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Abstract: Acoustic emission is a nondestructive control technique as it does not involve any input
of energy into the materials. It is based on the acquisition of ultrasonic signals spontaneously
emitted by a material under stress due to irreversible phenomena such as damage, microcracking,
degradation, and corrosion. It is a dynamic and passive-receptive technique that analyzes the
ultrasonic pulses emitted by a crack when it is generated. This technique allows for an early diagnosis
of incipient structural damage by capturing the precursor signals of the fracture. Recently, the
scientific community is making extensive use of methodologies based on machine learning: the use
of machine learning makes a machine capable of receiving a series of data, modifying the algorithms
as they receive information on what they are processing. In this way, the machine can learn without
being explicitly programmed, and this implies a huge use of data and an efficient algorithm to
adapt. This review described the methodologies for the implementation of the acoustic emission
(AE) technique in the evaluation of the conditions and in the monitoring of materials and structures.
The latest research products were also analyzed in the development of new methodologies based on
machine learning for the detection and localization of damage for the characterization of the fracture
and the prediction of the failure mode. The work carried out highlighted the strong use of these
methods, which confirms the extreme usefulness of these techniques in identifying structural damage
in scenarios heavily contaminated by residual noise.

Keywords: acoustic emission testing; damage detection; machine learning

1. Introduction

Acoustic emission (AE) has long been recognized as a valid technique for real-time
monitoring of materials and structures, providing useful information not only on the
presence of defects but also on their criticalities [1]. Acoustic emission is a nondestructive
test technique as it does not involve any input of energy into the materials. However,
it should be noted that, to identify a fracture, it is necessary that this is already present
in the material [2]. Nondestructive tests (NDTs) are a set of examinations, tests, and
surveys conducted using methods that do not alter the material and do not require the
destruction or removal of samples. The objective is to guarantee safety, verified in terms of
compliance with the requirements of reliability and conformity to the project, according to
which a specific product has been conceived and manufactured [3]. Many nondestructive
methods have very narrow fields of application and great uncertainties of interpretation
related to the influence of the conditions in which they are performed: the problem is often
very complex, and clear information can only be deduced by comparing multiple results.
Nondestructive methods can be useful for the complete and continuous monitoring of
significant parameters over shorter or longer periods [4].

The identification of structural anomalies through sound emissions is a methodology
that has successfully been applied for a long time. The potters, up to several millennia BC,
were dedicated to listening to the audible sounds during the cooling phase to identify a
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possible structural defect. Similarly, a few millennia later, this procedure was applied in
metalworking [5]. The artifacts were beaten to listen to the noise they emitted to identify
possible fractures. In some artisan productions, these procedures are still applied today:
think of the producers of bronze bells of the pontifical foundries who are dedicated to
listening to the sound produced by the bells to identify defects, or the expert producers of
Parmigiano Reggiano, a famous Italian aged cheese, who identify the degree of ripeness
of a wheel weighing about 40 kg by listening to the sound emitted by pressing with a
small hammer.

The bases of this technique, however, date back to the early 1950s when J. Kaiser
used an electronic instrumentation to detect the sound emissions emitted by metals during
deformation [4]. Kaiser found that all the metals investigated exhibited acoustic activity
and that this activity was irreversible in the sense that it disappeared during a reloading
process of the material until the stress level exceeded its previous value. This phenomenon
is now known as the Kaiser effect and has proved to be of considerable use in studies
with AE [6]. Schofield [7] and Tatro [8] began the research in the mid-1950s, making a
significant contribution to the improvement of the instrumental equipment and to the
clarification of the genesis of the AE. They were the first to observe that the emission in
the metals was mainly due to the motion of the dislocations that accompanies the plastic
deformation, rather than being entirely due to the reciprocal sliding of the grains, as initially
proposed by Kaiser. During the 1960s, many scholars dealt with AE using this technique
in materials studies, characterization and quality assessment, nondestructive tests, and
structural checks [9].

The remarkable advances in instrumentation, achieved in the early 1960s, made possi-
ble unexpected developments in AE technology. Researchers found significant difficulties
in processing the AE signal due to background and ambient noise: many of these problems
could be reduced, if not eliminated, by working in a frequency range well above the audible.
This innovation eliminated the need for acoustically insulated laboratories and allowed
for a high degree of perfection and applicability. Subsequently, in the early 1970s, it was
decided to extend the concepts of spectroscopic analysis to acoustic phenomena originating
from the dynamics of materials. The development of ultrasonic techniques suggested the
possibility that the excitability characteristic of materials, whereby a specific frequency
response corresponds to an ultrasonic pulse, could justify a production of acoustic signals
in the ultrasonic frequencies because of the release of energy at a microscopic level [10].

Modern acoustic-emission-based techniques have, therefore, neglected the audible
spectrum to search for possible spectral signatures that identify structural defects in the
ultrasonic spectrum. The term ultrasound defines elastic waves whose frequency is greater
than the hearing limit for the human ear and whose frequency band, consequently, varies
between 20 kHz and 1 GHz. Generally, in materials in which dynamic processes take place,
such as deformations, fractures, or phase transitions, there is a release of elastic energy
in the form of impulsive elastic waves, whose frequency spectrum is between 1 kHz and
10 GHz [11]. The dynamic processes at the origin of acoustic emissions are well-highlighted,
for example, by the macroscopic acoustic phenomena related to the breaking or deformation
of a solid material. The physical interest in these phenomena, however, concerns signal far
from the limits of the audible spectrum, both in intensity and in frequency, determined in
solid materials by the motion of the displacements, growth of microfractures, and motion
of the grain thread, processes that we will call emission sources acoustics [12].

A solid material, subjected to a stress that sets it in vibration, will undergo fractures
at the molecular or atomic level, and a certain energy will be released. Furthermore, a
voltage distribution will develop, which will depend on the phenomenon as a whole and
will involve the whole system considered. As soon as this distribution of tension crosses
an area in which breaks have already occurred, it is possible that new ones will occur,
since it is where the structure is weakest [13]. This implies a real chain reaction that will
support the progress of each existing fracture, rather than the formation of new ones.
Acoustic emissions are generated at a microscopic level due to breakage of the chemical
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bond and propagate because of a real chain reaction. We cannot grasp the effects of one
of the breakings of a single chemical bond, but natural phenomena have memory of their
origins and past events [14].

Machine learning (ML) is the technology for the development of computer algorithms
capable of emulating human intelligence [15]. It draws ideas from various disciplines such
as artificial intelligence, probability and statistics, computer science, information theory,
psychology, control theory, and philosophy [16]. This technology has been applied in
different fields such as pattern recognition [17], prediction of material characteristics [18],
automatic recognition of acoustic sources [19], computer vision [20], prediction of percep-
tion personal to different stimuli [21], etc. The most important property of these algorithms
is their distinctive ability to learn the surrounding environment from input data. The ability
to learn through the input of the surrounding environment is the main key to develop-
ing an efficient automatic identification application. In this case, learning is defined as
estimating dependencies on data [22]. To do this, ML algorithms are used to query large
databases and discover previously unknown properties in the data. Many ML algorithms
use unsupervised learning methods such as preprocessing to increase learning accuracy
before examining the desired activities. These characteristics have suggested the use of
such methodologies for the automatic identification of structural defects through acoustic
emission techniques [23].

In this work, the most popular methods based on ML for AE testing were analyzed
and described. The paper is structured as follows: Section 2 describes in detail the acoustic
emission testing methods, analyzing their characteristics and peculiarities that make the
mathematical modeling extremely complex. Section 3 analyzes the most popular acoustic
emission testing methods based on ML. Finally, Section 4 summarizes the results obtained
in applying these methods to real cases, highlighting their potential and listing their limits.

2. Acoustic Emission Testing Methods

The solids have elasticity, stressed by external loads they deform returning to the initial
configuration when the stress is lacking. The maximum tolerable effort and consequent
elastic deformation depend on the solid’s ability to store elastic energy. Exceeding the elastic
limit, in brittle materials, fracture immediately occurs. On the other hand, in materials with
high plasticity, the fracture occurs only after deformation. If the material subjected to stress
has a defect, the triggering of the damage will more likely take place around these native
defects as they are likely to be more strongly stressed points. In fact, near the defects, the
stress field is further amplified.

2.1. Acoustic Emission Sources

In heterogeneous materials, fracture occurs at the maximum of progressive damage
due to the applied loads or the severity of the environmental conditions. The microfractur-
ing process is accompanied by a fast dislocation motion, which is associated with a rapid
spontaneous release of energy in the form of transient elastic waves or acoustic emissions
(AEs). The AE event manifests itself as an elastic wave that propagates through the material
toward the surface of the element and can be detected by appropriate sensors that trans-
form it into an electrical signal. The transient stress wave ends when a new equilibrium
configuration is reached, in which the resulting forces acting on each volume element
vanish. The AE signal carries with it a certain amount of information that characterizes it,
identifying its origin. It is generated only when the crack grows or when its edges touch
each other. AE can therefore provide information on the origin of the discontinuity in a
component subjected to loads and on its subsequent development when the component is
subjected to continuous and repetitive stresses [24].

As already said, when a solid is subjected to a mechanical stress of a certain intensity,
it releases energy, which travels in the form of elastic high-frequency waves. These waves
are captured by a sensor that converts their energy into an electrical signal. This signal is
then electronically amplified and, using special circuits, processed as an AE signal. The
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data analysis includes the characterization of the signals according to the location of the
source, intensity of the voltage, and frequency content. The onset of this phenomenon is
found in situations of various kinds such as mechanical deformations and fractures, phase
transformations, corrosion, friction, and processes of magnetic nature [25].

In addition to the signals deriving from the AE, there may be signals deriving from
other causes such as noise or from sources of AE not relevant to the objective of the test.
The main causes of noise are friction and impacts. The sources of friction are stimulated
by structural loads that cause movements in the joints. The sources of impact, on the
other hand, can include rain, windblown dust, or flying objects. A relevant part in tests
using AE is, therefore, the ability to eliminate all these noise sources and focus on the one
relevant to the test. This is achieved by selecting an appropriate setup, taking practical
precautions to prevent noise sources as much as possible, and recognizing and removing
noise from recorded data. All this depends on the experience of those who carry out the
measurements, and it is necessary to have a wide range of data on which to rely to make a
correct interpretation of the results [26].

AE, appearing in the form of an elastic wave, is always accompanied by vibrations.
Vibrations can be studied from the point of view of wave motion. Each continuous system
has masses and elastic forces continuously distributed. These systems consist of an infinite
number of particles and, therefore, require an infinite number of coordinates to describe
motion. The system must be modeled, so that the motion of each point in the system can be
specified as a function of time. The resulting differential equations that describe the motion
of particles are the wave equations and describe the propagation of the same in a solid.
Wave propagation in solids is very complex, and it is, therefore, necessary to consider only
waves directly relevant for the study of vibrations.

To remove parasitic oscillatory components, due to structure vibrations and noise,
AE detection instruments consider only part of the frequency spectrum detected: other
components are removed through the application of band-pass filters. AE has a frequency
between 20 kHz and 1 MHz, but the vibrations at lower frequencies (20–100 kHz) can be
masked by external noises, and those at higher frequencies tend to very quickly dampen,
so the AE’s survey range is reduced to the range 100–700 kHz [27].

Recent studies have highlighted the multiplicity of information that can be drawn
from the use of these techniques. Through the adoption of AE tests, we can obtain
much information:

• Damage phenomena origin: Having noted the arrival times of the acoustic waves to
each sensor and the speed of propagation of the waves in the material, it is possible to
locate an AE event within the structure of the material with great accuracy.

• Fractured area: The set of points relating to all events located in each time interval
allows obtaining the density of the damage in the material. When the geometric
distribution of the localized points identifies a well-defined path, the progressive
formation of a crack is observed. Furthermore, the speed of seismic waves in damaged
areas is significantly lower than that in intact areas.

• Damage mechanism: The shape of the waves recorded by each sensor is a function
of the source mechanism and depends on the path taken by the acoustic wave when
it travels from the source to receiver. The analysis of the shape of the waves allows
distinguishing between the different mechanisms of propagation of the cracks.

• Stress state: There is a relationship between areas with high-speed anomaly and
regions subject to a high state of stress and, therefore, potentially damaged.

• Material properties: The frequency and amplitude of a wave traveling in a material
directly depend on its properties. Measurements of seismic velocity, anisotropy, and
attenuation are, therefore, sensitive to any variation in the properties of the materials.

• Time-dependent behavior: Through continuous monitoring, information is obtained
on the evolution of the mechanical response of a material and, therefore, on the
phenomena of degradation and progressive formation of cracks.



Appl. Sci. 2022, 12, 10476 5 of 30

2.2. Acoustic Emission Detection

The data recorded in the form of electrical impulses return different information
depending on the type and number of sensors and the acquisition system. With nor-
mal transducers available on the market, the parameters that can be evaluated (counts,
amplitude, duration, and energy of the events) only allow a qualitative analysis of the
phenomena to be monitored. To obtain quantitative data, the use of high-tech transducers
and an extremely fast data acquisition system is required, so that information relating to
the shape of the acoustic waves is available [28].

A system for measuring AE consists of the following elements (Figure 1):

• AE sensor;
• Preamplifier or an impedance matching transformer;
• Band-pass filter;
• Main amplifier;
• Cables;
• Detector or processor.

Figure 1. Acoustic emission detection scheme. AE sensor captures the signal and passes it to a
preamp, which then sends it to a band-pass filter. Subsequently, the selected spectrum is amplified
and passed to the signal processor.

The AE sensors generate an electrical signal when they are hit by an acoustic wave.
The principle of operation of these sensors can be different: signals can be generated by
electromagnetic, magnetostrictive, and piezoelectric devices and using laser interferometers.
The most widely used sensors are piezoelectric ones, which generate an electrical voltage
and a corresponding charge separation when deformed. The deformation is produced by
the motion of the wave, and it is the elastic response of the piezoelectric crystal when it is hit
by the incoming stress wave. The electrical signal is generated by the material, which does
not need to be powered from the outside: when hit by an impulse, it vibrates at its resonant
frequency (Figure 2). There can be many resonant frequencies simultaneously excited.
If shaken by a vibratory motion, the piezoelectric element will produce a corresponding
oscillating voltage at the same frequency of the motion. The element also has a linear
response: if the input motion is doubled, the output voltage will also double [29].

The relationship between the amplitude of the output–input voltage is a measure
of the sensor sensitivity: this strongly depends on the motion frequency (the number of
oscillations per second) and is better at the element resonant frequency. The sensitivity of
the sensor depends not only on the frequency but also on the motion direction. Unlike ac-
celerometers, which are carefully designed to measure only the motion component parallel
to their axis, acoustic emission sensors respond to motion in any direction. In the choice of
sensors, the priorities are high sensitivity, well-defined and consistent frequency response,
high performance in the working environment, and immunity to unwanted noise. Noise
sensitivity has been greatly improved with the development of sensors with integrated
preamplifiers. These types of sensors have a preamplifier built into the housing together
with the piezoelectric element, and for field tests, these have great advantages compared
with previous types of sensors that required separate preamplifiers to be mounted a few
meters from them [30].



Appl. Sci. 2022, 12, 10476 6 of 30

Figure 2. Piezoelectric sensor scheme: they consist of thin layers of single crystal, which produces an
electrical charge when subjected to compressive force.

The sensor must be properly placed in contact with the surface of the material to
be monitored to identify the motion of the AE wave and provide a strong signal. The
coupling and assembly techniques are, therefore, very important. For example, an acoustic
couplant in the form of an adhesive, viscous liquid, or grease can be used and applied to
the surface of the sensor, which is then pressed against the structure, the surface of which
must be smooth and clean. The sensor must then be firmly held in position using adhesives,
magnetic bases, or other means. Finally, after assembly, the performance of the system is
verified by simulating an AE signal and checking the response of the system.

The signal produced by the sensor is amplified and filtered, identified, and measured.
The amplifiers increase the signal voltage to bring it to an optimal level for the measurement
circuit. Along with various amplification stages, filters are incorporated into the instrument.
These define the frequency range to be used and attenuate low-frequency background
noises. These amplification and filtering processes are called signal conditioning. They clean
the signal and prepare it for the detection and measurement process. After conditioning,
the signal is sent to the detection circuit: it is an electronic comparator that compares
the amplified signal with a threshold voltage defined by the operator. Whenever the
voltage exceeds the threshold, the comparator generates a digital pulse. The first impulse
produced marks the beginning of the phenomenon (hit). This pulse is used to activate
the signal measurement process. As the signal continues to oscillate above and below the
threshold level, the comparator generates additional pulses, and the electronic circuits
actively measure the key characteristics of the signal. Over time, the amplitude of the signal
is reduced to a level where the threshold is no longer crossed. After a predetermined time,
called the hit definition time (HDT), any further impulse from the comparator determines
the end of the event. The control circuit ends the measurement process and passes the
results to a microprocessor. Finally, the measurement circuit is reset and re-prepared for
the next event [13].

In many cases, the discrimination of the signal is very difficult: this is due to the
temporal overlap of different processes, including secondary products such as reflections.
In the case, for example, of the growth of fractures in heterogeneous materials, the effects
due to the friction between the faces formed by the fracture itself or by preexisting fractures
are superimposed on the primary source represented by the motion of the fracture tip.
Preexisting defects can act as resonators and diffusion centers, modifying the signal. On the
other hand, regions with lower fracture strength or different composition may have a more
fragile behavior with a consequent increase in the amplitude of the signals. Therefore, the



Appl. Sci. 2022, 12, 10476 7 of 30

nature of the phenomena is so articulated that a univocal definition of acoustic emission
appears difficult [12].

In general, the signals appear as isolated pulses over time (burst), formed by a very
rapid rising edge followed by an exponentially decreasing trend, also due to the response
of the transducer (Figure 3). Furthermore, it is possible to identify stationary or quasi-
stationary components, free from decays, in which the single AE events are so close that
they are not distinguishable. These contributions are of smaller amplitude than the burst
event due both to the dispersion of the medium and to other causes such as viscoelasticity,
internal friction, etc. The impulsive components (bursting signals) are caused by the
initiation of fractures and their growth, whereas the continuous part of the signal is due to
plastic deformations as well as external noise: in plastic deformations, the energy involved
translates into work of plastic deformation used to overcome the resistance to motion of
dislocations. This movement produces within the material the propagation of a stress wave
that reaches the surface and manifests itself as an AE wave [14].

Figure 3. Typical AE signal: we can identify a very rapid rising edge followed by an exponentially
decreasing trend also due to the response of the transducer, and by stationary or almost stationary
signals, without decays.

Acoustic emission has the appearance of a damped sinusoid and is characterized by
some characteristic quantities. Conventionally, referring to the sine wave (waveform), we
speak of Hit of acoustic emission when the AE transient is identified and processed by
a certain channel. We speak instead of Event when the localization of the source of this
same acoustic emission is carried out. With reference to the ASTM E1316 [31] standard, the
following definitions are given:

• Hit: term to indicate that a given channel has identified and processed an acoustic
emission transient;

• Event: an acoustic emission wave can be identified in the form of a hit on one or more
channels. An event is a group of hits received by two or more channels from a single
source, which is located.

The ASTM E610-89 [32] standard defines the standard terminology relating to the
quantities and phenomena involved in the study of acoustic emissions. An AE event is
characterized by the following:

• Amplitude: refers to the largest value present in the waveform of the signal and is
linked to the type of source that produced it, the material, and its state of stress. It is
generally measured in decibels, on a scale ranging from 0 to 100.

• Duration: it is the time elapsed between the first overcoming of the threshold and the
last overcoming. The relationship between duration and amplitude gives information
on the shape of the signal.
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• Counts: number of times the amplitude of the signal exceeds a predetermined thresh-
old. A single Hit can provide only a few counts or hundreds of counts depending on
the intensity and shape of the signal.

• Counts rate: number of counts per unit of time.
• Counts to peak: number of counts before the maximum amplitude included.
• Signal energy: total elastic energy released in each event.
• Rise time: time interval between the first crossing of the threshold and the reaching of

the maximum amplitude.
• Damping time: time between reaching the peak and the end of the last threshold crossing.
• Dead time: time after which, if the threshold is not exceeded, the event is considered

to have ended.

In addition to measuring the characteristics of individual signals, the instruments
generally measure the time in which they are identified and the environmental variables
that can cause the activity.

In AE techniques, the response of the materials under test can be observed throughout
the entire history of stress, without any damage to the specimen. In addition, this moni-
toring can be carried out with fewer sensors than other nondestructive techniques. The
sensors are fixed in a single position on the surface of the specimen, for the duration of
the test, as a point-by-point monitoring is not necessary: it is not even required to monitor
both sides of the object. This methodology can only detect the formation of new cracks
and progression of existing cracks or friction processes, phenomena resulting from the
application of external loads or due to internal mechanical or thermal loads. AE-based
methods can be implemented under normal operating conditions or during a slight increase
in the load: this makes them particularly suitable for carrying out tests on structures under
real load conditions to identify a possible failure.

3. Machine-Learning-Based Methodology for AE Testing

AE testing has obvious limitations regarding its reproducibility: as we have said, this
type of test involves the formation or progression of cracks in the material. Even when
referring to specimens of the same material, of the same dimensions, and subjected to the
same load cycle, they do not necessarily produce the same results. This is especially true
in the case of anisotropic and heterogeneous materials. Moreover, since the signals used
by precursors are of modest entity, to be able to detect possible forms of energy in the
material, it is necessary to use particularly sensitive sensors. Further problems arise due to
the attenuation phenomena of the acoustic stress wave that is dispersed in the material as
it propagates: just as the noise due to sources independent of the possible structural defect
can disturb the detection methodology.

To overcome these limitations, researchers adopted alternative methodologies to
improve the results of the structural damage identification procedures. The capabilities
demonstrated by the technologies based on ML in detecting patterns were immediately
noticed by AE researchers. To make this nondestructive testing method even more effective,
all the methodologies based on ML for the recognition of the stress wave can be applied
during the detection phase of the acoustic emission generated by the source. In this way, it
is possible to carry out a test that is robust regarding noise and effective in detecting waves
of modest entity. The most common methodologies based on ML applied in the field of AE
are presented below.

ML is a branch of artificial intelligence whose goal is to allow machines to automati-
cally learn something from experience, without the need for them to be programmed in
advance. Experience is a collection of data, which can be fixed and immutable, or even
expand over time. Learning can be carried out through two main approaches: supervised
and unsupervised.

Supervised algorithms can be used for what is commonly called classification. The
peculiarity of these algorithms is that the data on which they are trained are labeled; that is,
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each element of the set is matched to its class of belonging. Their purpose will, therefore,
be to be able to match new data, not part of the training set, to their own class.

Unsupervised learning uses a more independent approach and is very useful in
situations where labeled data are not available, such as historical data with known results.
It provides that the information entered in the machine is not encoded, but it is possible
to draw on certain information without having any example of use and knowledge of the
expected results.

3.1. Clustering Techniques

Clustering techniques are based on unsupervised algorithms that work on data but
without knowing the class they belong to. All clustering techniques are based on distance
measurements between all the elements that are part of the dataset to be analyzed [33].
The elements that are more like each other will end up in the same cluster, that is, in the
same group, whereas the less similar elements will end up in different clusters. Clustering
techniques can be mainly used for two different purposes. The first is understanding: by
observing the clusters that are formed from a dataset, it is possible to trace any relationships
and patterns between the data themselves. The other purpose for which clustering can
be used is the reduction of a dataset with too many elements to a smaller one [34]. This
may be necessary, for example, to train faster a classification algorithm that had too large
training set. By applying a clustering algorithm, it will be possible, in fact, to find which
are its main clusters, such as those subsets of data that are like each other, taking only some
of them, which are the most representative for each cluster [35].

Clustering algorithms can be grouped into two large families:

• Aggregative or bottom-up methods: Initially, all the elements of the dataset are iden-
tified as separate clusters. The elements closest to each other are then merged into a
single cluster, thus aggregating smaller clusters into larger clusters. All this is carried
out until a predetermined condition is reached, which could be the number of clusters,
a minimum distance between clusters or other, depending on the algorithm used.

• Divisive or top-down methods: It starts from a single large cluster that contains
all the elements. Subsequently, the cluster is divided into smaller and smaller clus-
ters. Proceed until a stop condition is reached, which is usually the desired number
of clusters.

There are also other subdivisions of clustering algorithms. One of these sees the
contrast between exclusive and nonexclusive clustering. In exclusive clustering, an element
can belong to one and only one cluster. In nonexclusive clustering, also known as fuzzy
clustering, an element can belong to several clusters at the same time, to each according to
a probability p. Obviously, the sum of the probabilities of belonging of an element to the
various clusters must be equal to one [36].

Fuzzy c-means clustering iteratively searches for a set of fuzzy clusters and associated
cluster centers that characterize the data structure in the best possible way [37]. The user
specifies the number of clusters to locate in the dataset to be grouped. Omkar et al. [38]
applied fuzzy c-means (FCM) techniques to classify the acoustic emission (AE) signal
into different signal sources. The authors performed the test using a pulse, pencil, and
spark signal source on the surface of the solid block of steel. Using the AET 5000 system,
they measured four parameters: event duration, peak width, rise time, and loop back
count. Marec et al. [39] investigated local damage in composite materials based on the
analysis of acoustic emission (AE) signals. The authors applied fuzzy C-means clustering
techniques associated with principal component analysis to analyze AE data clusters and
subsequently correlate them to material damage mechanisms. Continuous and discrete
wavelet transforms are applied to typical AE signal damage mechanisms.

Oskouei et al. [40] adopted fuzzy C-means clustering associated with a principal
component analysis to detect damage in glass–polyester composites with the AE technique.
Behnia et al. [41] evaluated the damage of concrete structures subjected to pure torsional
load by proposing a method based on AE and kernel fuzzy c-means. Time and frequency
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domain signals were used to classify the damage. Mohammadi et al. [42] studied the
damage mechanisms in standard open-hole tensile (OHT) laminated composites through
the AE. The authors used wavelet transforms as a descriptor and fuzzy C-means technology
to distinguish sample damage mechanisms. Three damages were detected: matrix break,
fiber–matrix detachment, and fiber break. Saeedifar et al. [43] detected interlaminar and
intralaminar damage induced by dentation in laminated carbon–epoxy composites with
AE and six different clustering methods including fuzzy C-means. Zhu et al. [44] estimated
the leakage rate of a valve in a pipeline using various clustering techniques including
fuzzy C-means using AE signals. Shateri et al. [45] detected damage in fiber-reinforced
polymer (FRP) bars by applying a fuzzy c-means clustering algorithm to AE signals.
Fotouhi et al. [46] identified the damage in the mixed-mode delamination of laminated
composites using fuzzy clustering and the acoustic emission technique. Sayar et al. [47]
investigated damage mechanisms in an open-hole carbon–epoxy laminate composite using
wavelet packet transform and fuzzy C-means methods. Zhao et al. [48] detected failure
of carbon–glass epoxy hybrid braided composites under tensile load based on acoustic
emission signals and a fuzzy c-means algorithm. Mi et al. [49] have adopted fuzzy c-means
to detect damage in fiber–resin composite structures that are closely related to fiber weaving
methods (FWMs). Pei et al. [50] identified the progressive tensile damage of carbon fiber
composites reinforced with multiwalled carbon nanotubes using AE and fuzzy c-means
algorithms. Pomponi et al. [51] adopted an unsupervised approach for detecting plastic
deformation, crack initiation, and corrosion cracking. The authors proposed a simple
but effective non-iterative clustering algorithm (adaptive sequential k-means), oriented
to acoustic emissions (AEs). The number of clusters is not specified a priori but deduced
from the data, whereas the properties of the background noise control the creation of
new clusters. The approach adopted has proved effective in grouping the AE signals
associated with different emission sources (performance indexes = 0.776, 0.751). In Table 1,
the essential characteristics of the methodology based on clustering are summarized.

Table 1. Clustering methods for AE testing.

Reference Input Type Accuracy (%)

Omkar et al. [38] AE from pulse, pencil, and spark Fuzzy c-means 80–93

Marec et al. [39] AE from
glass-fiber-reinforced polymer Fuzzy c-means 90–94

Oskouei et al. [40] AE from glass–polyester composites Fuzzy c-means 90
Behnia et al. [41] AE from concrete structures Kernel fuzzy c-means -

Mohammadi et al. [42] AE from open-hole tensile
laminated composites Fuzzy c-means 85–89

Saeedifar et al. [43] AE from laminated composites

k-Means, genetic k-Means, fuzzy
c-means, Self-organizing map

(SOM), Gaussian mixture model
(GMM)

-

Zhu et al. [44] AE from natural gas pipeline Fuzzy c-means, k-means and,
k-medoids 95.8–96.3

Shateri et al. [45] AE from fiber-reinforced
polymer rods Fuzzy c-means -

Sayar et al. [46] AE from open-hole laminated
carbon–epoxy composite Fuzzy c-means 92–94

Zhao et al. [48]
AE from

carbon–glass-fiber-reinforced
hybrid composites

Fuzzy c-means -

Mi et al. [49] AE from fiber–resin
composite materials Fuzzy c-means 89–91

Pei et al. [50]
AE from multiwalled carbon
nanotube reinforced carbon

fiber composites
Fuzzy c-means -

Pomponi et al. [51] AE from different emitting sources k-Means 91–93
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3.2. Artificial Neural Network (ANN) Techniques

ANNs are composed of artificial neurons that are organized in an interconnected
structure that allows the connection of the inputs and outputs of various neurons [52].
This type of structure allows neurons to receive both initial and processed data from other
neurons, depending on the level of the neuron. The ANN architecture arranges neurons on
different levels, with several levels and a number of neurons for each level characterizing
their structure [53].

ANNs are composed of levels containing a certain number of nodes: each node
connects to another in which a weight and a threshold are associated with it. If the output
of any single node is above the specified threshold, that node is activated and sends the
data to the next network layer. Otherwise, no data are passed to the next network layer.
From a mathematical point of view underlying ANNs, we can express a function ƒ as a
composition of other g functions, which, in turn, can be expressed in simpler functions.
An ANN is an interconnected set of elementary functions in which the outputs are the
inputs of the subsequent functions. In general, ANNs rely on training data to learn how to
improve their accuracy. Once optimized, these learning algorithms are powerful tools in
computer science and artificial intelligence. At the base of the ANN, there is the perceptron,
in complete analogy with the neuron in a biological neural network. In Figure 4, each dot
is a node representing a perceptron. These are functions that take n input elements and
return only a single output, which is sent as input for subsequent perceptrons [54].

Figure 4. Typical ANN architecture: we can identify an input layer that presents the data to the
structure, a hidden layer that takes care of processing data, and, finally, an output layer that returns
the results.

An ANN is an adaptive system capable of modifying its structure based on both
external data and internal information that connects and passes through the ANN during
the learning phase. A biological ANN receives external data and signals; these are processed
into information through an impressive number of interconnected neurons in a nonlinear
and variable structure in response to those data and external stimuli themselves. Similarly,
ANNs are nonlinear structures of statistical data organized as modeling tools: they receive
external signals on a layer of nodes. Each of these input nodes is connected to various
internal nodes of the network, which, typically, are organized at multiple levels so that each
single node can process the received signals by transmitting the result of its processing to
subsequent levels [55].

Generally, ANNs consist of three layers (Figure 4):
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• Input layer: It is the one that has the task of receiving and processing the input signals,
adapting them to the demands of the neurons in the network.

• Hidden layer: In this layer, the data processing takes place.
• Output layer: The results of the processing of the H layer are collected here and

adapted to the requests of the next level block of the neural network.

ANNs have been widely used to classify the acoustic emission (AE) signal. De
Oliveira et al. [56] have developed a procedure for the identification of damage for com-
posite materials based on the grouping of acoustic emission signals using artificial neural
networks. The authors adopted an unsupervised methodology based on the Kohonen
self-organization map. The methodology was tested on a cross-layered fiberglass–polyester
laminate subjected to a tensile test. Kalafat et al. [57] have developed an acoustic emission
localization system based on the use of ANNs. The acoustic sources were applied to the
test object to obtain data to be sent as input to an ANN. The method was tested on a type
III carbon-fiber-reinforced polymer pressure vessel with metal coating. Boczar et al. [58]
investigated the recognition of single-source one-off partial discharge forms that occur in
isolation systems of power transformers. The system developed by the authors uses unidi-
rectional artificial neural networks for the recognition of the acoustic emissions generated
by the paper-oil isolation altered by the aging processes. Ativitavas et al. [59] identified
the type of discontinuity and failure mechanisms within fiber-reinforced plastic (FRP)
structures using acoustic emission (AE) data as input to be sent to an ANN-based system.
The authors developed two types of networks based on back-propagation and probabilistic
method with two levels to improve the accuracy of the forecast. Moia et al. [60] monitored
the dressing operation of an aluminum oxide wheel: the dressing operation is necessary to
restore the normal operation of a worn wheel. The statistics obtained from the measured
acoustic emission (AE) signal were used as input from a classification algorithm based on
neural networks. Two classes have been identified: sharp and dull wheel. Jierula et al. [61]
used ANNs to identify damage locations in deep piles using AEs. The authors performed
an impact test on a circular-section concrete column of a building. Łazarska et al. [62]
monitored the steel hardening process using AEs and neural networks. Three types of
events were detected in this study: high, medium, and low energy. These events allow
the monitoring of the decay process of metastable austenite into bainite and martensite.
The method made it possible to identify the alterations that occur on a microscopic scale.
Schabowicz et al. [63] studied the degree of degradation of fiber cement panels exposed to
fire with the AE method and with the use of ANNs. The fiber cement panels were exposed
to fire and subsequently subjected to a three-point curvature with the relief of the acoustic
emission: The collected signals were used as input for the ANNs. The degradation of
the fibers contained in the boards increases with increasing exposure to fire, with a de-
crease in the number of AE events recognized by the ANNs as identifiers of fiber breakage.
Nasir et al. [64] used AEs of thermally modified western hemlock wood as an input to an
ANN-based model for the classification of the heat treatment level.

The authors used a high-sensitivity broadband differential AE sensor to detect the
stress wave generated in the wood: this signal was subsequently processed to extract
the time, frequency, and wavelet domain features. These signals were sent as input to
three types of networks: multilayer perceptron, group method of data handling, and
linear vector quantization. Elforjani et al. [65] identified deviations from normal bearing
operating conditions by detecting AE signals and using ANNs. The AE measurements
were performed with piezoelectric sensors mounted on bearings placed on a test bench at a
speed of 72 rpm with an axial load of 50 kN. Three models have been implemented: ANN,
support vector machine, and Gaussian process regression. In Table 2, the crucial aspect of
the methodology based on ANNs is summarized.



Appl. Sci. 2022, 12, 10476 13 of 30

Table 2. ANN-based methods for AET.

Reference Input ANN Architecture Results

De Oliveira et al. [56]
AE from

fiberglass–polyester
laminate

Kohonen Map -

Kalafat et al. [57] AE from reinforced
polymer

Back-propagation—
hyperbolic tangent
activation function

96%

Boczar et al. [58] AE from partial
discharges

Back-propagation with
resilient—sigmoid
activation function

51.1–98.6%

Ativitavas et al. [59]
AE from

fiber-reinforced
plastic

Back-propagation—
probabilistic neural

network
51.5–83.8%

Moia et al. [60]
AE from aluminum

oxide grinding wheel
in dressing operation

Back-propagation 100%

Jierula et al. [61] AE from deep piles Back-propagation 93–95%

Łazarska et al. [62]
AE from

austempering of
steels

Back-propagation -

Schabowicz et al. [63] AE from fiber–cement
boards exposed to fire Back-propagation -

Nasir et al. [64] AE from thermally
modified wood

Feedforward multilayer
perceptron, group

method of data
handling, linear vector

quantization

89.1–91.1%

Elforjani et al. [65] AE from bearing
ANN, support vector

machine, Gaussian
process regression

-

4. Deep-Learning (DL) Methods for AE Testing

DL is a branch of ML that uses models consisting of multiple levels of information
representation, built from the simplification of biological neural systems [66]. They are
based on ANNs organized in levels characterized by nodes; each level is connected to
the next by means of connections having a weight whose value indicates the degree of
connection between two nodes. The weights are optimized through a back-propagation
process during training that minimizes the network error by slightly altering the value of
the latter’s nodes [67].

4.1. Convolutional Neural Network (CNN) Solutions

The architecture of CNNs differs from the common model of neural networks since the
intermediate layers are not completely connected (Figure 5). The input level receives the
data that are supplied to the network and is sized according to the specific characteristics of
the input data [68]. The convolutional level follows, from which the network takes its name,
which precisely carries out a convolution operation to recognize specific characteristics
in the data. There may be more convolutional levels depending on the complexity of the
characteristics to be recognized. Subsequently, the pooling level can reduce the dimen-
sionality by eliminating what is superfluous. Finally, the output level necessary for the
classification consists of a completely connected level that connects all neurons to classify
the characteristics identified by the previous levels [69].
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Figure 5. Typical CNN architecture: structure is divided into two sections, the first in which features
composed of convolutional layers, ReLU, and Max pooling are extracted. Data classification section
is instead made up of fully connected network.

The convolutional level carries out a main operation, namely convolution, which
consists of the product of two functions, one delayed compared with the other. This
operation can be considered as the application of a filter consisting of a matrix (kernel)
of smaller dimensions than the input data on which it is applied. The application of the
matrix is a scalar product between the kernel weights and so-called receptive field, a subset
of data having the same dimensions as the kernel. To perform the convolution on all data,
the filter is shifted by an amount equal to the pitch (stride) until it reaches the edge [70].
At the end of the scan, another matrix, called a feature map, is obtained that highlights a
particular characteristic of the data. Therefore, to carry out the recognition, multiple filters
are used at the same time; this will produce a tensor at the output whose depth is equal to
the number of filters used. Each filter involves a few synaptic values (weights) equal to the
size of the kernel; the number of parameters does not depend on the size of the image but
can be calculated [71].

The output generated by the convolutional levels allows for more detailed and consis-
tent information than the starting image. However, in most applications, it is not necessary
to have a high resolution of the image, so it is possible to select only the useful information
by reducing the size of the feature maps for subsequent processing. In fact, the pooling
level has the purpose of resizing the feature maps while leaving the features of interest
unchanged [72]. There are different pooling mechanisms, and the most used is max pooling,
which consists of applying a filter usually of 2 × 2 size, which moves on the feature map
with a step of the same length. The pooling filter identifies the receptive fields and finds
the maximum value for each [73]. Finally, there are the completely connected levels that
carry out the classification and then generate the output of the neural network. This layer
of levels receives as input the matrix manipulated by the previous levels and produces
a vector of dimension N that corresponds to the number of classes to be predicted. By
analyzing the correlations present in the matrices, the relative probability of belonging to
each class is calculated [74,75].

Shevchik et al. [76] applied ANN-based AE testing for quality monitoring of additive
manufacturing of 3D printers. The acoustic emission signals were collected by a fiber Bragg
grating sensor during the additive manufacturing process of the powder bed in a selective
laser-melting machine. The relative energies of the narrow frequency bands of the wavelet
packet transform were extracted and sent to a classifier based on the spectral convolutional
neural network. Han et al. [77] simulated the effects of seismic events on a physical scale
model of a pile-dwelling foundation using a vibrating table. The AE signals were collected
with the use of accelerometers and sent to a CNN for the classification of the damage
suffered by the structure. The authors demonstrated that the robustness of the method
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depends on the quality of the data: preparing the data with accurate labeling is crucial;
it is necessary to consider a variety of different types of damage-induced AE signals that
produce them in reinforced concrete structures, the model must be trained with various
types of ambient noise, and, finally, the AE signals quickly attenuate with distance.

Hesser et al. [78] collected AE signals from an excited aluminum plate with pencil-lead
break and two steel balls of different diameters using piezoelectric sensors. The signals in
the time and time–frequency domains were extracted and sent to an ANN and a CNN-1D.
Subsequently, the RGB images of the wavelet transforms were extracted and sent to a
CNN-2D. The best classification results were obtained from the Conv2D architecture, which
uses the deep transfer learning method, and the VGG16 architecture. Furthermore, deep
transfer learning significantly reduces the number of parameters required for training
the model. König et al. [79] monitored and classified the multivariant wear behavior
of plain bearings. The AE signals were collected using a Nano30 sensor with a good
frequency response (150–750 kHz), and subsequently, the continuous wavelet transform
(CWT) was evaluated. The extracted features were sent to a 22-layer deep convolutional
neural network (CNN) (GoogLeNet) for classification. Plain bearings are subject to multiple
wear mechanisms, and the AE can detect critical operating conditions of wear: the spectra
of the corresponding AE signals were in the frequency range from 40 kHz up to 700 kHz.
Ebrahimkhanlou et al. [80] used CNNs to identify the area where an AE source is generated.
The authors validated the methodology by exploiting a metal plate stressed with Hsu–
Nielsen sources [81]. Li et al. [82] extracted synchrosqueezed wavelet transforms from
AE signals collected in railway crack monitoring. These features have been used for the
classification of cracks by exploiting the CNN. Three types of acoustic emission waves
were classified using synchronized wavelet transformation plots in various time–frequency
scales. To speed up the training procedure, the authors applied transfer learning, whereas
Bayesian optimization was applied to optimize the hyperparameters. Guo et al. [83]
identified damage in carbon-fiber-reinforced composites using AEs and CNNs. The authors
collected AE signals from tensile tests artificially causing fiber breakage, matrix breakage,
and delamination. The data obtained in the form of time series were directly sent to a
CNN-Inception Time obtaining a very high classification accuracy. Appana et al. [84]
applied CNNs to effectively classify AE signals for bearing failure diagnosis. The authors
extracted envelope spectra (ES) from raw AE signals, and since these features demodulate
the signals by returning information on the frequency of failures and variations at unstable
speeds, CNNs have learned to extract distinctive features to effectively diagnose the defects
of the bearings. Hasan et al. [85] studied the incipient failures of a bearing through the
analysis of the AE signals and the application of CNNs. The authors used acoustic spectral
imaging (ASI) of acoustic emission (AE) signals by training a CNN with transfer learning.
Xia et al. [86] identified failures of rotating machinery with CNNs and AE signals: temporal
and spatial information of raw data from multiple AE sensors is considered. In Table 3, a
summary of the described methods is shown.

Table 3. CNN-based methods for AE testing.

Reference Input Features Extracted Accuracy

Shevchik et al. [76]
AE from powder

bed additive
manufacturing process

Wavelet spectrogram 83–89%

Han et al. [77]

AE from simulated
seismic event on a

physical scale model of
a foundation on stilts

Time and frequency
domains 88%

Hesser et al. [78]

AE from an excited
aluminum plate with
pencil-lead break and

two steel balls of
different diameters

Time domain,
wavelet spectrogram 94%



Appl. Sci. 2022, 12, 10476 16 of 30

Table 3. Cont.

Reference Input Features Extracted Accuracy

König et al. [79] AE from plain
bearing systems

Continuous wavelet
transform 82.5%

Ebrahimkhanlou et al. [80]
AE from an excited

aluminum plate using
Hsu–Nielsen source

Waveforms 95.2%

Li et al. [82] AE from rail crack
monitoring

Synchrosqueezed
wavelet transform 91–97%

Guo et al. [83]
AE from damage in

carbon-fiber-reinforced
composites

Frequency domains 99%

Appana et al. [84] AE from bearing
monitoring Envelope spectrum 94.8%

Hasan et al. [85] AE from bearing
monitoring

Acoustic spectral
imaging 94.67%

Xia et al. [86] AE from rotating
machinery

Temporal and spatial
information of the

raw data
99.41%

4.2. Recurrent Neural Network (RNN) Based Applications

RNNs are DL models introduced for the processing of sequential data, or data in
which the order of the observations is important [87]. These algorithms find application
above all in the analysis of time series [88]. The idea behind the RNN is the sharing of
parameters or the use of the same parameters along positions, instants of time, or, more
generally, steps of the sequence, for two main reasons:

• Possibility of applying the model, in the test phase, on sequences of different lengths
from those seen by the algorithm in the training phase;

• Reduction in the number of parameters and the ability to recognize information in
different positions along the sequence.

An important role in these networks is played by hidden units. In fact, when the
RNN is trained to carry out an activity that requires forecasting the future through the past,
typically, the network learns to use the hidden units as a lossy summary of the aspects
relevant to the activity of the input sequence up to time t [89]. This summary, in general, is
necessarily affected by losses since the hidden layer maps a sequence of arbitrary length
into a vector of fixed length [90].

A problem with this type of model is that for sequences that are particularly long over
time, the gradients tend to be infinity, to vanish, and for this reason, it is called a vanishing
gradient. This means that an RNN thus constructed struggles to code temporally distant
dependencies. To counteract the vanishing gradient, cells with a specific structure are used,
which contain methods to build a memory that can also be propagated [91].

One of these is the long short-term memory (LSTM), which represents a particular
RNN that solves the problem of a vanishing and exploding gradient that compromises the
effectiveness of the RNN [92]. The principle behind the LSTM is the memory cell, which
maintains the state outside the normal flow of the recurring network. The state, in fact,
has a direct connection with itself. Since the activation function for updating the state is,
in fact, an identity function, the derivative will be unitary; therefore, the gradient in the
back-propagation will not vanish or explode but will remain constant through all the time
instants of the unfolded network (Figure 6) [93].

In many applications where the goal is not the prediction of one or more future values
starting from the past (known) values, bidirectional recurrent neural networks can be
used. This type of algorithm uses two recurring layers in the same network, but without
direct connections between them, thus exploiting both the information in the order passed
as input to the model and the opposite one, therefore solving a limitation of the classic
recurring networks to the detriment of the introduction of parameters [94].
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Figure 6. RNN architecture unfolded: feedforward version of network of arbitrary length depending
on a sequence of inputs. Number of blocks of unfolded version essentially depends on length of
sequence to be analyzed. Within the network, it represents a pattern that temporally links elements
of the series that RNN analyzes.

The signals deriving from acoustic emission represent an example of a temporal
sequence that can be effectively modeled using RNNs. Zheng et al. [95] have effectively
identified the arrival of a microseismic emission by exploiting the RNN. The AEs deriving
from seismic events show a fair variability of the stress waveforms and considerable
differences in the trigger source phases of the rupture sources that make them difficult
to identify with traditional techniques. The authors showed that RNNs can identify
microseismic waves with discrete anti-interference capabilities. However, to achieve these
results, you need to have a significant number of labeled data sequences. König et al. [96]
detected plain bearing wear using the AE and RNN signals. The AE signals measured on a
planetary gearbox plain bearing test stand were sent to an LSTM: the network was able
to reconstruct the bearing wear history. Kolář et al. [97] identified three events in an AE
generated by the uniaxial loading of a sample of western granite using RNNs. The method
also allows calculating the position of the source AE of the tensor of the source moment.
Li et al. [98] faced the gear pitting fault diagnosis problem with the RNNs and CNNs. The
authors adopted the gated recurrent unit (GRU) network, an RNN with only three ports
and no internal cell status. The information stored in the internal cell state is embedded
in the hidden state of the gated recurring unit. This collective information is passed on
to the next gated recurring unit. The authors sent the raw AE signals to a CNN and the
vibration signals to a GRU network: finally, the chained outputs are sent to a softmax layer
to diagnose gear pitting failures. Hsu et al. [99] used the AE from a U-shaped aluminum
plate generated with multiple pencil-lead breaks for structural health monitoring. Two
broadband AE sensors collect the time series of the direct and reflected waves of the AE
signals, which are sent to an LSTM.
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Nguyen et al. [100] predicted the failure of a concrete structure using the AE and RNN
signals. The raw signals are first preprocessed by an SVM (support vector machine) to
extract only the signals relevant to the construction of the health indicator of the concrete
product. These indicators are then sent by an LSTM for the forecast of the remaining useful
life. Bi et al. [101] used the diamond wheel AE signals when grinding brittle materials
to construct a wheel condition regression prediction model. The AE components are
well-separated in the frequency domain highlighting wheel deterioration events. The
frequency spectrum of the AE signal was detected by constructing a time sequence during
the rectification. These data were sent to an LSTM-based regression prediction model.
Zhang et al. [102] used RNNs to detect railway cracks from AE signals. In this work, a
NARX (nonlinear autoregressive with exogenous input) network was used to eliminate
noise from the useful signal. First, the AE signals were collected under real operating
conditions, and subsequently, the crack signals were added with an artificial generation
system. AE noise has been effectively eliminated by bringing the SNR to values above
20 dB. In this way, it was easy to detect the AE signal deriving from the railway cracks
with respect to the background noise. Xia et al. [103] used the raw AE signal to accurately
estimate the remaining useful life of the machines. Sequential data from the sensor network
are merged and sent to the model, bypassing the feature extraction procedure that requires
prior knowledge. The prediction model is based on a hybrid approach that exploits the
long-term memory levels of an LSTM and classical neural networks. This extracts the
temporal information of the sequential data. Haile et al. [104] used acoustic emission
signals for the detection and localization of structural damage. Recurrent neural networks
have been adopted to process the raw time series data detected by the AE sensors. The
model can extract the characteristics of direct and reflected acoustic emission waves: the
reflected waves are filtered, whereas the direct waves are used to identify the position of
the source. The filtering process of the reflected waves is necessary to eliminate the noise
due to geometrically complex structures. For such structures, the direct waves can reach
obstacles and be reflected generating noise and modulation. In Table 4, a summary of the
described methods is shown.

Table 4. RNN-based methods for AE testing.

Reference Input RNN Type Accuracy

Zheng et al. [95] AE from microseismic wave LSTM 70–80%
König et al. [96] AE from sliding bearings LSTM -

Kolář et al. [97] AE from uniaxial loading of a
westerly granite specimen Two-step RNN 97%

Zhang et al. [102] AE from rail crack NARX -

Hsu et al. [99] AE from multiple
pencil-lead breaks LSTM 100%

Nguyen et al. [100] AE from loaded
concrete specimen LSTM -

Li et al. [98] Vibration signals GRU 98%

Bi et al. [101] AE from diamond
grinding wheel LSTM -

Haile et al. [104] AE from pencil-lead breaks LSTM 80%
Xia et al. [103] AE from machine functioning LSTM + ANN -

5. Comparison between ML-Based Methods for AE

In the previous sections, we have collected various contributions from the scientific
community that have adopted methodologies based on ML to address the problem of struc-
tural health monitoring using AE. To make a comparison between the different technologies
available, it is appropriate to apply the different algorithms on the same dataset. In this
regard, a dataset was used that contains the measurements using AE sensors performed on
concrete specimens [105]. The characteristics of the instrumentation used for data collection
are shown in Table 5. The tests were carried out on concrete specimens with dimensions
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of 15 × 15 × 15 cm left for 28 days at a temperature of about 20 ◦C and humidity of 95%.
The specimen was subjected to a nondestructive compression test to stress the formation of
cracks. The data were subsequently labeled by grouping them into three classes: tensile,
shear, and mixed.

Table 5. Characteristics of instrumentation used for data collection.

Device Type Data

Piezoelectric transducer Sensitivity 69 V/(m/s)
Piezoelectric transducer Resonant frequency 150 kHz
Piezoelectric transducer Directionality ±1.5 dB

DAQ-NI-6110 Channels 4
DAQ-NI-6110 Resolution 12 bit
DAQ-NI-6110 Sampling frequency 5 Msample/s

Several ML-based algorithms have been applied to address the data classification
problem. The dataset consists of 1650 records and 1000 features. For the validation of
the results, k-fold cross-validation was applied, one of the most widespread validation
techniques of ML models, used to quantify the accuracy of the prediction and is a good
preventive measure against overfitting. If the sample dataset is limited due to experimental
problems or the impossibility of repeating the experiment to obtain a greater number of
examples with which to train the algorithm, a method of splitting the algorithms is often
used. Data are available in different categories. In the method called K-fold, the dataset
available at the beginning of the experiment is divided into K groups, of which K-1 are
used for the training and the remaining group for the generalization test. This procedure is
repeated for all the K groups chosen, varying each time the group chosen for generalization.
This has the advantage that all examples are used, at least once, for both training and testing.
On a practical level, this method is very similar to that of the bootstrap type and has the
advantage of being able to estimate the characteristic parameters of pattern recognition by
distributing the results obtained. A problem inherent in the method lies in the calculation
speed, as it could often be expensive to go to evaluate a large number of programs runs for
all possible K’s. In our case, a cross-validation with five folds was applied.

Table 6 summarizes the characteristics of the classification algorithms adopted and the
results in terms of accuracy. The following algorithms were applied.

Table 6. Summary of different ML-based models applied.

Model Kernel Accuracy (%) Others

Fine tree - 90.2 Num. of splits = 100

Medium tree .. 75.8 Num. of splits = 30

Linear discriminant - 73.9 Full covariance structure

Gaussian naïve Bayes - 66.8 Gaussian distribution

Support vector machine Quadratic 97.6 Automatic kernel scale

Support vector machine Cubic 97.9 Automatic kernel scale

Support vector machine Gaussian 92.3 Kernel scale = 7.9

KNN - 98.3 Euclidian distance metric

KNN - 91.5 Cosine distance metric

Boosted trees - 95.1 AdaBoost ensemble

Bagged trees - 97.5 Bag ensemble

Subspace KNN - 98.3 Subspace ensemble
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• Decision tree: The decision tree is a graph characterized by nodes and edges. The
highest no-do is defined as the root node; each intermediate node represents a test
carried out on a certain attribute, and the arcs represent the result of the test. The
attributes against which the test is performed in each intermediate node are called
splitting attributes as they divide the data into subgroups. The goal of the algorithm is
to carry out various tests on the values of the attributes starting from the root node, so
that each record, based on the result obtained in each test, travels a more or less long
path between the various intermediate nodes until arriving at a leaf node that defines
its class to which it belongs. The decision tree has a structure like a flowchart: it consists
of internal nodes (the first at the top is called the root node, and the following ones are
called child nodes), which represent the subsets of the initial dataset divided according
to the attributes; branches, which represent the decision-making rules according to
which the division takes place; and leaf nodes, which represent the final subsets into
which the initial database was split.

• Linear discriminant: The purpose of the analysis is to find one or more linear combi-
nations of parameters that allow optimal discrimination between the various groups.
In this way, an observation can be attributed to a given group based on the measure-
ments. The methods of linear discriminant analysis can be justified by assuming that
the distribution is, within each group, normal with a common variance–covariance
matrix and based on semiempirical criteria of separation between groups, without
hypothesis, and distributional on variables. The goal is to project the n-dimensional
space of the features of the input data into a smaller subspace, removing the redun-
dant and dependent features. The classification is based on three steps: calculate the
separability between different classes (for example, the distance between the means of
different classes), calculate the separability between the elements of the same class,
and build a space smaller than the starting one in which the separation between the
different classes is maximized and the separation between elements of the same class
is minimized.

• Gaussian naïve Bayes: Using the Bayes theorem, the algorithm allows you to assign a
label to each group of text to facilitate their classification. This is what spam filtering, a
popular application of the naïve Bayes algorithm, does. Basically, it is among the most
popular learning methods that group analyzed data based on their similarity. The
algorithm calculates the probabilities for each factor using the previous formula and
selects the result with the highest probability (the maximum a posterior probability).
While the estimation of the a priori probabilities is quite simple, if we do not have
elements, we can hypothesize the equiprobable classes; the knowledge of conditional
densities is possible only in theory. We often make assumptions about the shape of the
distributions and learn the fundamental parameters from the training set.

• Support vector machine: It is used in various fields, including facial recognition, text,
or image classification. The algorithm works by dividing the data into different classes
by finding a dividing line between the different classes (usually called hyperplane).
This line is not casually taken: it is the one that maximizes the distance between the
various classes in the case of more than one. In this way, the greater the distance, the
greater the accuracy of the model. A hyperplane is a subspace of dimension n-1 with
respect to the space in which it is contained: therefore, if we are talking about points
in a 2D space, the hyperplane will be a straight line; in a 3D space, it will be a plane;
and so on. In the optimal case, there is a hyperplane that completely separates the
points of the two classes: this does not happen, so adjustments are applied to it in the
form of soft margins or kernel tricks. In the first case, the model is granted a margin
of error, that is, one or more points of a class can be found in the other class. In the
second case, we find a nonlinear hyperplane, applying suitable transformations to the
initial features. The support vector machine is also used for more complex models
(nonlinear SVMs). In this case, it is not possible to separate the training data using a
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hyperplane but through a kernel function, which helps us to model nonlinear models
of larger dimensions.

• K-nearest neighbors (KNN): This is a supervised learning algorithm in that, unlike
the other classifiers, it does not involve the creation of a model, but the training phase
simply consists of memorizing the values assumed by the characteristics and labels.
Its operation is based on the calculation of the distance between the record whose label
you want to predict and the K elements of the dataset closest to it. The record will be
labeled based on the labels of the selected K neighbors. Since the algorithm is based on
the concept of distance, it is important to normalize the data in the preprocessing phase
so that its measurement is not dominated by one of the attributes present in the dataset.
The object to be classified is graphically represented in a three-dimensional space based
on the attributes it possesses and is then classified according to its surroundings; it is
assigned the class to which the majority of the closest K samples belong.

• Ensemble methods: With ensemble, we mean a set of basic learning machines whose
predictions are combined to improve the overall performance. The variety of terms
with which the various machines are called in the literature reflects the absence of a
unified theory on ensemble methods and the fact that it is a research field yet to be
explored in many respects. The ensemble algorithms are made up of several basic
classifiers combined with each other, according to the philosophy that a combination
of classifiers provides better results than the single one. There are different types of
ensembles: bagging uses a combination of weak models, each of which learns from a
subset of the initial data. The final prediction is none other than the average (or the
majority vote) of the output of the various ensemble models of this type, for example,
random forest, composed of n decision trees. In voting, a simplified version of bagging
is used but which, however, allows us to combine the results of different categories
of classifiers. Boosting combines the results of individually weak models. However,
it does not do so at the end, but sequentially: each model is trained on the results
of the previous model, giving more weight each time to the erroneous predictions.
Ensembles of this type are AdaBoost and GradBoost. Stacking is an ensemble method
structured on several levels: the output provided by the classifiers of a level is fed to
other classifiers, called "meta-classifiers". Finally, cascading is composed of a cascade
of classifiers that are sequentially interrogated when the previous one does not provide
some certainty about the results obtained.

By analyzing Table 6, we can see that the methods that have returned the best accuracy
both involve KNN technology. It is used for regression and classification, in which the
result determines whether the analyzed object belongs to the most common class of its k
neighbors (with k positive integer). The strength of this algorithm is that it allows you to
store all available instances and classify them by judging their distance from their neighbors.
The calculated distance between the two data points is usually the Euclidean distance,
although the Manhattan, Minkowski, or Hamming distance is sometimes used. The first
three functions are used for continuous variables and the fourth (Hamming) for categorical
variables. We can note that the adoption of the Euclidean distance gives much better results
than the cosine distance. The same ensemble method that returned results comparable with
the KNN methodology is characterized by the same technology. Slightly lower results were
obtained with both quadratic and cubic SVM, demonstrating that these technologies are
also suitable for this type of classification. Finally, AdaBoost and Bag ensembles returned
slightly lower results.

6. Summary and Future Trends

Damage diagnostics are performed by detecting the origin of the damage, identify-
ing the type of damage, and locating the damage. The damage identification process is
characterized by nondeterministic features such as noise, missing data, etc. Many AE char-
acteristics are strongly influenced by the detection system: for example, amplitude; energy;
rise time; duration; and counts return values that significantly depend on the distance
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between the sensor and source, on the type of sensor, on the geometry of the material, etc.
These parameters must, therefore, be adequately considered to obtain AE-based monitoring
that is reliable and robust. Methodologies based on the exploitation of the AE waveform
significantly reduce the effect of the threshold level. The analytical tools associated with
the great performances of modern computers allow the processing of large amounts of
data (Big Data), returning detailed spectral analyzes, and provide us with groupings of AE
parameters that were previously unattainable. This evolution dictated by technological
development opens new scenarios in the search for correlations between acoustic events
and damage mechanisms.

The monitoring of the health of materials and structures through the analysis of AE
strongly depends on the quality of the sensors: the technological evolution we are expe-
riencing obviously also affects this type of devices, which are becoming more and more
performing. Traditionally, AE technology has exploited piezoelectric sensors, characterized
by significant dimensions and with limits of use in harsh environments (high pressures and
high temperatures). Furthermore, this type of sensor is subject to corrosion and has been
shown to be sensitive to electromagnetic interference. Piezoelectric wafer active sensors
(PWASs) represent a low-cost solution that can be inserted within composite materials
or between layers of overlapping joints. The resistance to high temperatures of these
sensors depends on the PWAS material and on the frequency; in fact, the antiresonance
and resonance frequencies have a linear relationship with temperature [106]. Fiber optic
sensors are inexpensive and not very sensitive to electromagnetic interference. Furthermore,
they show high reliability even in harsh environments with low operating costs, can be
easily interrogated at long distances, and offer high spatial coverage [107]. Microelectrome-
chanical systems (MEMS) sensors have proven effective in detecting and controlling on a
microscale and generating effects on a macroscale. These are miniaturized sensors used as
resonators to amplify the signal-to-noise ratio, with a resonant silicon microstructure and a
thin piezoelectric layer, mounted on a ceramic container. Such sensors are characterized by
significantly smaller dimensions and weight and by a sensitivity comparable with that of
conventional AE sensors [108].

ML-based techniques represent an alternative approach to traditional methodologies
for identifying damage through AE. Although it requires significant resources for algorithm
training, automatic monitoring returns optimization processes that are shorter than con-
ventional optimization techniques based on manual procedures. These technologies show
significant sensitivity to changes in high-frequency transmitted acoustic waves due to the
emergence of a defect [109]. The efforts of researchers concentrated on the characterization
of the AE signal features to obtain models capable of discriminating between the types of
defects: the influence of process parameters and operating conditions on the characteristics
of the associated AE signals is evident.

The performance of a machine-learning-based model strongly depends on the quality
of the data used as input in the training phase. Given the complexity of the phenomenon,
fault estimation is often carried out starting from incomplete monitoring due, for example,
to anomalies found in the acquisition devices or due to an interruption in data transmission,
without forgetting the background noise that is always present in the workplaces. A
monitoring affected by these problems will return unreliable diagnoses. The missing data,
therefore, become a crucial element for the success of the procedure and must, therefore,
be adequately treated through the different approaches available. Possible preventive
actions to deal with this problem include deleting incomplete data or estimating missing
data [110]. Some ML-based algorithms can automatically manage incomplete data through
the calculation of probabilities for estimating the degree of uncertainty or using expectation-
maximization (EM) technology for parameter estimation.

Additionally, most ML-based methods take a supervised approach by leveraging the
associated labels from the expert to make the diagnosis. In this way, however, the model
only learns the type of defect labeled, whereas a new defect is rejected due to the distance
between the labeled and unlabeled data, showing an inability of the model to adapt to the
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evolution of the system. Another important factor limiting the performance of these models
is the unbalanced distribution of the data: the data collected that identify the operating
conditions with the health of the structure are usually more represented than those that
instead identify the damage. Working with unbalanced data involves the elaboration of a
model with reduced accuracy of the diagnosis, strongly shifted toward the most observed
class. The adoption of ensemble methods and resampling techniques can reduce the effect
of this imbalance in the performance of the model.

In the previous sections, we have analyzed different applications of artificial intelli-
gence techniques for the processing of AE signals: ML-based algorithms can be used to
predict and locate structural defects in the absence of explicit analytic functions. It has
been shown that the application of ML to the position of the source AE compensates for
the effects of acoustic anisotropy, boundary reflections, and obstacles in the propagation
path thanks to its ability to manage complex problems. The training of these algorithms
is linked to the configuration of the monitoring system and the geometric and physical
characteristics of the target structures. Most of the experimental AE test database is required
to correctly interpret the signals and establish a well-trained algorithm for the location of
the AE source. Obtaining such a database through experiments requires a lot of work, time,
and money. To minimize the required experiments, an alternative way is to use simulation
to study the mechanism underlying the detection of AE. Most existing studies using the
wave propagation simulation model focus on flat plates and simple geometries. Referring
to realistic structures, the analysis with simulated data is mainly used to identify the regions
of possible damage sites that can, therefore, be considered areas of primary interest for
structural monitoring. A very important aspect of the AE technique is the ability to identify
the modality of fissure starting from recorded parameters. By determining the mechanism
underlying the cracking event, the classification of the cracking mode plays an important
role in understanding and predicting the likely failure modes of the complete structure.
Furthermore, it can help detect the progress of the damage and provide guidelines for the
correct maintenance process to improve safety and structural durability.

Unsupervised ML methods have been successfully used for the grouping of AE
signals. The results obtained depend on the structure of the dataset collected with AE
sensors. The techniques based on k-means have proved to be simple, fast, but above
all effective when applied to structures on contained datasets. The hierarchical model,
on the other hand, proved to be suitable for the treatment of complex structures with a
particularly extensive dataset at the expense of a higher computational cost. A weakness
of these methodologies lies in the difficulty of repeatable results. A well-labeled training
dataset is resource-intensive. On the other hand, its availability makes it possible to use
supervised classification techniques preferable to unsupervised techniques, at least in the
case of complex structures. The unsupervised algorithms return the data of the training
set that are in the vicinity of the data of the test sets, thus providing an estimate of the
belonging of such data to a specific class. These algorithms are faster during the training
process; however, they are slow during the grading process [111]. Algorithms based on
clustering can also be very useful in identifying anomaly data, thus improving the quality
of monitoring through AE sensors.

Structural damage detection requires in-depth knowledge of the system, which is
often not available. Often, monitoring the status of a system with the use of state-of-the-art
sensors does not provide us with an exhaustive picture of its state of health. A robust
damage identification system must fill these gaps through innovative methodologies. The
data-driven approach can guarantee a solution to the problem if it provides us with a model
capable of generalizing. In fact, the purpose of machine learning is to build an algorithm
that can classify new inputs never seen during the learning phase. The generalization
capacity of the system is precisely expressed in the ability to make correct predictions
on inputs not observed during training. The effectiveness of a self-learning algorithm
is measured with a low training error and a small difference between the training and
test errors. These two factors identify two of the problems related to machine learning:
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overfitting and underfitting. Underfitting occurs when the model is unable to achieve
a sufficiently small training error. Overfitting, on the other hand, occurs when the gap
between training and test errors is too wide.

There are many algorithms based on ML, and each family of algorithms has specific
characteristics that govern their use in each context. Table 7 compares the performances
returned by the models most adopted by the scientific community for AE testing. To
facilitate comparison, ranges of values declared by the authors in the respective articles have
been reported. Accuracy metric has been adopted for performance evaluation. Accuracy
measures how close the forecast is to the current value; it is usually given as a percentage.

Table 7. Performance of different Machine Learning-based models for Acoustic Emission Testing.

Model Min Accuracy (%) Max Accuracy (%)

Clustering methods 80 90

Artificial neural network (ANN) 51.1 98.6

Convolutional neural network (CNN) 82.5 99

Recurrent neural network (RNN) 70 98

AE and ANNs have been used in the literature to address the problem of localization
of fracture sources. For the analysis of AE data, advanced algorithms based on pattern
recognition have been developed with the use of ANNs. These methods require signal
characteristics extracted in the time or frequency domain. These techniques do not require
knowledge of the wave velocity or the structural geometry of the material and are able to
estimate the intensity of the source and its position. An ANN shows itself to be efficient
in the classification of faults; then, by adapting the structure of the network to the type of
data, it is possible to significantly increase its classification capacity. However, the ANN
training process is complex and computationally demanding.

Analyzing Table 7, we can see that the accuracy returned by the models for fault
identification has comparable values. This confirms that the evaluation metric, referable
to the works available in the literature, is not the suitable tool to guide the researcher in
the choice of the most appropriate algorithm for the identification of a specific structural
damage. This choice can be made only after verifying how the different algorithms adapt to
the available data, providing the system with adequate generalization capacity. However, a
comparison of the results in Table 7 says some things: the algorithms based on CNNs and
RNNs seem to return results with greater accuracy; this can be justified by the ability to
automatically extract the characteristics. This increased ability to extract knowledge pays
off with computational costs that become more expensive.

The application of advanced deep-learning algorithms such as CNNs brings consider-
able benefit in the localization of acoustic emission sources. Compared with other methods,
the CNN-based approach has a greater potential for in situ detection of noise emission
sources. No preliminary information is required on the distribution of the acoustic emission
speed in the structure. Deep learning is a data-driven approach that does not require the
prior extraction of functionality. The deep-learning architecture is directly applied to the
data collected by the sensors because it automatically learns and extracts the representative
characteristics. In this way, deep learning achieves better performance than traditional algo-
rithms based on the extraction of functionality. The extraction of functionality through DL
is like a filtering process and is particularly useful for analyzing the physical meanings of
such models: visualization technologies will then visually express the knowledge extracted
from the models.

Table 8 summarizes the strengths and weaknesses of each family of algorithms. The
different potentials make us understand how the choice of the algorithm depends on the
characteristics of the system to be modeled.
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Table 8. ML algorithms features for Acoustic Emission Testing.

Model Weaknesses Strengths

Clustering methods High error, biased results More feasible, fewer
resources required

Artificial neural
network (ANN)

High computing cost,
physical meaning Fault tolerance, high accuracy

Convolutional neural
network (CNN)

High computing cost, long
time training

Feature extraction free,
efficient for big data

Recurrent neural
network (RNN)

Computing complexity, higher
memory required

Robust to input size, short
memory problem free

Table 8 shows that the complexity of the model is linked to the characteristics of the
input to be processed. Systems with significant input dimensions require more complex
modeling tools with increased computational cost. However, this does not tell us that
necessarily the most complex choice is the one best suited to the solution of the problem; in
fact, it often happens that the performances of the algorithms are different according to the
different inputs.

A further help in case of incomplete or unbalanced data is the use of transfer learning
(TL): TL is an ML-based technique that focuses on memorizing relationships between
inputs and outputs, patterns, and models, acquired during the training phase on a problem
unrelated to the one under consideration, and then put them in relation with the latter. The
goal is to reuse or transfer information from previously learned tasks to learn new ones.
All this has led to a significant increase in the number and type of algorithms used in the
field of ML. This technique also seeks to improve the efficiency of the single sample of
the dataset.

We can then collect data from multiple sources and then associate a common classifica-
tion, but the information contained in these input data is not all related to the output class:
they could return diagnostic knowledge useful for the discrimination of the states of the
structure, as well as could induce the system to an incorrect classification. To avoid these
criticalities, it is necessary to adequately study both systems through experimental tests to
identify parameters capable of guaranteeing transferability between domains suitable for
the selection of relevant source data.

To detect the onset of damage using AE, descriptive and qualitative analyses can lead
to different interpretations. In the future, it would be appropriate to define quantitative
criteria specifically designed for the structure under consideration. Thanks to the highly
computational computers we have today, it is possible to develop a fail-safe DL-based
fracture identification system with significantly improved diagnostic performance. This
system can bypass the need to extract the functionality required by other ML methods by
reducing the risk of error associated with empirical procedures.

7. Conclusions

In this review, we have described the machine-learning-based methods most used
by the scientific community for the detection of structural damage. For each type of
technology, we introduced the methodology and subsequently examined the contributions
most appreciated by the scientific community that has exploited these methodologies to
identify structural damage.

Cracks and defects of various kinds can devastate the performance of components and
structures to such an extent that their identification is an essential part of quality control
in all fields of engineering. AE represents a technique used for structural monitoring that
falls within the nondestructive tests: it is a passive monitoring technique such that it is not
necessary to directly supply energy to the monitored structure from the outside, but energy
is used from the same source of damage. Among the main features of the AE technique, we
find the ability to localize damage. The identification of the position of origin can allow an
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accurate global investigation of a structure and a preliminary understanding of the possible
damaged area.

Analytical techniques make the identification and localization procedures of acoustic
emission sources complex; this is particularly true for structurally complex systems. To
solve these criticalities, optimization techniques have been adopted to separate the AE
signals from noise. These techniques require adequate experience in signal processing to
discriminate between the different sources of the AE signals. A lack of experience can
lead to a misinterpretation of the signals with an incorrect localization of the damage.
ML techniques such as ANNs have shown enormous potential for the localization of the
acoustic emission source. However, the significant amount of data required for ANN
training makes them inconvenient, at least for large structures. Furthermore, we have seen
that the location of the AE source is strongly influenced by the nature of the defect. The
performance of localization methods can be improved by analyzing the damage diagnostics
in detail. The identification system based on ML algorithms returns a greater reliability
and adaptability.

ML-based diagnostic models can automatically recognize the presence of damage in a
structure. However, the extraction of the characteristics is still based on the intervention of
experts with the consequent associated empirical risk. The advent of DL revolutionizes
the sector bringing significant advantages by returning end-to-end diagnostic models
that automatically learn the characteristics from the collected data and, subsequently, can
identify the possible damage. However, these models require enough labeled samples,
which entail a significant burden from the point of view of the resources to be used. TL can
be used to reduce the cost of data collection by transferring previously acquired diagnostic
knowledge to other domains.

Author Contributions: Conceptualization, G.C. and G.I.; methodology, G.C.; investigation, G.C.;
measurements, G.C. and G.I.; software, G.C.; postprocessing data, G.C. and G.I.; data curation, G.C.
and G.I.; writing—original draft preparation, G.C. and G.I.; writing—review and editing, G.C. and
G.I.; visualization, G.C.; supervision, G.C. and G.I.; references study, G.C. and G.I. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grosse, C.U.; Ohtsu, M. (Eds.) Acoustic Emission Testing; Springer Science & Business Media: Berlin, Germany, 2008.
2. Nazarchuk, Z.; Skalskyi, V.; Serhiyenko, O. Acoustic Emission; Foundations of Engineering Mechanics; Springer: Cham, Switzer-

land, 2017.
3. Lockner, D. The role of acoustic emission in the study of rock fracture. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30,

883–899. [CrossRef]
4. Ohtsu, M. The history and development of acoustic emission in concrete engineering. Mag. Concr. Res. 1996, 48, 321–330.

[CrossRef]
5. Scruby, C.B. An introduction to acoustic emission. J. Phys. E Sci. Instrum. 1987, 20, 946–953. [CrossRef]
6. Kharghani, M.; Goshtasbi, K.; Nikkah, M.; Ahangari, K. Investigation of the Kaiser effect in anisotropic rocks with different angles

by acoustic emission method. Appl. Acoust. 2020, 175, 107831. [CrossRef]
7. Schofield, B.H. Acoustic Emission under Applied Stress; Air Force Materials Laboratory, Aeronautical Systems Division, Air Force

Systems Command, United States Air Force: Waltham, MA, USA, 1964; Volume 63, No. 509.
8. Tatro, C.A. Sonic techniques in the detection of crystal slip in metals. Eng. Res. 1959, 1, 23–28.
9. Dahmene, F.; Yaacoubi, S.; EL Mountassir, M. Acoustic Emission of Composites Structures: Story, Success, and Challenges. Phys.

Procedia 2015, 70, 599–603. [CrossRef]
10. Ono, K. Application of acoustic emission for structure diagnosis. Diagnostyka 2011, 2, 3–18.

http://doi.org/10.1016/0148-9062(93)90041-B
http://doi.org/10.1680/macr.1996.48.177.321
http://doi.org/10.1088/0022-3735/20/8/001
http://doi.org/10.1016/j.apacoust.2020.107831
http://doi.org/10.1016/j.phpro.2015.08.031


Appl. Sci. 2022, 12, 10476 27 of 30

11. Gorman, M.R. Plate wave acoustic emission. J. Acoust. Soc. Am. 1991, 90, 358–364. [CrossRef]
12. Scott, I.G. Basic Acoustic Emission; CRC Press: New York, NY, USA, 1991; Volume 6.
13. Mizutani, Y.; Inaba, H.; Enoki, M.; Nakano, M.; Shigeishi, M.; Yuyama, S.; Takeda, S.; Shiotani, T.; Mizutani, Y. (Eds.) Practical

Acoustic Emission Testing; Springer: Tokyo, Japan, 2016; pp. 66–69.
14. Grosse, C.U.; Ohtsu, M.; Aggelis, D.G.; Shiotani, T. (Eds.) Acoustic Emission Testing: Basics for Research—Applications in Engineering;

Springer Nature: Cham, Switzerland, 2021.
15. Mitchell, T.M.; Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; Volume 1, No. 9.
16. Qin, T. Machine Learning Basics. In Dual Learning; Springer: Singapore, 2020; pp. 11–23.
17. Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4, No. 4;

p. 738.
18. Ciaburro, G.; Iannace, G. Modeling acoustic metamaterials based on reused buttons using data fitting with neural network. J.

Acoust. Soc. Am. 2021, 150, 51–63. [CrossRef]
19. Ciaburro, G. Sound Event Detection in Underground Parking Garage Using Convolutional Neural Network. Big Data Cogn.

Comput. 2020, 4, 20. [CrossRef]
20. Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional activation feature for

generic visual recognition. In Proceedings of the 31st International Conference on Machine Learning, PMLR, Beijing, China,
21–26 June 2014; pp. 647–655.

21. Romero, V.P.; Ciaburro, G.; Brambilla, G.; Garzón, C.; Maffei, L. Representation of the soundscape quality in urban areas through
colours. Noise Mapp. 2019, 6, 8–21. [CrossRef]

22. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
23. Sammut, C.; Webb, G.I. (Eds.) Encyclopedia of Machine Learning; Springer Science & Business Media: New York, NY, USA, 2011.
24. Zhao, L.; Kang, L.; Yao, S. Research and Application of Acoustic Emission Signal Processing Technology. IEEE Access 2018, 7,

984–993. [CrossRef]
25. Ohno, K.; Ohtsu, M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010, 24, 2339–2346.

[CrossRef]
26. Shahidan, S.; Pulin, R.; Bunnori, N.M.; Holford, K. Damage classification in reinforced concrete beam by acoustic emission signal

analysis. Constr. Build. Mater. 2013, 45, 78–86. [CrossRef]
27. Aggelis, D.; Mpalaskas, A.; Matikas, T. Investigation of different fracture modes in cement-based materials by acoustic emission.

Cem. Concr. Res. 2013, 48, 1–8. [CrossRef]
28. Holford, K.M.; Eaton, M.J.; Hensman, J.J.; Pullin, R.; Evans, S.L.; Dervilis, N.; Worden, K. A new methodology for automating

acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview. Prog. Aerosp.
Sci. 2017, 90, 1–11. [CrossRef]

29. Moradian, Z.; Einstein, H.H.; Ballivy, G. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic
Emission Signals. Rock Mech. Rock Eng. 2015, 49, 785–800. [CrossRef]

30. Ahadi, M.; Bakhtiar, M.S. Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to
Acoustic Emission signals. Appl. Acoust. 2010, 71, 634–639. [CrossRef]

31. Standard, A.S.T.M. E1316; Standard Terminology for Nondestructive Examinations. ASTM International: West Conshohocken, PA,
USA, 2006.

32. Standard, A.S.T.M. E610; Standard Terminology Relating to Acoustic Emission. ASTM International: West Conshohocken, PA,
USA, 1989.

33. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques
and developments. Neurocomputing 2017, 267, 664–681. [CrossRef]

34. Ghosal, A.; Nandy, A.; Das, A.K.; Goswami, S.; Panday, M. A Short Review on Different Clustering Techniques and Their
Applications. In Emerging Technology in Modelling and Graphics; Springer: Singapore, 2020; pp. 69–83. [CrossRef]

35. Cooper, C.; Franklin, D.; Ros, M.; Safaei, F.; Abolhasan, M. A Comparative Survey of VANET Clustering Techniques. IEEE
Commun. Surv. Tutor. 2016, 19, 657–681. [CrossRef]

36. Kaur, P.J. A survey of clustering techniques and algorithms. In Proceedings of the 2015 2nd IEEE International Conference on
Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015; pp. 304–307.

37. Ghosh, S.; Dubey, S.K. Comparative analysis of k-means and fuzzy c-means algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4,
35–39. [CrossRef]

38. Omkar, S.N.; Suresh, S.; Raghavendra, T.R.; Mani, V. Acoustic emission signal classification using fuzzy C-means clustering. In
Proceedings of the 9th International Conference on Neural Information Processing, ICONIP’02, Singapore, 18–22 November 2002;
IEEE: Piscataway, NJ, USA, 2003; Volume 4, pp. 1827–1831.

39. Marec, A.; Thomas, J.H.; El Guerjouma, R. Damage characterization of polymer-based composite materials: Multivariable analysis
and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 2008, 22, 1441–1464. [CrossRef]

40. Oskouei, A.R.; Heidary, H.; Ahmadi, M.; Farajpur, M. Unsupervised acoustic emission data clustering for the analysis of damage
mechanisms in glass/polyester composites. Mater. Des. 2012, 37, 416–422. [CrossRef]

41. Behnia, A.; Chai, H.K.; GhasemiGol, M.; Sepehrinezhad, A.; Mousa, A.A. Advanced damage detection technique by integration
of unsupervised clustering into acoustic emission. Eng. Fract. Mech. 2018, 210, 212–227. [CrossRef]

http://doi.org/10.1121/1.401258
http://doi.org/10.1121/10.0005479
http://doi.org/10.3390/bdcc4030020
http://doi.org/10.1515/noise-2019-0002
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1109/ACCESS.2018.2886095
http://doi.org/10.1016/j.conbuildmat.2010.05.004
http://doi.org/10.1016/j.conbuildmat.2013.03.095
http://doi.org/10.1016/j.cemconres.2013.02.002
http://doi.org/10.1016/j.paerosci.2016.11.003
http://doi.org/10.1007/s00603-015-0775-1
http://doi.org/10.1016/j.apacoust.2010.02.006
http://doi.org/10.1016/j.neucom.2017.06.053
http://doi.org/10.1007/978-981-13-7403-6_9
http://doi.org/10.1109/COMST.2016.2611524
http://doi.org/10.14569/IJACSA.2013.040406
http://doi.org/10.1016/j.ymssp.2007.11.029
http://doi.org/10.1016/j.matdes.2012.01.018
http://doi.org/10.1016/j.engfracmech.2018.07.005


Appl. Sci. 2022, 12, 10476 28 of 30

42. Mohammadi, R.; Najafabadi, M.A.; Saeedifar, M.; Yousefi, J.; Minak, G. Correlation of acoustic emission with finite element
predicted damages in open-hole tensile laminated composites. Compos. Part B Eng. 2016, 108, 427–435. [CrossRef]

43. Saeedifar, M.; Najafabadi, M.A.; Zarouchas, D.; Toudeshky, H.H.; Jalalvand, M. Clustering of interlaminar and in-tralaminar
damages in laminated composites under indentation loading using Acoustic Emission. Compos. Part B Eng. 2018, 144, 206–219.
[CrossRef]

44. Zhu, S.-B.; Li, Z.-L.; Zhang, S.-M.; Liang, L.-L.; Zhang, H.-F. Natural gas pipeline valve leakage rate estimation via factor and
cluster analysis of acoustic emissions. Measurement 2018, 125, 48–55. [CrossRef]

45. Shateri, M.; Ghaib, M.; Svecova, D.; Thomson, D. On acoustic emission for damage detection and failure prediction in fiber
reinforced polymer rods using pattern recognition analysis. Smart Mater. Struct. 2017, 26, 065023. [CrossRef]

46. Fotouhi, M.; Sadeghi, S.; Jalalvand, M.; Ahmadi, M. Analysis of the damage mechanisms in mixed-mode delamination of
laminated composites using acoustic emission data clustering. J. Thermoplast. Compos. Mater. 2016, 30, 318–340. [CrossRef]

47. Sayar, H.; Azadi, M.; Ghasemi-Ghalebahman, A.; Jafari, S.M. Clustering effect on damage mechanisms in open-hole laminated
carbon/epoxy composite under constant tensile loading rate, using acoustic emission. Compos. Struct. 2018, 204, 1–11. [CrossRef]

48. Zhao, W.-Z.; Zhou, W. Cluster analysis of acoustic emission signals and tensile properties of carbon/glass fiber–reinforced hybrid
composites. Struct. Health Monit. 2018, 18, 1686–1697. [CrossRef]

49. Mi, Y.; Zhu, C.; Li, X.; Wu, D. Acoustic emission study of effect of fiber weaving on properties of fiber-resin composite materials.
Compos. Struct. 2020, 237, 111906. [CrossRef]

50. Pei, N.; Shang, J.; Bond, L.J. Analysis of Progressive Tensile Damage of Multi-walled Carbon Nanotube Reinforced Carbon Fiber
Composites by Using Acoustic Emission and Micro-CT. J. Nondestruct. Eval. 2021, 40, 51. [CrossRef]

51. Pomponi, E.; Vinogradov, A. A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 2013, 40, 791–804.
[CrossRef]

52. Jain, A.; Mao, J.; Mohiuddin, K. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [CrossRef]
53. Hopfield, J.J. Artificial neural networks. IEEE Circuits Devices Mag. 1988, 4, 3–10. [CrossRef]
54. Hassoun, M.H.; Intrator, N.; McKay, S.; Christian, W. Fundamentals of Artificial Neural Networks. Comput. Phys. 1996, 10, 137.

[CrossRef]
55. Ciaburro, G.; Iannace, G.; Puyana-Romero, V.; Trematerra, A. A Comparison between Numerical Simulation Models for the

Prediction of Acoustic Behavior of Giant Reeds Shredded. Appl. Sci. 2020, 10, 6881. [CrossRef]
56. De Oliveira, R.; Marques, A. Health monitoring of FRP using acoustic emission and artificial neural networks. Comput. Struct.

2008, 86, 367–373. [CrossRef]
57. Kalafat, S.; Sause, M.G. Acoustic emission source localization by artificial neural networks. Struct. Health Monit. 2015, 14, 633–647.

[CrossRef]
58. Boczar, T.; Borucki, S.; Cichon, A.; Zmarzly, D. Application possibilities of artificial neural networks for recognizing partial

discharges measured by the acoustic emission method. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 214–223. [CrossRef]
59. Ativitavas, N.; Pothisiri, T.; Fowler, T.J. Identification of Fiber-reinforced Plastic Failure Mechanisms from Acoustic Emission Data

using Neural Networks. J. Compos. Mater. 2005, 40, 193–226. [CrossRef]
60. Moia, D.F.G.; Thomazella, I.H.; Aguiar, P.R.; Bianchi, E.C.; Martins, C.H.R.; Marchi, M. Tool condition monitoring of aluminum

oxide grinding wheel in dressing operation using acoustic emission and neural networks. J. Braz. Soc. Mech. Sci. Eng. 2014, 37,
627–640. [CrossRef]

61. Jierula, A.; Wang, S.; Oh, T.-M.; Wang, P. Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep
Piles Using Artificial Neural Networks with Acoustic Emission Data. Appl. Sci. 2021, 11, 2314. [CrossRef]

62. Łazarska, M.; Wozniak, T.Z.; Ranachowski, Z.; Trafarski, A.; Domek, G. Analysis of acoustic emission signals at austempering of
steels using neural networks. Met. Mater. Int. 2017, 23, 426–433. [CrossRef]
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