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Abstract: This paper proposes an efficient exact dimensional synthesis method for finding all the
link lengths of the Watt II and Stephenson III six-bar slider-crank function generators, satisfying nine
prescribed precision points using the homotopy continuation method. The synthesis equations of each
mechanism are initially constructed as a system of 56 quadratic polynomials whose Bézout number,
which represents the maximum number of solutions, is 256 ∼= 7.21 × 1016. In order to reduce the size
of the system, multi-homogeneous formulation is applied to transform the system into 12 equations
in 12 unknowns, and the multi-homogeneous Bézout number of the system is 286,720. The Bertini
solver, based on the homotopy continuation method, is used to solve the synthesis equations to obtain
the dimensions of the two mechanisms. For the arbitrarily given nine precision points, the proposed
method yields 37 and 31 defect-free solutions of Watt II and Stephenson III six-bar slider-crank
mechanisms, respectively, and it is confirmed that they pass through the prescribed positions.

Keywords: function generator; dimensional synthesis; exact synthesis; homotopy continuation;
six-bar slider-crank mechanism

1. Introduction

The dimensional synthesis of a mechanism determines the dimensions of the individ-
ual links that generate a desired motion. Since the development of an analytical approach
to the design of four-bar linkages introduced by Freudenstein [1], numerous studies have
been conducted on the dimensional synthesis, which can be classified into two categories.
One is the exact synthesis method, known as the precision point approach, in which a finite
number of exact positions are to be satisfied. The other is the approximate synthesis, which
seeks the dimensions that approximately satisfy prescribed positions.

In general, dimensional synthesis problems are formulated as a system of nonlinear
equations and require heavy computation. For this reason, various approximate synthesis
approaches using numerical methods [2,3], optimization methods such as least square
techniques [4–6], genetic algorithms [7–10], and evolutionary algorithms [11–15] have
been used widely in recent times. However, the approximate synthesis methods require
appropriate initial values that are close to the actual solutions of the synthesis equations.
When unsuitable initial values are assumed, the solutions may not be found. In addition,
the methods may not find all the solutions of the synthesis equations.

In contrast, since the exact synthesis method can find all the solutions without es-
timating an initial value, it yields diverse mechanism dimensions that satisfy a desired
motion. Among the studies on the precision point approach, Huang et al. [16] and Al-
mandeel et al. [17] used elimination methods to perform the dimensional synthesis of
four-bar path generators for five precision points and slider-crank function generators
for four precision points, respectively. Subbian and Flugrad [18] and Wampler et al. [19]
carried out the dimensional synthesis of four-bar path generators for five precision points
and nine precision points, respectively. For the dimensional synthesis of six-bar linkages
with revolute joints only, Dhingra et al. [20] and Plecnik and McCarthy [21–23] applied the
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homotopy continuation method for the synthesis of Watt II, Stephenson II, and Stephenson
III six-link function generators, proposing design methods for eight, nine, and eleven
precision points, respectively. It is worth noting that the continuation method is developed
from the parameter perturbation procedure introduced by Freudenstein and Roth [24] for
solving a system of nonlinear equations starting from a known solution of a similar system.

Most studies on the precision point approach deal with four-bar linkages, four-link
slider-crank mechanisms, and six-bar linkages with revolute joints only, but the exact
synthesis of six-link slider-crank mechanisms with six revolute joints and one prismatic joint
are extremely rare. Since the six-bar slider-crank linkage has more design parameters, it can
satisfy more precision points than its four-link counterpart. Different types of six-bar slider-
crank linkages are widely used in various applications such as ore crushers, mechanical
presses [25], punching mechanisms [26], and quick return mechanisms [27] in machinery.
These precision mechanisms are required to satisfy precise motion between input and
output links. Furthermore, by adding one link and one joint, the six-link slider-crank
can be modified to a two-degree-of-freedom seven-link adjustable mechanism that can be
used in controllable presses for punching and metal forming [28,29], variable pumps [30],
and variable compression ratio engines [31–34]. For the design of this machinery, the
dimensional synthesis of the six-link slider-crank is essential.

This paper proposes a systematic exact dimensional synthesis method to find all Watt II
and Stephenson III six-bar slider-crank function generators that satisfy nine precision points
of the output slider with respect to prescribed input crank angles. The synthesis equations
of each mechanism for nine precision points are derived as a system of 56 quadratic
polynomial equations with 58 unknowns, respectively. By assuming two unknowns as
free choices, the system can be solved. However, since the system size is very large, it is
necessary to decrease its size so as to reduce the calculation time for pursuing an efficient
dimensional synthesis. To this end, some of the unknowns are eliminated from the synthesis
equations to simplify the system to eight equations in eight unknowns. Then, in order
to apply the multi-homogeneous Bézout theorem [35,36], four auxiliary equations that
render the system a set of homogeneous polynomials are defined, and the unknowns are
divided into appropriate two-homogeneous groups. Through this process, the synthesis
equations for Watt II and Stephenson III six-bar slider-crank linkages are formulated into
eight quartic polynomials and four auxiliary quadratic polynomials in 12 unknowns, and
the multi-homogeneous Bézout number of the system that represents the maximum number
of solutions is 286,720. The synthesis equations for the two mechanisms are solved by using
the Bertini software program [37] that is based on the homotopy continuation method.
The computation results provided 25,630 and 36,061 nonsingular solutions, respectively.
Among the nonsingular solutions, mechanisms that allow full rotation of the input crank
and satisfy nine precision points on a single stroke of the slider are finally selected as
feasible solutions. As a result, 37 Watt II and 31 Stephenson III six-bar slider-crank linkages
without kinematic defects are determined.

The paper is arranged as follows. In Section 2, the dimensional synthesis equations
for Watt II and Stephenson III six-bar slider-crank function generators are derived and
a process for simplifying the synthesis equations is presented. Section 3 describes the
procedure for calculating the multi-homogeneous Bézout number by applying the multi-
homogeneous Bézout theorem. Section 4 then explains how to select feasible solutions that
enable prescribed precision points to lie on a single stroke as well as the input link to rotate
continuously. Section 5 presents examples of applying the dimensional synthesis process
proposed in this paper. Finally, Section 6 concludes with a summary and discussion of
the research.

2. Dimensional Synthesis Equations for Six-Bar Slider-Crank Mechanisms

Each of the dimensional synthesis equations for six-bar slider-crank function genera-
tors can be formulated by a system of polynomial equations. As the number of prescribed
positions increases, the system size becomes very large and the calculation time to obtain
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the solution could increase tremendously. Hence, in order to carry out the dimensional
synthesis efficiently, it is necessary to reduce the size of the equation system. In this section,
the synthesis equations for the two mechanisms are derived and simplified by eliminating
some unknowns.

2.1. Synthesis Equations of Watt II Six-Bar Slider-Crank Function Generator

A Watt II six-bar slider-crank linkage is shown in Figure 1a, in which the input link r1
rotates about the fixed pivot O, and the output slider translates vertically. A fixed frame is
positioned so that its origin is at O and oriented so that its x-axis is perpendicular to the
direction of slide. The horizontal distance from O to the line of path of the moving pivot
E is the offset denoted by h. In the fixed frame, the input angle θ is measured from the
positive x-axis and the output displacement of the slider p is the vertical distance from the
x-axis to E, the center of the revolute joint attached to the slider. The angle of link r0 is η,
and the angle between links r3 and r4 is β. The angular displacements of links r2, r3, r4, and
r5 are denoted by φ, α, α + β, and δ, respectively.
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(a) (b) 

Figure 1. Watt II six-bar slider-crank mechanism: (a) Design parameters; (b) The link vectors drawn
in its first and jth positions.

Figure 1b shows the mechanism in its first and jth positions. In the Figure, ∆θj, ∆φj,
∆αj, and ∆δj denote the rotation angles of links r1 to r5, respectively, and ∆pj represents
the displacement of the slider, all measured from the initial position to jth position of the
mechanism. Let θ1 and p1 denote the angle of input link r1 and the position of output slider
in the initial position, respectively. Then, the prescribed positions of the function generator
to be synthesized are given pairwise as

∆θj = θj − θ1, ∆pj = pj − p1, j = 2, . . . , n, (1)

where θj and pj are the input angle and the position of the slider in jth position, respectively,
and n is the number of precision points to be satisfied.

The dimensional synthesis equations of the Watt II six-bar slider-crank function gener-
ator can be constructed by the closure equations of the two loops OABC and OCDE shown
in Figure 1 as follows. Loop OABC:
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For the initial and jth positions, the loop closure equations can be written as

r1 + r2 = r0 + r3, (2)

and
r1ei∆θj + r2ei∆φj = r0 + r3ei∆αj , j = 2, . . . , n, (3)

respectively. Subtracting Equation (2) from Equation (3) gives

r1(e
i∆θj − 1) + r2(ei∆φj − 1) = r3(ei∆αj − 1), j = 2, . . . , n. (4)

Loop OCDE:
For the initial and jth positions, the loop closure equations can be written as

r0 + r4 = h + ip1 + r5, (5)

and
r0 + r4ei∆αj = h + ipj + r5ei∆δj , j = 2, . . . , n, (6)

respectively. Subtracting Equation (5) from Equation (6) gives

r4(e
i∆αj − 1) = i∆pj + r5(ei∆δj − 1), j = 2, . . . , n. (7)

Separating the real and imaginary parts of Equations (4) and (7) leads to

r1
{

cos
(
θ1 + ∆θj

)
− cos θ1

}
+ r2

{
cos
(
φ1 + ∆φj

)
− cos φ1

}
= r3

{
cos
(
α1 + ∆αj

)
− cos α1

}
, j = 2, . . . , n, (8)

r1
{

sin
(
θ1 + ∆θj

)
− sin θ1

}
+ r2

{
sin
(
φ1 + ∆φj

)
− sin φ1

}
= r3

{
sin
(
α1 + ∆αj

)
− sin α1

}
, j = 2, . . . , n, (9)

and

r4
{

cos
(
α1 + β + ∆αj

)
− cos(α1 + β)

}
= r5

{
cos
(
δ1 + ∆δj

)
− cos δ1

}
, j = 2, . . . , n, (10)

r4
{

sin
(
α1 + β + ∆αj

)
− sin(α1 + β)

}
= r5

{
sin
(
δ1 + ∆δj

)
− sin δ1

}
+ ∆pj, j = 2, . . . , n, (11)

respectively. Note that θ1, φ1, α1, and δ1 denote the angles of the corresponding links shown
in Figure 1a in the initial position. Among the unknowns in Equations (8) through (11), ∆φj,
∆αj, and ∆δj should satisfy trigonometric identities

cos2 ∆φj + sin2 ∆φj = 1,
cos2 ∆αj + sin2 ∆αj = 1,
cos2 ∆δj + sin2 ∆δj = 1,

(12)

where j = 2, . . . , n.
The unknowns in the synthesis equations, Equations (8)–(12), are r1, r2, r3, r4, r5,

θ1, φ1, α1, β, δ1, cos∆φj, sin∆φj, cos∆αj, sin∆αj, cos∆δj, and sin∆δj, where j = 2, . . . , n.
Hence, the problem of the dimensional synthesis for the function generator that satisfies n
prescribed positions is formulated as 7(n − 1) equations in 10 + 6(n − 1) unknowns. For
9 prescribed positions, n is equal to 9 and the synthesis equations consist of 56 quadratic
polynomials with respect to 58 unknowns. Therefore, to match the number of unknowns
and the number of equations, two free choices can be made. The total degree of a system of
m polynomial equations, which is referred to as the Bézout number, is defined as ∏m

i=1 di,
where di is the degree of the ith polynomial [35]. Hence, the total degree of the synthesis
equations for 9 precision points is 256 ∼= 7.21 × 1016. Since the system size is too large
to solve, it is necessary to reduce the size of the synthesis equations as explained in the
following sections.
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2.2. Procedure for Simplifying the Synthesis Equations of Watt II Six-Bar Slider-Crank

The system of 7(n − 1) synthesis equations, Equation (8) through (12), can be reduced
to a system of n−1 polynomial equations by eliminating the unknowns ∆φj, ∆δj, and ∆αj,
which corresponds to the elimination of 6(n − 1) unknowns cos∆φj, sin∆φj, cos∆δj, sin∆δj,
cos∆αj, and sin∆αj, where j = 2, . . . , n. For the elimination of ∆φj from Equations (8) and (9),
isolate the term r2cos(φ1 + ∆φj) in Equation (8) and r2sin(φ1 + ∆φj) in Equation (9) to one
side. Then, square both sides of the equations, add, and simplify the resulting equation
using the trigonometric identity cos2(φ1 + ∆φj)+sin2(φ1 + ∆φj) = 1 to obtain

r2
2 =

[
r3
{

cos
(
α1 + ∆αj

)
− cos α1

}
− r1

{
cos
(
θ1 + ∆θj

)
− cos θ1

}
+ r2 cos φ1

]2
+
[
r3
{

sin
(
α1 + ∆αj

)
− sin θ3

}
− r1

{
sin
(
θ1 + ∆θj

)
− sin θ1

}
+ r2 sin φ1

]2,
j = 2, . . . , n. (13)

Similarly, the unknown ∆δj can be eliminated from Equations (10) and (11) as

r2
5 =

[
r4
{

cos
(
α1 + β + ∆αj

)
− cos(α1 + β)

}
+ r5 cos δ1

]2
+
[
r4
{

sin
(
α1 + β + ∆αj

)
− sin(α1 + β)

}
+ r5 sin δ1 − ∆pj

]2,
j = 2, . . . , n. (14)

Let the x- and y-components of the initial positions of the links r1, r2, r3, r4, and r5 be

r1 cos θ1 = r1x, r2 cos φ1 = r2x, r3 cos α1 = r3x, r4 cos(α1 + β) = r4x, r5 cos δ1 = r5x,
r1 sin θ1 = r1y, r2 sin φ1 = r2y, r3 sin α1 = r3y, r4 sin(α1 + β) = r4y, r5 sin δ1 = r5y.

(15)

Substituting Equation (15) into Equation (13) and gathering the coefficients of cos∆αj
and sin∆αj gives

L1j + L2j cos ∆αj + L3j sin ∆αj = 0, j = 2, . . . , n, (16)

where

L1j = −2 cos ∆θj

(
r2

1x + r2
1y + r1xr2x − r1xr3x + r1yr2y − r1yr3y

)
+ 2 sin ∆θj

(
−r1xr2y + r1yr2x + r1xr3y − r1yr3x

)
+2
(

r2
3x + r2

3y − r2xr3x − r2yr3y

)
+ 2
(

r2
1x + r2

1y + r1xr2x − r1xr3x + r1yr2y − r1yr3y

)
,

(16a)

L2j = −2 cos ∆θj
(
r1xr3x + r1yr3y

)
− 2 sin ∆θj

(
r1xr3y − r1yr3x

)
+ 2
(
r1xr3x + r1yr3y

)
− 2
(

r2
3x + r2

3y − r2xr3x − r2yr3y

)
, (16b)

L3j = 2 cos ∆θj
(
r1xr3y − r1yr3x

)
− 2 sin ∆θj

(
r1xr3x + r1yr3y

)
− 2
(
r1xr3y − r1yr3x

)
− 2
(
r2xr3y − r2yr3x

)
. (16c)

Similarly, substituting Equation (15) into Equation (14) and combining the coefficients
of cos∆αj and sin∆αj yields

Q1j + Q2j cos ∆αj + Q3j sin ∆αj = 0, j = 2, . . . , n, (17)

where
Q1j = 2

(
r2

4x + r2
4y − r4xr5x − r4yr5y

)
+ ∆p2

j + 2∆pj
(
r4y − r5y

)
, (17a)

Q2j = −2
(

r2
4x + r2

4y − r4xr5x − r4yr5y

)
− 2r4y∆pj, (17b)

Q3j = 2
(
r4xr5y − r4yr5x

)
− 2r4x∆pj. (17c)

In order to eliminate ∆αj from Equations (16) and (17), solve the two equations for
cos∆αj and sin∆αj to obtain

cos ∆αj =
−L1jQ3j + L3jQ1j

L2jQ3j − L3jQ2j
, sin ∆αj =

L1jQ2j − L2jQ1j

L2jQ3j − L3jQ2j
, j = 2, . . . , n. (18)

Squaring both sides of Equation (18), adding the result, and simplifying using the
trigonometric identity cos2(∆αj) + sin2(∆αj) = 1 gives(
−L1jQ3j + L3jQ1j

)2
+
(

L1jQ2j − L2jQ1j
)2 −

(
L2jQ3j − L3jQ2j

)2
= 0, j = 2, . . . , n. (19)
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Equation (19), the system of synthesis equations for n prescribed positions, has n − 1
eighth-degree polynomials in 10 unknowns, rix and riy, i = 1, . . . , 5, given in Equation (15).
Hence, for 9 position synthesis, n is equal to 9 and there are 8 equations in 10 unknowns,
and two unknowns can be selected as free choices. Among the 10 unknowns, r1x and r1y are
chosen as the free choices in this study to reduce the calculation time as explained in Sec-
tion 3.1. Now, the total degree of the 9 precision point synthesis equations is 88 = 16,777,216,
which is much smaller than that of the synthesis equations derived in Section 2.1. However,
the system size of the simplified synthesis equations can be further reduced by using
auxiliary equations and applying the multi-homogeneous Bézout theorem. This process is
described in Section 3.

2.3. Synthesis Equations of Stephenson III Six-Bar Slider-Crank Function Generator

A Stephenson III slider-crank linkage is shown in Figure 2a. The input link r1 rotates
about the fixed pivot O, and the output slider translates along a line parallel to y-axis. The
angle between links r2 and r4 is β. The angular displacements of links r2, r3, r4, and r5 are
denoted by φ, α, φ + β, and δ, respectively. As shown in Figure 2b, ∆θj, ∆φj, ∆αj, and ∆δj
represent the rotation angles of links r1 to r5, measured from their initial positions to jth
positions, respectively. The prescribed precision points are given as Equation (1).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 20 
 

( )j x y x x y y y jQ r r r r r r r p2 2
2 4 4 4 5 4 5 4= -2 + - - - 2 Δ ,  (17b)

( )j x y y x x jQ r r r r r p3 4 5 4 5 4= 2 - - 2 Δ .  (17c)

In order to eliminate ∆αj from Equations (16) and (17), solve the two equations for 
cos∆αj and sin∆αj to obtain 

j j j j
j

j j j j

L Q L Q

L L Q
α

Q
1 3 3 1

2 3 3 2

+
co

-
s

-
Δ = ,  

j j j j
j

j j j j

L Q L Q

L Q L
α

Q
1 2 2 1

2 3 3 2

sin
-

=Δ ,
-

 j n= 2, ..., .  (18) 

Squaring both sides of Equation (18), adding the result, and simplifying using the 
trigonometric identity cos2(∆αj) + sin2(∆αj) = 1 gives 

( ) ( ) ( )j j j j j j j j j j j jL Q L Q L Q L Q L Q L Q2 2 2
1 3 3 1 1 2 2 1 2 3 3 2- + + - - - = 0,  j n= 2, ..., .  (19) 

Equation (19), the system of synthesis equations for n prescribed positions, has n−1 
eighth-degree polynomials in 10 unknowns, rix and riy, i = 1,…, 5, given in Equation (15). 
Hence, for 9 position synthesis, n is equal to 9 and there are 8 equations in 10 unknowns, 
and two unknowns can be selected as free choices. Among the 10 unknowns, r1x and r1y 
are chosen as the free choices in this study to reduce the calculation time as explained in 
Section 3.1. Now, the total degree of the 9 precision point synthesis equations is 88 = 
16,777,216, which is much smaller than that of the synthesis equations derived in Section 
2.1. However, the system size of the simplified synthesis equations can be further re-
duced by using auxiliary equations and applying the multi-homogeneous Bézout theo-
rem. This process is described in Section 3. 

2.3. Synthesis Equations of Stephenson III Six-Bar Slider-Crank Function Generator 
A Stephenson III slider-crank linkage is shown in Figure 2a. The input link r1 rotates 

about the fixed pivot O, and the output slider translates along a line parallel to y-axis. The 
angle between links r2 and r4 is β. The angular displacements of links r2, r3, r4, and r5 are 
denoted by ϕ, α, ϕ + β, and δ, respectively. As shown in Figure 2b, Δθj, Δϕj, Δαj, and Δδj 
represent the rotation angles of links r1 to r5, measured from their initial positions to jth 
positions, respectively. The prescribed precision points are given as Equation (1). 

  
(a) (b) 

Figure 2. Stephenson III six-bar slider-crank mechanism: (a) Design parameters; (b) The link vectors
drawn in its first and jth positions.

The dimensional synthesis equations of the Stephenson III six-bar slider-crank function
generator can be derived using the closure equations of the two loops, OABC and OADE,
shown in Figure 2 as follows.

Loop OABC:
For the initial and jth positions, the loop closure equations can be written as

r1 + r2 = r0 + r3, (20)

and
r1ei∆θj + r2ei∆φj = r0 + r3ei∆αj , j = 2, . . . , n, (21)
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respectively. Subtracting Equation (20) from Equation (21) gives

r1(e
i∆θj − 1) + r2(ei∆φj − 1) = r3(ei∆αj − 1), j = 2, . . . , n. (22)

Loop OADE:
For the initial and jth positions, the loop closure equations can be written as

r1 + r4 = h + ip1 + r5, (23)

and
r1ei∆θj + r4ei∆αj = h + ipj + r5ei∆δj , j = 2, . . . , n, (24)

respectively. Subtracting Equation (23) from Equation (24) gives

r1(e
i∆θj − 1) + r4(e

i∆αj − 1) = i∆pj + r5(ei∆δj − 1), j = 2, . . . , n. (25)

Separating the real and imaginary parts of Equations (22) and (25) yields

r1
{

cos
(
θ1 + ∆θj

)
− cos θ1

}
+ r2

{
cos
(
φ1 + ∆φj

)
− cos φ1

}
= r3

{
cos
(
α1 + ∆αj

)
− cos α1

}
, j = 2, . . . , n, (26)

r1
{

sin
(
θ1 + ∆θj

)
− sin θ1

}
+ r2

{
sin
(
φ1 + ∆φj

)
− sin φ1

}
= r3

{
sin
(
α1 + ∆αj

)
− sin α1

}
, j = 2, . . . , n, (27)

and

r1
{

cos
(
θ1 + ∆θj

)
− cos θ1

}
+ r4

{
cos
(
φ1 + β + ∆αj

)
− cos(φ1 + β)

}
= r5

{
cos
(
δ1 + ∆δj

)
− cos δ1

}
, j = 2, . . . , n, (28)

r1
{

sin
(
θ1 + ∆θj

)
− sin θ1

}
+ r4

{
sin
(
φ1 + β + ∆αj

)
− sin(φ1 + β)

}
= r5

{
sin
(
δ1 + ∆δj

)
− sin δ1

}
+ ∆pj, j = 2, . . . , n, (29)

respectively. Among the unknowns in Equations (26) through (29), ∆φj, ∆αj, and ∆δj should
satisfy trigonometric identities

cos2 ∆φj + sin2 ∆φj = 1,
cos2 ∆αj + sin2 ∆αj = 1,
cos2 ∆δj + sin2 ∆δj = 1.

(30)

where j = 2, . . . , n.
As in case of the Watt II slider-crank mechanism, the dimensional synthesis equations,

Equations (26)–(30), for the Stephenson III function generator that satisfies n prescribed
positions are formulated as a system of 7(n − 1) equations in 10 + 6(n − 1) unknowns
which are r1, r2, r3, r4, r5, θ1, φ1, α1, β, δ1, cos∆φj, sin∆φj, cos∆αj, sin∆αj, cos∆δj, and sin∆δj,
with j = 2, . . . , n. For 9 prescribed positions, n is equal to 9 and there are 56 equations
in 58 unknowns. Hence, two unknowns need to be assumed as free choices in order to
obtain the solutions. The total degree of the synthesis equations is 256 ∼= 7.21 × 1016.
In the following section, the synthesis equations for n precision points are simplified by
eliminating some of the unknowns.

2.4. Procedure for Simplifying the Synthesis Equations of Stephenson III Six-Bar Slider-Crank

The synthesis equations, Equations (26)–(30), can be reduced from 7(n − 1) to n − 1 by
eliminating ∆αj, ∆δj, and ∆φj, j = 2, . . . , n. Applying the similar procedure used in Section 2.2,
the unknown ∆αj can be eliminated from Equations (26) and (27) as

r2
3 =

[
r1
{

cos
(
θ1 + ∆θj

)
− cos θ1

}
+ r2

{
cos
(
φ1 + ∆φ j

)
− cos φ1

}
+ r3 cos α1

]2
+
[
r1
{

sin
(
θ1 + ∆θj

)
− sin θ1

}
+ r2

{
sin
(
φ1 + ∆φj

)
− sin φ1

}
+ r3 sin α1

]2,
j = 2, . . . , n, (31)

and the unknown ∆δj can be eliminated from Equations (28) and (29) as

r2
5 =

[
r1
{

cos
(
θ1 + ∆θj

)
− cos θ1

}
+ r4

{
cos
(
φ1 + β + ∆φj

)
− cos(φ1 + β)

}
+ r5 cos δ1

]2
+
[
r1
{

sin
(
θ1 + ∆θj

)
− sin θ1

}
+ r4

{
sin
(
φ1 + β + ∆φj

)
− sin(φ1 + β)

}
+ r5 sin δ1 − ∆pj

]2,
j = 2, . . . , n. (32)
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Let the x- and y-components of the initial positions of the links r1, r2, r3, r4, and r5 be

r1 cos θ1 = r1x, r2 cos φ1 = r2x, r3 cos α1 = r3x, r4 cos(φ1 + β) = r4x, r5 cos δ1 = r5x,
r1 sin θ1 = r1y, r2 sin φ1 = r2y, r3 sin α1 = r3y, r4 sin(φ1 + β) = r4y, r5 sin δ1 = r5y.

(33)

Substituting Equation (33) into Equations (31) and (32), and gathering the coefficients
of cos∆φj and sin∆φj gives

L1j + L2j cos ∆φj + L3j sin ∆φj = 0, j = 2, . . . , n, (34)

where

L1j = −2 cos ∆θj

(
r2

1x + r2
1y + r1xr2x − r1xr3x + r1yr2y − r1yr3y

)
+ 2 sin ∆θj

(
−r1xr2y + r1yr2x + r1xr3y − r1yr3x

)
+2
(

r2
2x + r2

2y − r2xr3x − r2yr3y

)
+ 2
(

r2
1x + r2

1y + r1xr2x − r1xr3x + r1yr2y − r1yr3y

)
,

(34a)

L2j = 2 cos ∆θj
(
r1xr2x + r1yr2y

)
+ 2 sin ∆θj

(
r1xr2y − r1yr2x

)
− 2
(
r1xr2x + r1yr2y

)
− 2
(

r2
2x + r2

2y − r2xr3x − r2yr3y

)
, (34b)

L3j = 2 cos ∆θj
(
−r1xr2y + r1yr2x

)
+ 2 sin ∆θj

(
r1xr2x + r1yr2y

)
+ 2
(
r1xr2y − r1yr2x

)
+ 2
(
r2xr3y − r2yr3x

)
, (34c)

and
Q1j + Q2j cos ∆φj + Q3j sin ∆φj = 0, j = 2, . . . , n, (35)

where

Q1j = −2 cos ∆θj

(
r2

1x + r2
1y + r1xr4x − r1xr5x + r1yr4y − r1yr5y + r1y∆pj

)
+2 sin ∆θj

(
−r1xr4y + r1yr4x + r1xr5y − r1yr5x − r1x∆pj

)
+ 2
(

r2
1x + r2

1y + r1xr4x − r1xr5x + r1yr4y − r1yr5y

)
+2
(

r2
4x + r2

4y − r4xr5x − r4yr5y

)
+ 2∆pj

(
r1y + r4y − r5y

)
+ ∆p2

j ,

(35a)

Q2j = 2 cos ∆θj
(
r1xr4x + r1yr4y

)
+ 2 sin ∆θj

(
r1xr4y − r1yr4x

)
− 2
(
r1xr4x + r1yr4y

)
−2
(

r2
4x + r2

4y − r4xr5x − r4yr5y

)
− 2r4y∆pj,

(35b)

Q3j = −2 cos ∆θj
(
r1xr4y − r1yr4x

)
+ 2 sin ∆θj

(
r1xr4x + r1yr4y

)
+ 2
(
r1xr4y − r1yr4x

)
+2
(
r4xr5y − r4yr5x

)
− 2r4x∆pj,

(35c)

respectively.
For the elimination of ∆φj from Equations (34) and (35), solve the two equations for

cos∆φj and sin∆φj, and simplify using the trigonometric identity to obtain(
−L1jQ3j + L3jQ1j

)2
+
(

L1jQ2j − L2jQ1j
)2 −

(
L2jQ3j − L3jQ2j

)2
= 0, j = 2, . . . , n. (36)

As in the case of the Watt II six-link slider-crank mechanism, the synthesis equations of
the Stephenson III six-link slider-crank function generator for n prescribed positions derived
in Equation (36) are formulated by n − 1 eighth-degree polynomials in 10 unknowns which
are given in Equation (33). For 9 position synthesis, n is equal to 9 and there are 8 equations
in 10 unknowns. Hence, 2 unknowns should be assumed as free choices. In this research,
the x- and y-components of link r1 in the initial position are selected as free choices. The
total degree of the synthesis equations for 9 precision points is 88 = 16,777,216.

3. Additional Degree Reduction with the Multi-Homogeneous Theorem

The Bézout number of a polynomial system represents the largest number of solutions
that the system can have, and is also the number of paths to be tracked to find all isolated so-
lutions in the continuation method. According to the multi-homogeneous Bézout theorem,
the number of solution paths and thus the computing time can be significantly reduced by
dividing the unknowns into appropriate homogeneous groups by the multi-homogeneous
formulation [35,36].

In order to apply the theorem, the 9 position synthesis equations, Equations (19) and
(36), need to be converted into homogeneous structures first. For this purpose, quadratic
auxiliary equations that replace particular terms in Equations (16a)–(16c), (17a)–(17c),
(34a)–(34c), and (35a)–(35c) are defined as new unknowns as follows.
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For the Watt II six-bar slider-crank mechanism:

M1 = r2
3x + r2

3y − r2xr3x − r2yr3y,
M2 = r2xr3y − r2yr3x,
M3 = r2

4x + r2
4y − r4xr5x − r4yr5y,

M4 = r4xr5y − r4yr5x.

(37)

For the Stephenson III six-bar slider-crank mechanism:

N1 = r2
2x + r2

2y − r2xr3x − r2yr3y,
N2 = r2xr3y − r2yr3x,
N3 = r2

4x + r2
4y − r4xr5x − r4yr5y,

N4 = r4xr5y − r4yr5x.

(38)

By substituting Mk in Equation (37) into Lij and Qij of Equation (19), and substituting
Nk in Equation (38) into Lij and Qij of Equation (36), where i = 1, . . . , 3, j = 2, . . . , 9,
and k = 1, . . . , 4, Equations (19) and (36) become 8 homogenous quartic polynomials,
respectively. Hence, now the 9 position synthesis equations are formulated into a system of
12 polynomial equations −8 quartic polynomials, Equations (19) or (36), and 4 quadratic
polynomials, Equations (37) or (38)—in 12 unknowns, rix and riy, where i = 2, . . . , 5, and Mk,
or Nk, with k = 1, . . . , 4. The total degree of the synthesis equations for each mechanism is
4824 = 1,048,576, which is 1/16 of 88 = 16,777,216, the total degree of the simplified synthesis
equations described in Section 2.

As the last step for reducing the system size, the multi-homogeneous Bézout theorem
is applied to the synthesis equations. Then, the synthesis equations can be solved by the
tracking of only 286,720 paths as explained in Sections 3.1 and 3.2.

3.1. 2-Homogeneous Formulation for Watt II Six-Bar Slider-Crank Mechanism

For the multi-homogeneous formulation of the synthesis equations for the Watt II
slider-crank mechanism, the 12 unknowns are arranged into two groups λ1 and λ2 that
constitute the loop OABC and loop OCDE shown in Figure 1 as follows.

λ1 :
(
r2x, r2y, r3x, r3y, M1, M2

)
, λ2 :

(
r4x, r4y, r5x, r5y, M3, M4

)
. (39)

In order to determine the multi-homogenous Bézout number for a polynomial system
whose unknowns are arranged into m homogeneous groups λ1 to λm, let l be the number
of polynomial equations to solve, di,j be the degree of the ith equation with respect to
the unknowns in group λj, and kj be the number of unknowns in group λj. Then, the
multi-homogenous Bézout number of the system is defined as the coefficient of the term

∏m
j=1 λ

kj
j of the following equation [35].

l
∏
i=1

(
m
∑

j=1
di,jλj

)
= (d1,1λ1 + · · ·+ d1,mλm)(d2,1λ1 + · · ·+ d2,mλm) · · · (dl,1λ1 + · · ·+ dl,mλm), (40)

Note that λj in Equation (40) is used as a null value for calculating the multi-homogenous
Bézout number.

Since the system of 12 synthesis equations for the Watt II slider-crank function genera-
tor, Equations (19) and (37) with Equation (39), is a 2-homogeneous system, substituting
l = 12, m = 2, k1 = k2 = 6, and di,j shown in Table 1 into Equation (40) gives

12

∏
i=1

(
2

∑
j=1

di,jλj

)
=(2λ1 + 2λ2)

8(2λ1)
2(2λ2)

2. (41)
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Table 1. Degrees of the 2-homogenous system for Watt II six-bar slider-crank synthesis equations.

Equations (i
= 1, . . . , 12)

Equation (19)
(i = 1, . . . , 8)

M1
(i = 9)

M2
(i = 10)

M3
(i = 11)

M4
(i = 12)

di,1 (Group
λ1) 2 2 2 0 0

di,2 (Group
λ2) 2 0 0 2 2

Hence, the multi-homogenous Bézout number of the system, the coefficient of the term
λ6

1λ6
2 in Equation (41), can be obtained by using the binomial theorem as (288!/4!4!)2222 =

286,720, which agrees with the results reported by Dhingra et al. [20] for the synthesis of
the Watt II six-link function generator with revolute joints only for 9 precision positions.

If other unknowns than r1x and r1y are selected as the free choices, the number of
auxiliary equations to convert the system into a homogenous structure increases and 2-
homogenous Bézout number becomes higher. For example, if r2x and r2y are assumed as the
free choices, it is necessary to define 6 auxiliary equations and the 2-homogeneous Bézout
number is (288!/4!4!)2422 = 1,146,880. Therefore, it is important to select the unknown that
minimize the number of auxiliary equations as the free choices. In this case, it is efficient
to assume r1x and r1y as the free choices to reduce the 2-homogeneous Bézout number in
consideration of the calculation time.

3.2. 2-Homogeneous Formulation for Stephenson III Six-Bar Slider-Crank

In order to make the Stephenson III six-bar slider-crank synthesis equations a 2-
homogeneous system, the 12 unknowns are divided into two groups γ1 and γ2 for the loop
OABC and loop OADE shown in Figure 2 as follows.

γ1 :
(
r2x, r2y, r3x, r3y, N1, N2

)
, γ2 :

(
r4x, r4y, r5x, r5y, N3, N4

)
. (42)

As shown in Table 2, the degrees of the individual equations with respect to the
unknowns in each group are the same as those of the Watt II six-bar slider-crank function
generator. Therefore, the 2-homogeneous Bézout number of the system is also 286,720,
which agrees with the results of Dhingra et al. [20] for the synthesis of the Stephenson III
six-bar function generator with revolute joints only for 9 precision points. For the same
reason as described in Section 3.1, r1x and r1y are assumed to be the free choices in this
study to reduce the 2-homogeneous Bézout number.

Table 2. Degrees of the 2-homogenous system for the Stephenson III six-bar slider-crank synthe-
sis equations.

Equations (i = 1, . . . , 12) Equation (36) (i = 1, . . . , 8) N1
(i = 9)

N2
(i = 10)

N3
(i = 11)

N4
(i = 12)

di,1 (Group γ1) 2 2 2 0 0
di,2 (Group γ2) 2 0 0 2 2

Consequently, the 2-homogeneous Bézout number of the synthesis equations for each
mechanisms is about 1/58 of the total degree of the polynomial systems that are derived by
eliminating some unknowns in Sections 2.2 and 2.4. Hence, the process proposed in this
section can significantly reduce the time to solve the synthesis equations.

In this research, the calculation of the synthesis equations is carried out by using the
Bertini software program [37], which is based on the homotopy continuation method, for
obtaining all the solutions to the Watt II and Stephenson III six-bar slider-crank synthesis
equations that satisfy 9 prescribed precision points. Among the real solutions, however,
some may have kinematic defects. The following section describes the process of sorting
out feasible solutions.
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4. Sorting Out Feasible Solutions

In order for the synthesized mechanisms to function as six-link slider-crank linkages,
they should satisfy the following two conditions. The first is that the input link needs
to be capable of complete rotation, and the second is the prescribed positions should
lie on a single stroke of the slider. Hence, the solutions that do not satisfy these two
conditions should be excluded. This section describes the process for screening the feasible
mechanisms by means of the full rotation condition of the input link and the displacement
analysis of synthesized mechanisms to check whether prescribed positions are present on a
single stroke of the slider.

4.1. Full Rotatability of Input Link

The input link r1 of each mechanism is in the four-bar loop OABC shown in Figures 1
and 2. Hence, it is required for the four-bar to have a full rotatable crank as the input
link. Among the four-bar linkages, those that allow complete rotation of the input link are
the crank-rocker and double-crank, and each mechanism satisfies the following condition,
respectively [38].

Crank-rocker mechanism : H1 > 0, H2 > 0, H3 > 0,
Double-crank mechanism : H1 < 0, H2 < 0, H3 > 0,

(43)

where
H1 = r0 − r1 + r2 − r3,
H2 = r0 − r1 − r2 + r3,
H3 = r2 + r3 − r0 − r1.

(44)

The value of r0 in Equation (44) can be determined by the loop closure equation for the
four-bar in each mechanism. From Figure 1 and Equation (2) for the Watt II slider-crank and
Figure 2 and Equation (20) for the Stephenson III slider-crank, the x- and y-components of r0
can be written as r0cosη = r1x + r2x − r3x and r0sinη = r1y + r2y − r3y, respectively, where r1x
and r1y are the prescribed values as free choices, and r2x, r2y, r3x, and r3y are obtained from the
solution of the synthesis equations. Then, r0 = (r0

2cos2η + r0
2sin2η)1/2. Similarly, since rix and

riy (i = 1, 2, 3) represent the x- and y-components of ri as defined in Equations (15) and (33), ri in
Equation (44) can be determined by ri = (rix

2 + riy
2)1/2.

Based on the condition provided in Equation (43), the solutions that allow the full rota-
tion of the input link can be found from among all the solutions of the synthesis equations.

The next section describes the displacement analysis for further discerning the mech-
anisms in which all the prescribed precision points are present on a single stroke of the
output slider.

4.2. Displacement Analysis

If all link lengths ri, i = 0, . . . , 5, and the offset h are given, for a given value of the
input crank angle, the Watt II and Stephenson III six-bar slider-crank mechanisms can
each be assembled into four different configurations called assembly modes or branches,
and some of the prescribed positions of a synthesized mechanism may lie on different
assembly modes. If all the prescribed positions do not lie on a single stroke of the slider on
one branch, the solution is unacceptable. Therefore, it is necessary to select the solution
mechanisms that satisfy this condition by analyzing the displacement of each mechanism.

For the analysis of the six-bar slider-crank mechanism, the four-bar linkages commonly
used in the two mechanisms need to be analyzed first. The angular displacements α of link
r3 and φ of link r2 shown in Figures 1 and 2 can be determined as [39]

α = 2 tan−1

(
−B±

√
B2 − C2 + A2

C− A

)
, −π ≤ α ≤ π, (45)
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where
A = 2r0r3 cos η − 2r1r3 cos θ,
B = 2r0r3 sin η − 2r1r3 sin θ,
C = r2

0 + r3
1 + r2

3 − r2
2 − 2r0r1(cos η cos θ + sin η sin θ),

(46)

and

φ = tan−1
(

r0 sin η + r3 sin α− r1 sin θ

r0 cos η + r3 cos α− r1 cos θ

)
, (47)

respectively.
Notice that when only the link lengths of the four-bar mechanism and the angle

of the ground link η shown in Figures 1 and 2 are given, there are two sets of α and
φ for a given crank angle θ due to the positive (α+) or negative (α−) sign in Equation
(45), which correspond to the two assembly modes. However, since the solution of the
synthesis equations in this study yields the x- and y-components of each link in its initial
position, the sign to be used in Equation (45) and the assembly mode of the four-bar can be
readily identified.

4.2.1. Watt II Six-Bar Slider-Crank Mechanism

In order to analyze the slider displacement of the Watt II slider-crank mechanism, the
position of the joint E in Figure 1 needs to be determined. To find the coordinates of E, the
position of joint D can be expressed as

D =

[
Dx
Dy

]
=

[
r0 cos η
r0 sin η

]
+

[
r4 cos(α + β)
r4 sin(α + β)

]
, (48)

where α is calculated from Equation (45), and β is the angle between link r3 and link r4 that
can be determined using the solution of the synthesis equations as

β = tan−1
(

r4y

r4x

)
− tan−1

(
r3y

r3x

)
. (49)

Now, the position of the moving pivot E is

E =

[
Ex
Ey

]
=

[
h

Dy ±
√

r2
5 − (h− Dx)

2

]
, (50)

where
h = r0 cos η + r4x − r5x. (51)

Equation (50) indicates that there are two solutions for the position of the joint E. That
is, the slider and link r5 can be assembled above (with the positive sign: Ey

+) or below
(with the negative sign: Ey

−) the moving pivot D. As mentioned in Section 4.1, however,
since the result of this research gives the orientation of each link in its initial position, the
sign to be used in Equation (50) and the assembly mode of a synthesized mechanism can
be identified.

4.2.2. Stephenson III Six-Bar Slider-Crank Mechanism

The position of the moving pivot D in Figure 2 can be determined by

D =

[
Dx
Dy

]
=

[
r1 cos θ
r1 sin θ

]
+

[
r4 cos(φ + β)
r4 sin(φ + β)

]
, (52)

where β is the angle between link r2 and link r4 that can be determined using the solution
of the synthesis equations as

β = tan−1
(

r4y

r4x

)
− tan−1

(
r2y

r2x

)
. (53)
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Then, the coordinates of the moving pivot E are

E =

[
Ex
Ey

]
=

[
h

Dy ±
√

r2
5 − (h− Dx)

2

]
, (54)

where
h = r1x + r4x − r5x. (55)

As in the case with the Watt II slider-crank mechanism, the ± sign to be used in
Equation (54) can be determined by considering the x- and y-components of link r5 of the
synthesized function generator.

By applying the solution screening process explained in this section, the Watt II and
Stephenson III six-bar slider-cranks without kinematic defects can be finally selected from
among all the solutions of the synthesis equations. The next section provides examples of
the dimensional synthesis method proposed in this research.

5. Numerical Examples

In this section, examples are given for the dimensional synthesis of the Watt II and
Stephenson III six-bar slider-crank function generators that satisfy 9 precision points. The
synthesis equations of the two mechanisms derived in this study were calculated by using
the homotopy continuation method, through which all the solutions were obtained. Then,
the feasible solutions were selected based on the two criteria described in Section 4.

5.1. Dimensional Synthesis of Watt II Six-Bar Slider-Crank Function Generator

The prescribed positions that the Watt II six-bar slider-crank function generator should
satisfy are given in Table 3, which shows the relative displacement of the output slider,
∆pj = pj − p1, with respect to the relative input crank angle, ∆θj = θj − θ1, for i = 2, . . . , 9,
each measured from the initial positions of the slider and input crank, respectively. The
free choices were assumed as r1x = 0.12268 and r1y = 0.87294.

Table 3. Prescribed positions for the Watt II slider-crank function generator.

Precision
Points (j) 1 2 3 4 5 6 7 8 9

∆θj (deg) 0 21 70 100 124 164 193 224 298

∆pj 0 −0.49087 −1.45837 −1.69238 −1.77397 −1.77643 −1.67172 −1.42028 −0.13685

For the given precision points, Equations (19) and (37) are solved by using the Bertini
software package. The computation time was 3.42 h on a single node of Intel® Xeon®

W-2245 CPU@3.90 GHz. Among 25,630 nonsingular solutions obtained, those that have
less than 0.01% structural error are selected as feasible solutions. As a result, there were
37 mechanisms that have completely rotatable cranks and pass all the prescribed positions.
Table 4 shows the number of the feasible mechanisms for each assembly configuration. The
kinematic diagrams in their initial positions and slider displacements of two synthesized
mechanisms are shown in Figure 3 and the corresponding solutions are listed in Table 5.

Table 4. The number of feasible mechanisms for each configuration.

Configuration Number of Feasible Mechanisms

1 (Assembled by α−, Ey
+) 0

2 (Assembled by α−, Ey
−) 1

3 (Assembled by α+, Ey
+) 25

4 (Assembled by α+, Ey
−) 11
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Figure 3. Watt II six-bar slider-crank function generator: (a) (α+, Ey+) with a crank and the dis-
placement of the slider; (b) (α+, Ey+) with double cranks and the displacement of the slider. 

Table 5. The solutions of the Watt II six-bar slider-crank mechanism shown in Figure 3. 
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ment of the slider; (b) (α+, Ey
+) with double cranks and the displacement of the slider.

Table 5. The solutions of the Watt II six-bar slider-crank mechanism shown in Figure 3.

Configuration
Type of

Four-Bar
Mechanism

Solutions Link Lengths Orientations (Deg)

3 Crank-rocker

r2x 1.83719848448098
r2 2.66481499912287 φ 46.4151406996215r2y 1.93026959468645

r3x 2.29173698831327
r3 2.29948451051778 α −4.70463367830402

r3y −0.188601671540832

r4x 2.95628516701656
r4 3.02185450092804 α + β 11.9574803117514r4y 0.626085166776018

r5x 2.50589035665077
r5 3.22236485855068 δ −38.9535693977896

r5y −2.02586988774379

3 Double-crank

r2x −0.492252951916725
r2 0.660020417350853 φ −138.229126201616

r2y −0.439674860151526

r3x −0.167431742713909
r3 0.459407273662191 α 111.373840719186r3y 0.427810302149809

r4x −0.66096098576403 r4 0.97212798670023 α + β 132.83672677491r4y 0.712855804369779

r5x −0.333010353208065
r5 1.40620185002117 δ −103.698662763378

r5y −1.36620194248844
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5.2. Dimensional Synthesis of Stephenson III Six-Bar Slider-Crank Function Generator

The prescribed positions for the Stephenson III six-bar slider-crank function generator
are given in Table 6 and the free choices were assumed as r1x = 0.12859 and r1y = 1.0473.

Table 6. Prescribed positions for the Stephenson III slider-crank function generator.

Precision
Points (j) 1 2 3 4 5 6 7 8 9

∆θj (deg) 0 39 88 140 182 225 253 287 333

∆pj 0 −0.16691 −1.08488 −2.29326 −2.83569 −2.59666 −1.93088 −0.95797 −0.18975

Using the Bertini software package, the computation time to solve the synthesis
equations given in Equations (36) and (38) was 4.38 h on the same work station referred to
in Section 5.1, and a total of 36,061 nonsingular solutions were obtained. Among them, 31
Stephenson III six-bar slider-cranks that have less than 0.01% structural error were found,
and the number of the feasible mechanisms for each assembly configuration is tabulated in
Table 7. The kinematic diagrams in the initial positions and slider displacements of two
synthesized mechanisms are shown in Figure 4 and the corresponding solutions are listed
in Table 8.

Table 7. The number of feasible mechanisms for each configuration.

Configuration Number of Feasible Mechanisms

1 (Assembled by α−, Ey
+) 11

2 (Assembled by α−, Ey
−) 0

3 (Assembled by α+, Ey
+) 12

4 (Assembled by α+, Ey
−) 8

Table 8. The solutions of the Stephenson III six-bar slider-crank mechanism shown in Figure 4.

Configuration
Type of

Four-Bar
Mechanism

Solutions Link Lengths Orientations (Deg)

1 Crank-rocker

r2x 2.54452041055486
r2 2.99784510000088 φ 31.9204361635379r2y 1.58508394852419

r3x −0.439101961903118
r3 3.00115483999674 α 98.4132035930371r3y 2.96885833961284

r4x 0.265943554102272
r4 2.55948745154112 φ + β 84.0359171635551r4y 2.54563352441547

r5x 0.272684581643968
r5 3.33598841545769 δ −85.3113966753684

r5y −3.32482508216621

3 Double-crank

r2x −0.448150890683856
r2 0.943859211257232 φ −118.346779745901

r2y −0.830681039782654

r3x 0.003969289812873
r3 0.854831121637962 α 89.7339540343908r3y 0.854821906164786

r4x −0.725026834630641
r4 0.729835893584505 φ + β −173.418970576143

r4y −0.083645206854701

r5x 0.650197621387553
r5 2.41279005227063 δ −74.3666995186773

r5y -2.32353155551589
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6. Conclusions

This paper presents the dimensional synthesis of the Watt II and Stephenson III
six-bar slider-crank function generators that satisfy nine precision points of the output
slider for the prescribed rotational angles of the input link. In this study, the system of
synthesis equations for each mechanism initially derived by 56 quadratic polynomials is
simplified to eight eighth-degree polynomial equations by eliminating some unknowns.
Then, by defining four auxiliary quadratic polynomials as new unknowns, the synthesis
equations are converted into eight quartic and four quadratic homogeneous polynomials
in 12 unknowns. By this process, the Bézout number of the system that represents the
maximum number of isolated solutions is reduced from 256 ∼= 7.21 × 1016 to 1,048,576. In
order to decrease the computation time of the synthesis equations further, 2-homogeneous
formulation is applied by arranging the unknowns of the system into two groups and
the multi-homogeneous Bézout number of the system is 286,720. In this research, the
synthesis equations are solved by using the Bertini solver, which uses the homotopy
continuation method.
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As is known, all the solutions obtained by solving the synthesis equations do not yield
feasible six-link slider-crank mechanisms. For the solution mechanism to function properly
as desired without any defects, it must have a full rotatable crank and the prescribed
precision points should lie on a single stroke of the slider. The screening process to select
suitable linkages among the solutions is explained in detail.

The proposed method is verified by carrying out synthesis examples. For arbitrarily
given nine precision points, the methods determined 37 feasible Watt II slider-crank mech-
anisms among 25,630 nonsingular solutions and 31 Stephenson III six-bdar slider-crank
linkages out of 36,061 solutions. The structural errors of the synthesized mechanisms
determined in this research are ranged from 5.42 × 10−3% and 7.95 × 10−12%.

In order to synthesize six-link slider-crank function generators for other numbers of
precision points than nine, the n-1 polynomials in 10 unknowns given in Equation (19) for
the Watt II and Equation (36) for the Stephenson III slider-crank mechanism would be the
starting point for the synthesis. Once the number of precision points to be synthesized for is
chosen, the number of free choices is determined. When selecting free choices among the 10
unknowns in Equations (15) or (33), it is efficient to choose the unknowns that can minimize
the number of auxiliary equations to obtain the lower value of the multi-homogeneous
Bézout number of the system. Then, define auxiliary equations that can convert the system
into a homogeneous structure and apply multi-homogeneous formulation by arranging
the variables into homogeneous groups. By solving the resulting system of equations
and sorting out feasible solutions, the dimensions of the six-link slider-crank function
generators can be determined.

In order to reduce the computation time to solve the system of synthesis equations,
the use of newly developed homotopy continuation methods [40–43] can be considered.
Among them, the Diagonal homotopy method [40] seeks only the nonsingular solutions for
a system of nonlinear equations. Since there exist many degenerate solutions in a system of
non-linear equations, using this method to solve the system may reduce the calculation
time significantly.
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