
Citation: Gómez-Meire, S.;

Márquez, C.G.; Aray-Cappello, E.P.;

Méndez, J.R. Using Live Spam Beater

(LiSB) Framework for Spam Filtering

during SMTP Transactions. Appl. Sci.

2022, 12, 10491. https://doi.org/

10.3390/app122010491

Academic Editors: Akemi Galvez

Tomida and Andres Iglesias Prieto

Received: 20 September 2022

Accepted: 16 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Using Live Spam Beater (LiSB) Framework for Spam Filtering
during SMTP Transactions
Silvana Gómez-Meire 1 , César Gabriel Márquez 1, Eliana Patricia Aray-Cappello 1 and José R. Méndez 1,2,3,*

1 Department of Computer Science, Universidade de Vigo, ESEI—Escola Superior de Enxeñaría Informática,
Edificio Politécnico, Campus Universitario As Lagoas S/N, 32004 Ourense, Spain

2 CINBIO—Biomedical Research Centre, Universidade de Vigo, Campus Universitario Lagoas-Marcosende,
36310 Vigo, Spain

3 SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital
Álvaro Cunqueiro Bloque técnico, Estrada de Clara Campoamor, 341, 36312 Vigo, Spain

* Correspondence: moncho.mendez@uvigo.es; Tel.: +34-988-387015

Abstract: This study introduces the Live Spam Beater (LiSB) framework for the execution of email
filtering techniques during SMTP (Simple Mail Transfer Protocol) transactions. It aims to increase
the effectiveness and efficiency of existing proactive filtering mechanisms, mainly based on simple
blacklists. Since it implements some proactive filtering schemes (during SMTP transaction), when
an email message is classified as spam, the sender can be notified by an SMTP response code as a
result of the transaction itself. The presented framework is written in Python programming language,
works as an MTA (Mail Transfer Agent) server that implements an SMTP (Simple Mail Transfer
Protocol) reverse proxy and allows the use of plugins to easily incorporate new filtering techniques
designed to operate proactively. We also include a plugin to perform proactive content-based filtering
through the analysis of words included in the body of the email message. Finally, we measured the
performance of the plugin and the framework (time required for operation and accuracy) obtaining
values suitable for their use during SMTP transactions.

Keywords: spam filtering; proactive spam filtering; SMTP transactions; machine learning; profile-based
filtering; anomaly detection

1. Introduction

Email has become an extremely important resource for communication because it
greatly facilitates the exchange of information. The first attempt to build a mechanism
similar to modern email (electronic mail) was made in 1965 at the Massachusetts Institute
of Technology (MIT) as part of a university file-sharing system that could be accessed from
remote terminals. Later, the first email standard was proposed in 1973 by the US DARPA
(Defense Advanced Research Projects Agency). It was then introduced in Arpanet in 1977,
already including fields such as “From” and “To” and functionalities such as forwarding
emails to other users.

As expected, with the widespread use of email for both personal and professional
purposes, the proliferation of practices such as spamming and even the sending of malicious
emails also began. The first documented case of the commercial practice of spam occurred
in April 1994 (available at https://www.wired.com/1999/04/the-spam-that-started-it-
all/, accessed on 1 September 2022). By the late 1990s, spam had already become a
major problem, as more and more advertisers made use of it as a zero-cost advertising
practice that allows for wide dissemination. Thus, in 2002, the European Union launched
the “Directive on privacy and electronic communications (available at https://eur-lex.
europa.eu/legal-content/ES/ALL/?uri=CELEX%3A32002L0058, accessed on 1 September
2022). This directive includes a specific section on spam, which makes it illegal to send
unsolicited commercial communications without the receiver’s prior permission. However,

Appl. Sci. 2022, 12, 10491. https://doi.org/10.3390/app122010491 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010491
https://doi.org/10.3390/app122010491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7815-9909
https://orcid.org/0000-0003-2479-1284
https://orcid.org/0000-0002-1935-4760
https://www.wired.com/1999/04/the-spam-that-started-it-all/
https://www.wired.com/1999/04/the-spam-that-started-it-all/
https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=CELEX%3A32002L0058
https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=CELEX%3A32002L0058
https://doi.org/10.3390/app122010491
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010491?type=check_update&version=1

Appl. Sci. 2022, 12, 10491 2 of 10

the legal measures have not been particularly effective. According to Statista (available at
https://www.statista.com/statistics/420400/spam-email-traffic-share-annual/, accessed
on 1 September 2022), there has been a considerable reduction in spam traffic in recent
years, from 66.76% in 2014 to 45.56% in 2021. This decrease has been possible thanks to
hardware-based anti-spam solutions (e.g., Cisco’s Email Security Appliance, available at
https://www.cisco.com/c/es_es/products/security/email-security/index.html, accessed
on 1 September 2022), software-based solutions (e.g., ZeroSpam, SpamAssassin, etc. cited in
the document available at https://www.getastra.com/blog/knowledge-base/best-spam-
filters-for-emails/, accessed on 1 September 2022), anti-spam firewalls, or spam filtering
services included in email servers.

Many of the current spam filtering techniques were not developed and applied until
the beginning of the 21st century. Among the first techniques to appear, we highlight
collaborative approaches such as the use of DNS whitelists and blacklists (e.g., DNSWL
available at https://www.dnswl.org/ and Spamhaus blacklists available at https://www.
spamhaus.org/, accessed on 1 September 2022) or based on the use of Nilsimsa [1], such as
Razor, Pyzor, and DCC (Distributed Checksum ClearingHouse). Soon after, some standards
focused on domain authentication [2,3] (such as SPF, DKIM, or DMARC), which emerged
as mechanisms to prevent attacks such as email spoofing and email phishing. Furthermore,
intelligent filtering techniques based on Machine Learning (ML) gained popularity very
quickly [4]. Other mechanisms employed include the use of compression models [5] or
regular expressions [6].

Until recently, most filters were based on content analysis and SMTP protocol infor-
mation. Identifying keywords that determine the classification of the email as spam or
ham is an example of content-based analysis, while searching for the presence of origin
servers on blacklists is related to the SMTP protocol. However, in recent years, some works
have proposed alternative methods such as spam detection based on the behavior of SMTP
servers. The concept of behavior-based detection is not new. The best example can be credit
card fraud detection, where security systems that depend on the user’s behavioral profile
have been deployed. Finally, to complement the server profiling information, completing
the detection of errors and inconsistencies by analyzing the data sent through protocols
involved in the email transfer (SMTP, TCP-Transmission Control Protocol, and IP-Internet
Protocol) has been considered.

Solutions to fight against spam can be classified into several categories depending
on the particular time they are applied [7]: (i) preventive, (ii) reactive, and (iii) proactive.
The first group, preventive solutions, is mainly based on legislative measures, but their
effectiveness is limited. Reactive solutions involve the application of filters after the SMTP
transaction has been completed (post-SMTP). These measures are often the most effective
as they allow the application of complex techniques, such as content analysis, without a
time restriction imposed by the SMTP transaction. Finally, the proactive group solutions
aim to apply filters to detect spam during the SMTP transaction.

Due to time restrictions, filters applied during SMTP runtime are in most cases limited
to the use of blacklists synchronized with RSync (available at https://rsync.samba.org/,
accessed on 1 September 2022) protocol and/or SPF checks. On the other hand, SpamAs-
sassin (available at https://spamassassin.apache.org/, accessed on 1 September 2022) is an
example of a post-SMTP filter (reactive) whose application requires a runtime of typically
several seconds, which means a delay in the email delivery process to the client; although,
it allows the use of complex techniques and content analysis to achieve high efficiency
(accuracy). Post-SMTP solutions have the disadvantage of not being able to notify the email
sender of the cancellation of message delivery. Consequently, although reactive solutions
are the most effective, they have a huge disadvantage in that they are applied after the
SMTP transaction, which results in the use of network and server resources. In addition, if
a message is rejected, there is no implicit mechanism to inform the sender that his message
will not be delivered. In contrast, the use of proactive measures avoids this problem: if

https://www.statista.com/statistics/420400/spam-email-traffic-share-annual/
https://www.cisco.com/c/es_es/products/security/email-security/index.html
https://www.getastra.com/blog/knowledge-base/best-spam-filters-for-emails/
https://www.getastra.com/blog/knowledge-base/best-spam-filters-for-emails/
https://www.dnswl.org/
https://www.spamhaus.org/
https://www.spamhaus.org/
https://rsync.samba.org/
https://spamassassin.apache.org/

Appl. Sci. 2022, 12, 10491 3 of 10

a message is discarded during the SMTP transaction, the sender is notified by a valid
SMTP code.

Traditional spam filtering methods used during SMTP transactions, such as blacklists,
whitelists (domains, IP addresses, and email addresses), or SPF logging, do not provide
enough accuracy to reduce the threat of spam messages [8]. Blacklists have the disadvantage
of not being updated as fast as spammers change their addresses or domains. In addition,
legitimate email providers run the risk of having one of their domains or addresses on
a blacklist. Moreover, one of the main problems with SPF is the incompatibility with
email forwarders. SPF checks can fail when forwarding an email because SPF components
authenticate the forwarding server instead of the original sending server [9].

In this study, we introduce a framework designed to use a wide variety of techniques
or tools for spam filtering during SMTP transactions (proactive filtering). The goal is to
create a new email filtering framework (LiSB) that ensures that the sender of the email
knows if the email has not been delivered to the receiver. We have also developed some
profile-based filters (modules) that can be run at SMTP time (thus, proactively). These
modules are able to check features such as whether the behavior of a given email server
changes over time (which is anomalous). We have also built other modules to check
for inconsistencies in the information sent. Considering the disadvantages discussed
above, this paper also proposes the use of different Machine Learning (ML) schemes for
the development of highly reliable spam filters that operate during SMTP transactions.
Although the execution of an ML-based filter during the SMTP transaction may seem a
simple task, it is actually a major challenge because it is necessary to find a trade-off between
the accuracy achieved by the filter and its complexity (number of features) to avoid an
SMTP transaction timeout. With this issue in mind, we have also provided another module
to execute simple content-based filters using ML schemes (in particular, Random Forests
seems the most suitable one [10]). Finally, we analyzed the performance and computational
requirements of our proposal. The framework can be easily extended by incorporating new
techniques. The source code of the LiSB framework has been publicly shared in a GitHub
repository (https://github.com/sing-group/LiSB, accessed on 1 September 2022).

The rest of the paper is organized as follows: Section 2 summarizes previous efforts and
proposals on spam detection during SMTP transactions; Section 3 presents the architecture
of the LiSB framework and the evaluation of some ML models that have been considered
for use during SMTP transactions; and finally, Section 4 shows the main conclusions and
outlines directions for future work.

2. State of the Art

Most of the research works on spam filtering [11] are based on analyzing the content of
the message body. However, some researchers have focused on the use of message header
characteristics for email filtering with good results. A few have even made use of both
body and header, as proposed in the present study. Furthermore, it is very important to
properly select the input features [12,13] ensuring that they provide enough information
for classification and can be extracted/computed quickly (extraction and classification
processes must be executed during the SMTP transaction). In the review by Karim et al., it
is suggested that the future of Spam detection models can be considered to evaluate email
headers, URLs, and domain characteristics.

Most proposals take advantage of ML techniques to classify messages. Among the ML
techniques that have performed best in spam classification are Naïve Bayes (NB), Support
Vector Machines (SVM), Decision Tree (DT), and Random Forest (RF) [11]. ML techniques
have long been applied to spam filtering [14,15], but not in a proactive, real-time way. We
have also found some examples of real-time anti-spam techniques but based on continuous
training of the ML models [8]. However, the aim of this work is for the filter to be executed
during the SMTP transaction, so retraining the model after each successful classification
seems to be a major limitation.

https://github.com/sing-group/LiSB

Appl. Sci. 2022, 12, 10491 4 of 10

To our knowledge, there are no relevant advances in the context of classifying mes-
sage classification techniques during SMTP transactions. Therefore, although the time to
accept/reject the delivery of the message is quite flexible, it is reasonable to think that
the shorter the time the email takes to be classified and accepted for delivery, the more
emails the server will be able to handle. In addition, it is mandatory to reduce the time
needed to accept/reject the delivery of a message in order to avoid delays in the delivery of
legitimate emails.

Many approaches to spam detection have been developed and tested, but they are not
accurate enough or cannot be applied during the SMTP transaction. Thus, given the lack of
solutions for proactive spam filtering, we have developed a framework that allows email
administrators to apply a wide variety of checks during SMTP transactions. The proposal
is introduced in the next subsection.

3. Proposed Solution

This study presents an email filtering system (LiSB) that is implemented before the
MTA server, which is able to execute the filtering process during the SMTP transaction
time and, therefore, decide whether the message will be accepted (or not) for delivery.
The system allows different techniques to be applied concurrently to classify the message
as spam or ham, and combine their results to make a single decision. In the solution,
we implemented a set of simple techniques including: (i) schemes based on anomaly
detection, (ii) SMTP profile-based techniques, and (iii) an ML-based scheme for content-
based filtering during SMTP transactions. The available techniques can be easily extended
by implementing new modules in Python (see https://www.python.org). As a result, it
will be possible to notify the sender that spam is being sent through its server and he will
be able to take appropriate actions. Furthermore, as these techniques are executed during
the SMTP transaction, all post-SMTP filtering tasks would be avoided, optimizing resource
usage and response times.

Anomaly detection strategies are based on checking the content of some fields of the
SMTP and email headers and verifying their consistency. Some examples of consistency are:
(i) the SMTP MAIL FROM command, and the From and Return-Path headers of the message
are equal and (ii) the SMTP RCPT TO command and the To and Delivered-To headers of the
email are the same.

In addition, some message delivery parameters will be examined to obtain profile
information about the MSA and MUA software and the configuration of different do-
mains/users, in order to check the consistency of the information included in a particular
message and the profile of the sender (user/domain) stored in the server. To build a
domain/user profile, we collect some information from the messages: (i) the User-Agent
header that reports the message, (ii) the Received headers that contain the path of the mes-
sages through the SMTP servers, and (iii) the DKIM (DomainKeys Identified Mail) [16]
parameters. Since these parameters are not frequently modified, identifying changes can
reveal anomalous situations which, in many cases, are associated with the sending of
spam messages.

Finally, although it seems that the application of ML techniques during SMTP transac-
tions is impossible, in practice most of the time required is for model building rather than
execution. It is also possible to run small ML models stored in RAM memory and based on
a limited number of easy-to-extract features. The challenge is to find a small number of
features that are easy to extract and provide a lot of information to the process. For example,
a recent work [17] has highlighted the number of URLs (Universal Resource Locator) as a
very relevant feature for identifying spam content. Considering the ease of counting the
number of URLs that are present in a text (by simply applying a regular expression), this
feature is very suitable for filtering during SMTP transactions.

The next subsection introduces the architecture used by our proposal and summarizes
the details of the software design.

https://www.python.org

Appl. Sci. 2022, 12, 10491 5 of 10

3.1. Proposed Architecture

The filtering mechanism is based on the application of different filtering modules,
where each module examines a number of features of the email header and body and,
based on these features, classifies the email as possible spam or ham. The combination of
the results of the different modules will allow the email to be forwarded or rejected. For
this purpose, a message is considered junk if at least one module classifies it as spam. Our
proposal supports the definition of filtering exceptions for messages that (i) have been sent
from a specific IP address, (ii) whose source address belongs to certain domains, and/or
(iii) whose sender has a specific email address. The modularity of the system gives great
flexibility to incorporate new filters and even to disable some filtering modules that are
not of interest. In addition, this modular system makes use of concurrency techniques that
allow the simultaneous execution of each module in a different thread. Figure 1 shows the
architecture of our proposal.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 10

The next subsection introduces the architecture used by our proposal and summa-

rizes the details of the software design.

3.1. Proposed Architecture

The filtering mechanism is based on the application of different filtering modules,

where each module examines a number of features of the email header and body and,

based on these features, classifies the email as possible spam or ham. The combination of

the results of the different modules will allow the email to be forwarded or rejected. For

this purpose, a message is considered junk if at least one module classifies it as spam. Our

proposal supports the definition of filtering exceptions for messages that (i) have been

sent from a specific IP address, (ii) whose source address belongs to certain domains,

and/or (iii) whose sender has a specific email address. The modularity of the system gives

great flexibility to incorporate new filters and even to disable some filtering modules that

are not of interest. In addition, this modular system makes use of concurrency techniques

that allow the simultaneous execution of each module in a different thread. Figure 1 shows

the architecture of our proposal.

Figure 1. This is a figure: LisB architecture.

As shown in Figure 1, LiSB supports the execution of a wide range of filtering mod-

ules. Among them, we highlight the following: (i) FromFilter that checks that the From

email header and SMTP MAIL FROM command are consistent, (ii) ToFilter that ensures

that the To email header and SMTP RCPT TO commands are consistent, (iii) ReturnPath-

Filter that ensures ReturnPath and From email headers are consistent, (iv) SPFFilter that

executes an SPF authentication [18], (v) XFilter that verifies that optional headers (those

starting with X) from a particular domain are always the same, (vi) DKIMFilter that en-

sures that the s and d parameters of emails sent from the same domain always have the

same values, (vii) BlackListFilter that implements a dynamic blacklist scheme, and (viii)

ML schemes applied on message content.

Our framework incorporates a time_limit parameter that prevents excessively slow

email classifications. To this end, when the classification of a specific message takes longer

than the time defined in the time_limit parameter, the classification process is interrupted

and the message is classified as ham.

Messages classified as ham by the filtering framework are queued for subsequent

forwarding. Different threads work on this queue to forward the verified emails to the

destination SMTP server. The framework also includes an administration website (see

Figure 2), which is used as the user interface of the system and gives access to all imple-

mented functionalities.

Figure 1. This is a figure: LisB architecture.

As shown in Figure 1, LiSB supports the execution of a wide range of filtering modules.
Among them, we highlight the following: (i) FromFilter that checks that the From email
header and SMTP MAIL FROM command are consistent, (ii) ToFilter that ensures that the
To email header and SMTP RCPT TO commands are consistent, (iii) ReturnPathFilter that
ensures ReturnPath and From email headers are consistent, (iv) SPFFilter that executes an
SPF authentication [18], (v) XFilter that verifies that optional headers (those starting with
X) from a particular domain are always the same, (vi) DKIMFilter that ensures that the
s and d parameters of emails sent from the same domain always have the same values,
(vii) BlackListFilter that implements a dynamic blacklist scheme, and (viii) ML schemes
applied on message content.

Our framework incorporates a time_limit parameter that prevents excessively slow
email classifications. To this end, when the classification of a specific message takes longer
than the time defined in the time_limit parameter, the classification process is interrupted
and the message is classified as ham.

Messages classified as ham by the filtering framework are queued for subsequent
forwarding. Different threads work on this queue to forward the verified emails to the
destination SMTP server. The framework also includes an administration website (see
Figure 2), which is used as the user interface of the system and gives access to all imple-
mented functionalities.

As shown in Figure 2a, the administration website includes a wide range of admin-
istration tasks including monitoring, configuration, and backup. In detail, it allows the
administrator to monitor system events in real time, access past events, enable and dis-
able the SMTP proxy server, create and restore local and S3 backups, and edit all system
configuration files. Figure 2b shows the server status console accessed through the “Moni-
toring/Server status” menu item.

Appl. Sci. 2022, 12, 10491 6 of 10Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 10

(a)

(b)

Figure 2. LiSB administration website: (a) LiSBWeb Menu; (b) LiSBWeb admin console.

As shown in Figure 2a, the administration website includes a wide range of admin-

istration tasks including monitoring, configuration, and backup. In detail, it allows the

administrator to monitor system events in real time, access past events, enable and disable

the SMTP proxy server, create and restore local and S3 backups, and edit all system con-

figuration files. Figure 2b shows the server status console accessed through the “Monitor-

ing/Server status” menu item.

3.2. Using ML Schemes during SMTP Transactions

An important contribution of this study is the experimentation on the use of ML tech-

niques during the SMTP transaction. The use of such techniques in this context seems

totally unfeasible due to the execution time required. However, if the model has been pre-

viously built and only a few features of the message are used, it is possible to apply some

ML techniques to classify the message during the delivery transaction.

This study involved an experiment in which ML techniques were used during SMTP

transactions taking advantage of the following features for message representation: (i)

number of images, (ii) number of URLs, (iii) content type represented as multiple binary

features, (iv) extensions of attachments represented as multiple binary features, (v) a nu-

meric value that identifies the sender (zero if unknown), and (vi) a feature that indicates

if ReturnPath and From headers have different values.

Initially, we evaluated three ML techniques: Support Vector Machines (SVM), Naïve

Bayes (NB), and Random Forest (RF). The aim of using different learning algorithms is to

run them and compare their performance. For experimental purposes, we created a data-

base of 26,598 emails, 13,299 ham (legitimate), and 13,299 spam. The experimental dataset

Figure 2. LiSB administration website: (a) LiSBWeb Menu; (b) LiSBWeb admin console.

3.2. Using ML Schemes during SMTP Transactions

An important contribution of this study is the experimentation on the use of ML
techniques during the SMTP transaction. The use of such techniques in this context seems
totally unfeasible due to the execution time required. However, if the model has been
previously built and only a few features of the message are used, it is possible to apply
some ML techniques to classify the message during the delivery transaction.

This study involved an experiment in which ML techniques were used during SMTP
transactions taking advantage of the following features for message representation:
(i) number of images, (ii) number of URLs, (iii) content type represented as multiple
binary features, (iv) extensions of attachments represented as multiple binary features, (v) a
numeric value that identifies the sender (zero if unknown), and (vi) a feature that indicates
if ReturnPath and From headers have different values.

Initially, we evaluated three ML techniques: Support Vector Machines (SVM), Naïve
Bayes (NB), and Random Forest (RF). The aim of using different learning algorithms is
to run them and compare their performance. For experimental purposes, we created a
database of 26,598 emails, 13,299 ham (legitimate), and 13,299 spam. The experimental
dataset was built by collecting all messages included in SpamAssassin (available at https:
//spamassassin.apache.org/old/publiccorpus/, accessed on 1 September 2022) public
corpus, the entire Enron dataset shared by Professor Ion Androutsopoulos of the University
of Athens (available at https://spamassassin.apache.org/old/publiccorpus/, accessed on 1
September 2022) and part of Bruce Guenter Spam Archive (available at http://untroubled.
org/spam/, accessed on 1 September 2022) (messages received from 1 January 2000 to
31 August 2001). Despite their age, the original corpora used in the construction of the

https://spamassassin.apache.org/old/publiccorpus/
https://spamassassin.apache.org/old/publiccorpus/
https://spamassassin.apache.org/old/publiccorpus/
http://untroubled.org/spam/
http://untroubled.org/spam/

Appl. Sci. 2022, 12, 10491 7 of 10

experimental dataset have been widely used in recent spam filtering studies [17,19]. These
26,598,074 emails have been processed and as a result, a feature vector has been obtained for
each of them. The feature vector, containing 26,598,074 rows and 8 columns (7 features and
1 target attribute), has been used to build 5 ML models (Naïve Bayes Multinomial, Random
Forest, SVM with RBF kernel, SVM with Sigmoid kernel, and SVM with Polynomial Kernel).
Table 1 shows the time required for building each model in a computer with an Intel(R)
Core(TM) i7-8565U microprocessor and 8 GB of RAM memory.

Table 1. Time required to build ML models.

Model Training Time (Seconds)

Naïve Bayes Multinomial 0.02 s

Random Forest 0.94 s

SVM with RBF kernel 96.87 s

SVM with Sigmoid kernel 56.22 s

SVM with Polynomial kernel 82.50 s

As shown in Table 1, NB Multinomial and RF algorithms are built quickly. However,
these times are not particularly relevant for selecting an ML technique since the models can
be built on a stand-alone server. Therefore, the performance of the models is what we need
to evaluate in order to select the most suitable one to use for the SMTP transaction. To do
so, we run a training/testing experiment using 80% of instances for building the model
and 20% for testing. Table 2 presents precision, recall, and f-score evaluations obtained by
each algorithm.

Table 2. Performance evaluation of analyzed models.

Model Precision Recall F-Score

Naïve Bayes Multinomial 0.95 0.49 0.65

Random Forest 0.95 0.47 0.63

SVM with RBF kernel 0.72 0.71 0.72

SVM with Sigmoid Kernel 0.72 0.53 0.61

SVM with Polynomial Kernel 0.45 0.73 0.56

As shown in Table 2, the lowest false positive (precision) values correspond to the NB
Multinomial and RF models. Therefore, these models are the most suitable for filtering
spam messages. Furthermore, considering recall (and f-score, which combines recall and
precision measures), the use of Multinomial Naïve Bayes seems to be the best choice. Taking
into account the performance scores, we measured the average time required to classify
a message. The result obtained for each model is included in Table 3. This experiment
was run on a computer with an Intel(R) Core(TM) i7-8565U microprocessor and 8 GB of
RAM memory.

Table 3. Time required for classification.

Model Classification Time Per Message (Milliseconds)

Naïve Bayes Multinomial 9.749 ms

Random Forest 17.692 ms

SVM with RBF kernel 12.823 ms

SVM with Sigmoid Kernel 11.132 ms

SVM with Polynomial Kernel 12.432 ms

Appl. Sci. 2022, 12, 10491 8 of 10

As shown in Table 3, models can be successfully used during SMTP transactions as
long as the time required for classifying an email is always under 18 milliseconds. This
would not mean an appreciable delay in the email delivery process since it would take a
maximum time of 18 ms to process each email. The next section presents the conclusions
drawn from the execution of this study and outlines future research directions

4. Conclusions and Future Work

In this study, we introduce the LiSB Framework (source code shared on https://github.
com/sing-group/LiSB, accessed on 1 September 2022), which allows network administra-
tors to execute a wide variety of spam filtering techniques during an SMTP transaction.
The techniques implemented are based on SMTP anomaly detection, server/user pro-
filing, and content-based ML. These techniques have been tested in a real environment
and we have publicly shared the generated source code in a GitHub repository (https:
//github.com/sing-group/MLClassifers4LiSB, accessed on 1 September 2022). Moreover,
we have developed a simple process to install the software on Amazon AWS services (avail-
able at https://aws.amazon.com, accessed on 1 September 2022) using Ansible (available
at https://www.ansible.com, accessed on 1 September 2022) and Terraform (available
at https://www.terraform.io, accessed on 1 September 2022). The Ansible playbook is
available on a GitHub repository (https://github.com/sing-group/LiSBSetup, accessed on
1 September 2022).

The LiSB framework includes modules that check for possible anomalies in SMTP and
MIME headers. It also includes some modules that are able to build profiles for servers and
senders and check for unexpected changes in the messages they sent. LiSB also uses ML
to classify messages by examining some properties such as the presence of attachments,
and the number of images and URLS. Furthermore, we have proven that the developed
modules can successfully run during SMTP transactions with small delays. Furthermore,
the modularity of the framework enables the maximum duration of the filtering process to
be adapted to the time limits imposed by SMTP transactions.

In the context of ML, we have analyzed the use of three ML algorithms (SVM, Naïve
Bayes, and Random Forest) during SMTP transactions. Considering that the ML techniques
are applied in real time, our work has focused on reaching a trade-off between the time
needed to run the algorithms and their accuracy. The effectiveness of each ML strategy was
measured to identify the most suitable one for a real environment and the conclusion was
that the NB Multinomial and Random Forest algorithms showed the best performance by
returning the lowest number of false positives (FP or ham emails incorrectly classified).
Reducing the number of FP errors prevents important emails from being discarded because
they are identified as spam. Both algorithms are also remarkable for their low computational
time for training and classifying messages.

The modular design of LiSB allows for the easy addition of new filters, as new filtering
techniques can be simply incorporated to be executed during the SMTP transaction. On
the other hand, being able to include new filtering modules that work under different
criteria provides greater control over the email traffic during SMTP transactions, beyond
simple blacklists.

Future work includes the development of new modules to extend the functionality of
the LiSB framework and to improve the mechanisms used to combine the output of the
modules. Moreover, it would be useful to identify new features that can be analyzed to
increase the performance of the ML models. Finally, we are aware that the mechanism
currently used to combine the output of filtering modules and make a single decision
is quite simple and does not provide enough flexibility compared to the mechanisms
incorporated in other reactive spam filtering frameworks (e.g., SpamAssassin). We plan
to improve the flexibility of this mechanism taking advantage of some optimizations
introduced in previous studies [20] to achieve a powerful framework that can be used
during SMTP time.

https://github.com/sing-group/LiSB
https://github.com/sing-group/LiSB
https://github.com/sing-group/MLClassifers4LiSB
https://github.com/sing-group/MLClassifers4LiSB
https://aws.amazon.com
https://www.ansible.com
https://www.terraform.io
https://github.com/sing-group/LiSBSetup

Appl. Sci. 2022, 12, 10491 9 of 10

Author Contributions: Conceptualization, S.G.-M. and J.R.M.; Methodology, S.G.-M. and J.R.M.;
Software, C.G.M. and E.P.A.-C.; Validation, C.G.M., E.P.A.-C. and J.R.M.; Formal analysis, C.G.M. and
E.P.A.-C.; Investigation, S.G.-M., C.G.M., E.P.A.-C. and J.R.M.; Writing—original draft preparation,
S.G.-M.; Writing—review and editing, S.G.-M. and J.R.M.; Visualization, C.G.M., E.P.A.-C. and
J.R.M.; Supervision S.G.-M. and J.R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Conselleria de Cultura, Educación e Universidade (Xunta
de Galicia) under the scope of the strategic funding of Competitive Reference Group [grant number
ED431C 2022/03-GRC].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used for the experimentation included in this study are
publicly available online and have been cited in the text.

Acknowledgments: SING group thanks CITI (Centro de Investigación, Transferencia e Innovación)
from the University of Vigo for hosting its IT infrastructure.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Damiani, E.; di Vimercati, S.D.C.; Paraboschi, S.; Samarati, P. An Open Digest-Based Technique for Spam Detection. In Proceedings

of the ISCA 17th International Conference on Parallel and Distributed Computing Systems, San Francisco, CA, USA, 15–17
September 2004; Citeseer: San Francisco, CA, USA, 2004; Volume 2004, pp. 559–564.

2. Levine, J. Email Authentication for Internationalized Mail; Request for Comments Published by IETF Number 7669; IETF: Fremont,
CA, USA, 2019. [CrossRef]

3. Herzberg, A. DNS-Based Email Sender Authentication Mechanisms: A Critical Review. Comput. Secur. 2009, 28, 731–742.
[CrossRef]

4. Blanzieri, E.; Bryl, A. A Survey of Learning-Based Techniques of Email Spam Filtering. Artif. Intell. Rev. 2008, 29, 63–92. [CrossRef]
5. Bratko, A.; Filipič, B.; Cormack, G.V.; Lynam, T.R.; Zupan, B. Spam Filtering Using Statistical Data Compression Models. J. Mach.

Learn. Res. 2006, 7, 2673–2698.
6. Ruano-Ordás, D.; Fdez-Riverola, F.; Méndez, R.J. Using Evolutionary Computation for Discovering Spam Patterns from E-Mail

Samples. Inf. Process. Manag. 2018, 54, 303–317. [CrossRef]
7. Herrera Silva, J.A.; Barona López, L.I.; Valdivieso Caraguay, Á.L.; Hernández-Álvarez, M. A Survey on Situational Awareness of

Ransomware Attacks—Detection and Prevention Parameters. Remote Sens. 2019, 11, 1168. [CrossRef]
8. Wu, D.; Shi, W.; Ma, X. A Novel Real-Time Anti-Spam Framework. ACM Trans. Internet Technol. 2021, 21, 1–27. [CrossRef]
9. Chen, J.; Paxson, V.; Jiang, J. Composition Kills: A Case Study of Email Sender Authentication. In Proceedings of the USENIX

Security Symposium, San Diego, CA, USA, 12–14 August 2020.
10. Dada, E.; Joseph, S. Random Forests Machine Learning Technique for Email Spam Filtering; University of Maiduguri Faculty of

Engineering Seminar Series; University of Maiduguri: Maiduguri, Nigeria, 2018; Volume 9, pp. 29–36.
11. Karim, A.; Azam, S.; Shanmugam, B.; Kannoorpatti, K.; Alazab, M. A Comprehensive Survey for Intelligent Spam Email Detection.

IEEE Access 2019, 7, 168261–168295. [CrossRef]
12. Kulkarni, P.; Jatinderkumar, R.; Acharya, H. Effect of Header-Based Features on Accuracy of Classifiers for Spam Email

Classification. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 396–401. [CrossRef]
13. Bin Abd Razak, S.; Bin Mohamad, A.F. Identification of Spam Email Based on Information from Email Header. In Proceedings of

the 2013 13th International Conference on Intellient Systems Design and Applications, Salangor, Malaysia, 8–10 December 2013;
IEEE: Salangor, Malaysia, 2013; pp. 347–353.

14. Dada, E.G.; Bassi, J.S.; Chiroma, H.; Abdulhamid, S.M.; Adetunmbi, A.O.; Ajibuwa, O.E. Machine Learning for Email Spam
Filtering: Review, Approaches and Open Research Problems. Heliyon 2019, 5, e01802. [CrossRef] [PubMed]

15. Crawford, M.; Khoshgoftaar, T.M.; Prusa, J.D.; Richter, A.N.; Al Najada, H. Survey of Review Spam Detection Using Machine
Learning Techniques. J. Big Data 2015, 2, 23. [CrossRef]

16. Crocker, D.; Hansen, T.; Kucherawy, M. Domain Keys Identified Mail (DKIM) Signatures; Request for Comments Published by IETF
Number 6376; IETF: Fremont, CA, USA, 2011. [CrossRef]

17. Novo-Lourés, M.; Ruano-Ordás, D.; Pavón, R.; Laza, R.; Gómez-Meire, S.; Méndez, J.R. Enhancing Representation in the Context
of Multiple-Channel Spam Filtering. Inf. Process. Manag. 2022, 59, 102812. [CrossRef]

18. Kitterman, S. Sender Policy Framework (SPF) for Authorizing Use of Domains in Email, Version 1; Request for Comments Published by
IETF Number 7208; IETF: Fremont, CA, USA, 2014. [CrossRef]

http://doi.org/10.17487/rfc8616
http://doi.org/10.1016/j.cose.2009.05.002
http://doi.org/10.1007/s10462-009-9109-6
http://doi.org/10.1016/j.ipm.2017.12.001
http://doi.org/10.3390/rs11101168
http://doi.org/10.1145/3423153
http://doi.org/10.1109/ACCESS.2019.2954791
http://doi.org/10.14569/IJACSA.2020.0110350
http://doi.org/10.1016/j.heliyon.2019.e01802
http://www.ncbi.nlm.nih.gov/pubmed/31211254
http://doi.org/10.1186/s40537-015-0029-9
http://doi.org/10.17487/rfc6376
http://doi.org/10.1016/j.ipm.2021.102812
http://doi.org/10.17487/rfc7208

Appl. Sci. 2022, 12, 10491 10 of 10

19. Khan, S.A.; Iqbal, K.; Mohammad, N.; Akbar, R.; Ali, S.S.A.; Siddiqui, A.A. A Novel Fuzzy-Logic-Based Multi-Criteria Metric for
Performance Evaluation of Spam Email Detection Algorithms. Appl. Sci. 2022, 12, 7043. [CrossRef]

20. Pérez-Díaz, N.; Ruano-Ordas, D.; Fdez-Riverola, F.; Méndez, J.R. Wirebrush4SPAM: A Novel Framework for Improving Efficiency
on Spam Filtering Services: Wirebrush4spam: A novel framework for spam filtering. Softw. Pract. Exp. 2013, 43, 1299–1318.
[CrossRef]

http://doi.org/10.3390/app12147043
http://doi.org/10.1002/spe.2135

	Introduction
	State of the Art
	Proposed Solution
	Proposed Architecture
	Using ML Schemes during SMTP Transactions

	Conclusions and Future Work
	References

