decision
tree are picked at random, and the random forest’s seventh hyperparameter is the maxi-
mum number of selections. Because seven hyperparameters impact the performance of the
RF classifier, this study optimizes the combination of these seven hyperparameters [20].
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Following the construction of the RF model, the test set samples are input, and each
decision tree in the forest judged separately, with the classification results of the samples
output. Finally, the results of all decision trees are combined using the voting mechanism,
and the class with the most votes is the class to which the sample belongs [21].

3.2. Functional Analysis of Variance (Functional ANOVA)

The functional ANOVA framework for evaluating the importance of hyperparameters
was first proposed by Hutter et al. [22]. Since we will use this technique to obtain the
importance of hyperparameters, we now go over it in more depth.

We first introduce notation. Assuming that RF classification has n hyperparameters
with domains Θ1, . . . , Θn and configuration space Θ = Θ1 × · · · ×Θn. Let N = {1, . . . , n}
be the set of all hyperparameters of RF. An instantiation of RF is a vector θ = 〈θ1, . . . , θn〉
with θi ∈ Θi. A partial example of RF is a vector θU =

〈
θi, . . . , θj

〉
with a subset U ⊆ N of

the hyperparameters.
Functional ANOVA decomposes a function ŷ : Θ1 × · · · ×Θn → R into additive com-

ponents that only depend on the subsets of the hyperparameters N:

ŷ(θ) = ∑
U⊆N

f̂U(θU) (1)

The components f̂U(θU) are defined as:

f̂U(θU) =

{
f̂∅ if U = ∅
âU(θU)−∑ W(U f̂W(θW) otherwise

(2)

where âU(θU) means the average performance of all complete instantiations θ that agree
with θU in the instantiations of hyperparameters U. The unary functions f̂{j}(θ{j}), namely
main effects, capture the effect of varying hyperparameter j [23].

We construct an RF regression prediction model, the hyperparameter configuration
space is utilized as a feature, and the performance (e.g., recall or roc_auc score) of the
RF classifier is used as a label. It is equally important in the power system to correctly
discriminate between normal and attack samples. The area under curve (AUC) metric,
which is defined as the roc_auc score in this paper, is chosen as the hyperparameter
assessment criterion because it considers the classifier’s capacity to classify both positive
and negative data. We then take advantage of functional ANOVA to decompose the
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variance of each ŷ into contributions due to each subset of hyperparameters, as indicated
by the formula:

V = ∑
U⊂N

VU , with VU =
1
‖ΘU‖

∫
f̂U(θU)

2dθU (3)

where 1
‖ΘU‖

is the probability density of the uniform distribution across ΘU .
Functional ANOVA thus provides us with the relative variance contributions of each

individual hyperparameter.

3.3. Improved Grid Search

This paper proposes an improved grid search algorithm (IGSA) that builds on the tradi-
tional grid search algorithm and addresses the problem of the grid search computing time.

The principle of the grid search algorithm is shown in Figure 3. First, the Cartesian
product is applied to the value set of each hyperparameter to obtain the hyperparameter
configuration space, which contains all possible hyperparameter combinations (the box
on the left side of the figure). The grid search algorithm then trains a model for every
hyperparameter combination in configuration space. The experiment that yields the best
validation set error is then chosen as having found the best hyperparameters, as shown in
the box on the right side of the figure [24].
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The problem is that grid search has a significant disadvantage. Grid search computa-
tion time grows exponentially O(nm) with n hyperparameters, each of which can take m
values. This wastes a lot of computational resources, and the processing time is excruciating.
To solve this problem, this research provides a IGSA method.

Figure 4 depicts the principle of IGSA. The significance of hyperparameters is first
determined via functional ANOVA, and the results are recorded as Θ1, Θ2, . . . , Θn. Secondly,
a single-parameter optimization algorithm is employed to perform grid search optimization
on particular hyperparameters in order of importance, then the hyperparameter value of
the base classifier is replaced with the best single-hyperparameter value obtained through
optimization. The optimal hyperparameter combination is generated by acquiring n ideal
hyperparameter values after n times of the grid search. This experiment’s base classifier is
the RF classifier defaulted in sklearn.

The single-parameter optimization algorithm is shown in Algorithm 1, the input is a
single hyperparameter Θi with m values. The output is a single optimal hyperparameter.

The performance of the classifier is validated using k-fold cross-validation in Algo-
rithm 1. For k-fold cross-validation, all datasets are divided into k parts, with one serving
as the test set without repetition and the remaining k-1 as the training set for training. Then
computation of the model’s score on the test set scores are then averaged k times to obtain
the final score. We use 5-fold cross-validation in this experiment.
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Algorithm 1. Improved grid search in parameter space for RF with finer tuning.

input: Θi, j = [1, 2, . . . , m]
best_result = 0
best_para = default value in base RF classifier
for θj in Θi do:
Train RF with θj on Training Set
Evaluate RF classification on ValidationSet
if result > best_result
best_result = result
best_para = θj
end if
end for
return best_para

For n hyperparameters with m values, the calculation speed of the optimal hyperpa-
rameter search is reduced to O(n×m) through improvement.

4. Experiments and Result Analysis

The experiments described in this paper were carried out on Google Colab Intel(R)
Xeon(R) CPU @ 2.20 GHz with 12 GB RAM, using Python’s sklearn library (version 1.0.2)
to construct the RF models for this paper.

4.1. The Power Industrial Control System Dataset

In Figure 5 we show the power system framework used in this evaluation [25], a
complex mix of supervisory control systems interacting with various smart electronic
devices complemented by network monitoring devices such as Snort and Syslog systems.
The power system components are as follows: G1, G2 are two generators, R1–R4 are four
intelligent electronic devices (IEDs) that can open or close circuit breakers, and BR1-BR4 are
four circuit breakers. Each IED automatically controls a circuit breaker: R1 controls BR1, R
controls BR2, and so on. When a fault is detected, the IED uses a distance protection scheme
that trips the circuit breaker; however, because the device lacks abnormal monitoring
capabilities, it is impossible to tell whether the fault is real or fake. The operator can also
manually trip circuit breakers BR1-BR4 with the IED. The manual override is used when
performing maintenance on the lines or other system components.

The five types of power system status are as follows: (1) malfunctioning short circuit
(2) maintaining the line (3) remote trip command injection (attack) (4) changes to the relay
settings (attack) (5) injection of data (attack).
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The dataset has a total of 128 features, including electrical physical quantity features
and network traffic features [26]. The phasor measurement unit measures the electrical
physical quantity characteristics (PMU). The system employs four PMUs, each measuring
29 electrical characteristics, for a total of 116 electrical characteristics in the dataset. The
index of each column is in the form of “R#-Signal Reference” that indicates a type of
measurement from a PMU specified by “R#”. Each feature’s name and description are
listed in Table 1. For example, R1-PA1: VH is the phase angle of the phase A voltage as
measured by PMU R1. There are 12 features after the PMU measurement data feature,
which are the control panel log alerts, Snort alerts, and relay status (relays and PMU
integrated) corresponding to the 4 IEDs. The last column is the label, which represents
whether a sample is normal or under attack.

Table 1. Dataset features and descriptions.

Feature Description

PA1:VH-PA3:VH Phase A-C Voltage Phase Angle
Phase A-C Voltage Phase Magnitude

Phase A-C Current Phase Angle
PM1:V-PM3:V
PA4:IH-PA6:IH

PM4:I-PM6:I Phase A-C Current Phase Magnitude
PA7:VH-PA9:VH Pos.-Neg.—Zero Voltage Phase Angle

PM7:V-PM9:V Pos.-Neg.—Zero Voltage Phase Magnitude
PA10:VH-PA12:VH Pos.-Neg.—Zero Current Phase Angle

PM10:V-PM12:V Pos.-Neg.—Zero Current Phase Magnitude
F Frequency for relays

DF Appearance Impedance for relays
PA:Z Appearance Impedance for relays

PA:ZH Appearance Impedance Angle for relays
S Status Flag for relays

control_panel_log control panel remote trip status
relay_log relay status for relay1–4
snort_log snort alert status for relay1–4

4.2. Evaluation Metrics

The confusion matrix is required to calculate the evaluation index. The confusion
matrix is a table that stores the actual classification results in the dataset as well as the
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prediction results of the classification model in machine learning as a matrix. Table 2 depicts
the confusion matrix proposed in this paper.

Table 2. Confusion matrix.

Predicted Value

Attack (A) Natural (N)

Actual Value
Attack (A) TA (true attack) FN (false natural)

Natural (N) FA (false attack) TN (true natural)

In Table 2, TA represents the model’s correct detection of attack records, while FA
represents the model’s misinterpretation of normal system operations as an attack on the
system. TN, on the other hand, is a normal record of the model’s correct judgment, whereas
FN is a misjudgment that the system is under attack during normal system operations.
The confusion matrix can be used to assess the proposed model’s performance. The goal
of this experiment is to reduce the number of RF classifier’s FN and FA. We assess our
intrusion detection model against this goal using four commonly used effectiveness metrics:
precision, recall, accuracy, and F1-score.

The above indicators’ calculation formulas can be expressed as:

Accuracy =
TA + TN

TA + TN + FA + FN
(4)

Precision =
TA

TA + FA
(5)

Recall =
TA

TA + FN
(6)

F1 = 2× precision× recall
precision + recall

=
2TA

2TA + FA + FN
(7)

4.3. Data Preprocessing

The line impedance in the power industrial control system dataset has inf values,
which the intrusion detection model cannot identify. As a result, the inf value is set to 8000,
a large enough value to replace the inf value.

The features in the power industrial control system dataset have different dimensions
and dimensional units. If the order of magnitude difference between the features in
the dataset is too large, the information gain provided by different features cannot be
compared. A normalization procedure is essential for complete comparative examination,
which resolves data comparability. In this work, we have used min-max scaling for data
normalization, which maps the value into the range [0, 1] [27]. The min-max normalization
transformation function is:

x′ =
x−min(x)

max(x)−min(x)
(8)

Since the data label is a string, the label needs to be numericized, the attack corresponds
to 1, and the normal corresponds to 0.

4.4. Determination of Hyperparameter Importance

The significance of hyperparameters is determined by decomposing the contribution
of a single hyperparameter to the variance in the RF regression model using functional
ANOVA. The hyperparameter becomes more significant as the contribution increases.
The names, ranges, step sizes, and descriptions of the hyperparameters used in the RF
regression model are listed in Table 3.

The ranking of the variance contribution of hyperparameters obtained through func-
tional variance analysis is shown in Table 4.
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Table 3. Hyperparameter configuration.

Hyperparameter Range Step Description

n_estimators [10, 510] 50 The number of trees in the forest.
max_depth [1, 300] 30 The maximum depth of the tree.
min_samples_split [2, 18] 4 The minimal number of data points required to split an internal node.
min_samples_leaf [1, 21] 4 The minimal number of data points required in order to create a leaf.
max_features [8, 128] 10 Number of random features sampled per node.
bootstrap {true, false} \ Whether to train in bootstrap samples or on the full train set.
criterion {gini, entropy} \ Function to determine the quality of a possible split.

Table 4. Rank of The Hyperparameter Importance.

Rank Hyperparameter Importance

1 max_depth 0.7843
2 min_samples_leaf 0.0629
3 min_samples_split 0.0063
4 criterion 0.0044
5 n_estimators 0.0020
6 bootstrap 0.0018
7 max_features 0.0008

4.5. Hyperparameter Optimization

The sklearn RF classifier’s tunable hyperparameters include the number of decision
trees (n_estimators), the maximum depth of the decision tree (max_depth), the split criteria
(criterion), the minimum number of samples for internal node splitting (min_samples_split),
the minimum number of samples for leaf nodes (min_samples_leaf), whether bootstrap
sampling is used (bootstrap), and the maximum number of features (max_features). In this
paper, the hyperparameters are optimized using an improved grid search method.

As shown in Section 4.4, the order of parameter optimization is max_depth, min_samples_
leaf, min_samples_split, criterion, n_estimators, bootstrap, and max_features. The roc_auc score
is the area under the roc curve, and it is used as the RF classification model’s evaluation standard
in this experiment. The sklearn RF classifier is used as the experiment’s base classifier, and it
has been optimized. The default parameters of the base classifier are shown in Table 5.

Table 5. Default Parameters of the Base Classifier.

Hyperparameter Importance

max_depth None
min_samples_leaf 1
min_samples_split 2

criterion gini
n_estimators 100

bootstrap True
max_features 7

(1) Choose max_depth

The greater the depth, in general, the better the fitting effect, but it increases computa-
tional complexity and slows calculation speed, as well as the phenomenon of over-fitting.
Figure 6 shows that the roc_auc score is highest when the decision tree depth is 24, reaching
0.98909. The roc_auc score stops increasing as the maximum decision tree depth reaches 30.
So max_depth is set to 24.

(2) Choose min_samples_leaf

Figure 7 shows that the optimal min_samples_leaf is the default value of 1 for the
base classifier, which has the highest complexity of the classification model. As the
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min_samples_leaf increases, the model complexity decreases, and the roc_auc score also
decreases, so min_samples_leaf is set to 1.
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(3) Choose min_samples_split

As is illustrated in Figure 8, the best min_samples_split is the base classifier’s default
value of 2, which has the highest complexity of the model. As min_samples_split increases,
the model’s complexity and roc_auc score decreases, so min_samples_split is set to 2.
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(4) Choose criterion

When the gini coefficient is used as the splitting criterion, the roc_auc score is 0.98909.
If the splitting criterion used is entropy, the roc_auc score is 0.98901. When the gini
coefficient is used as the splitting criterion, the score is higher, as shown in Figure 9. As a
result, the gini coefficient is chosen as the best splitting criterion.
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(5) Choose n_estimators

This parameter is primarily used to lower the overall model’s variance and improve
its fitting ability. The experimental results are shown in Figure 10. The accuracy of the
model will improve as the number of decision trees grows. The roc_auc score reaches a
maximum of 0.9898 when the number of decision trees is 240, and it no longer increases
significantly as the number of decision trees increases, as shown in Figure 10. As a result, a
total of 240 decision trees are chosen.
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(6) Choose bootstrap

The experimental results show that the roc_auc score is the same when sampling with
bootstrap and using the entire training set as a sample. As a result, bootstrap sampling
uses the base classifier’s default value. As with the base classifier, bootstrapping is used
for sampling.

(7) Choose max_features

Increasing the number of features in a model can improve performance because the
model has more options on each node to consider, but it reduces the diversity of a single
tree, which is the unique advantage of random forests, so it’s important to pick the right
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value. In addition, the model becomes slower as the number of features increases. As
shown in Figure 11, the roc_auc score is highest when the maximum number of features is
set to 9, reaching 0.99046, and then decreases as the maximum number of features increases.
As a result, the maximum number of features is set to 9.
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4.6. Experimental Results

Table 6 shows the optimal hyperparameters obtained by IGSA, as well as the improved
roc_auc score of a single hyperparameter compared to the base classifier.

Table 6. Optimal hyperparameters and improvement.

Hyperparameter Value Improvement

max_depth 24 +0.02129
min_samples_leaf 1 0
min_samples_split 2 0

criterion gini 0
n_estimators 240 +0.00071

bootstrap True 0
max_features 9 +0.00066

Experiments aimed to create the best RF classifier model using the hyperparameters
in Table 6 and test it on the validation set. On the test set, the roc_auc score is 0.9935, and
the roc curve is shown in Figure 12.
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4.7. Comparative Analysis

After training, the roc_auc scores of SVM, NB, and DT on the test set are 0.5, 0.5604,
and 0.9249, respectively. On the test set, the proposed method’s roc_auc score is 0.9935,
which are 0.4935, 0.4331, 0.0686 higher than the scores of the other three classifiers. Because
Morris’ work lacks roc_auc scores, it is not compared here. The results of the comparison
show that the proposed RF classifier outperforms other classifiers in terms of classifica-
tion performance.

We also compare the evaluation metrics of SVM, NB, DT and our proposed classifier.
The comparison results are shown in Table 7. The RF classification model proposed in
this paper outperforms SVM, NB, DT in terms of accuracy, precision, recall, and F1-score.
The RF classifier outperforms the other three in terms of precision by 38%, 29%, and 3%,
respectively. The RF classifier has a recall rate that is 21% higher, 36% higher, and 4% higher
than the other three. The F1-score for the other three classes of classifiers are 31%, 34%, and
3% lower than the RF classifier, respectively.

Table 7. Performance comparison of different models.

Metrics SVM NB DT Work [18] Work [28] Proposed Method

Accuracy 0.78 0.63 0.95 0.96 0.96 0.98
Precision 0.60 0.69 0.95 0.95 0.96 0.98

Recall 0.78 0.63 0.95 0.95 0.96 0.99
F1-score 0.68 0.65 0.95 0.96 0.96 0.99

The JRipper + Adaboost classification method with the best classification effect in
literature [18] is chosen for comparison because the performance of the RF classification
method in Morris’ work is not ideal. Table 7 demonstrates that the intrusion detection
method of power industrial control systems proposed in this paper has 2% higher accuracy,
3% higher precision, 4% higher recall rate, and 3% higher F1-score when compared to
the method in literature [18]. Compared to the method in the literature [28], as shown
in Table 7, the accuracy is 2% higher, the precision is 2% higher, the recall rate is 3%
higher, and the F1-score is 3% higher, the proposed method outperforms the method
in [28] comprehensively.

4.8. Efficiency Analysis

In terms of computing time, the operation of Google Colab under the same param-
eter scale fails to run the final result due to the limited computing power of Google
Colab. Small-scale hyperparameter combinations are chosen for comparison in order to
perform traditional grid search hyperparameter optimization and improved grid search
hyperparameter optimization. Table 8 depicts the configuration space for small-scale
hyperparameter combinations.

Table 8. Configuration space for small-scale hyperparameters.

Hyperparameter Range Step

n_estimators [220, 270] 10
max_depth [20, 32] 2

min_samples_split [2, 4] 1
min_samples_leaf [1, 3] 1

max_features [2, 15] 2
bootstrap {true, false} \
criterion {gini, entropy} \

In Table 9, computation time and roc_auc score are compared for grid search, genetic
algorithm search and IGSA [29]. The roc_auc score of IGSA is close to the global optimum
and higher than the genetic algorithm search. More importantly, the hyperparameter
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optimization speed is increased by 165 times compared to grid search and 5 times faster
than genetic algorithm search, proving the method’s effectiveness.

Table 9. Comparison of hyperparameter search methods.

Methods Time Roc_auc Score

Grid search 62,104.179 s 0.9906
Genetic algorithm search 1989.95 s 0.9897

Improved grid search 375.524 s 0.9904

5. Conclusions

This paper proposes a RF intrusion detection model for electric power industrial con-
trol systems in order to address the problem of insufficient intrusion detection capabilities.
A hyperparameter optimization method based on improved grid search is proposed to
address the problem that the performance of the RF-based classifier is not optimal. The
seven hyperparameters of the random forest model are tweaked in order of importance
to generate the best classifier performance. The optimization speed is 165 times faster
than grid search. The test results show that the power industrial control system intrusion
detection method based on hyperparameter optimization has higher accuracy, precision,
recall, F1 score, and, most importantly, roc_auc score than other similar methods. The
accuracy reaches 0.98, the precision arrives to 0.98, the recall is up to 0.99 and the F1-score
of the proposed method is 0.99. Therefore, the method can be used for power industrial
control system intrusion detection.

However, there are still many problems with the current method. For example, more
artificial intelligence algorithms, such as deep learning, can be used to detect intrusions
in power industrial control systems. Advanced metaheuristics search algorithms for
hyperparameter optimization can be studied to improve the performance of the power
industrial control intrusion detection model. In addition, future research will focus on
making intrusion detection models interpretable.
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