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Abstract: An inset fed-microstrip patch antenna (MPA) with a partial ground structure is constructed
and evaluated in this paper. This article covers how to evaluate the performance of the designed
antenna by using a combination of simulation, measurement, creation of the RLC equivalent circuit
model, and the implementation of machine learning approaches. The MPA’s measured frequency
range is 7.9–14.6 GHz, while its simulated frequency range is 8.35–14.25 GHz in CST microwave studio
(CST MWS) 2018. The measured and simulated bandwidths are 6.7 GHz and 5.9 GHz, respectively.
The antenna substrate is composed of FR-4 Epoxy, which has a dielectric constant of 4.4 and a loss
tangent of 0.02. The equivalent model of the proposed MPA is developed by using an advanced
design system (ADS) to compare the resonance frequencies obtained by using CST. In addition, the
measured return loss of the prototype is compared with the simulated return loss observed by using
CST and ADS. At the end, 86 data samples are gathered through the simulation by using CST MWS,
and seven machine learning (ML) approaches, such as convolutional neural network (CNN), linear
regression (LR), random forest regression (RFR), decision tree regression (DTR), lasso regression,
ridge regression, and extreme gradient boosting (XGB) regression, are applied to estimate the resonant
frequency of the patch antenna. The performance of the seven ML models is evaluated based on
mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and variance
score. Among the seven ML models, the prediction result of DTR (MSE = 0.71%, MAE = 5.63%,
RMSE = 8.42%, and var score = 99.68%) is superior to other ML models. In conclusion, the proposed
antenna is a strong contender for operating at the entire X-band and lower portion of the Ku-band
frequencies, as evidenced by the simulation results through CST and ADS, it measured and predicted
results using machine learning approaches.

Keywords: microstrip patch antenna; X-band; machine learning; convolutional neural network;
frequency prediction
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1. Introduction

Antennas are rightfully referred to as the electronic eyes and ears of the planet because
of their unquestionable significance in wireless communication technology [1]. Microstrip
patch antennas (MPAs) have been one of the most revolutionary breakthroughs in the
time of downsizing in the ever-growing field of wireless communication technology [2,3].
Due to their low weight, miniature size, affordability, ease of fabrication, and ability to
be printed directly onto circuit boards, they have been widely used in various wireless
systems, such as airborne radar, radio telemetry, RFID, mobile communication, navigation
systems, and satellite communication [4,5]. In [6,7], meta surface-based dual band antennas
were investigated, especially for industrial, scientific, and medical (ISM) applications.
When the incident angles theta and phi change from −90 to 90 and from 0 to 360 degrees,
the unit “1” reflection coefficient amplitude changes from 0 to 1. A genetic algorithm
(GA) optimizes CFMS coding subarray distribution [6]. The S11 of the antenna is less
than −10 dB between 2.3–2.62 GHz and 4.9–6.45 GHz and 13% and 27% impedance
bandwidth. Additionally, 6.8 dB at 2.45 GHz and 9.0 dB at 5.8 GHz [7]. However, the
bandwidth and gain of typical microstrip antennas are both low [8,9], despite their many
advantages. Recently, MPAs have been extensively used in X-band applications. An X-band
antenna can have both the compact size and the huge bandwidth required to send big
data [10,11]. To increase MPA performance and eliminate numerous drawbacks in the
X-band range, substantial research work was conducted accordingly [12–17]. A tuning
fork-shaped MPA having resonance frequencies ranging from 9 GHz to 11 GHz for X-band
radar and satellite applications was presented in [18]. The substrate of Rogers RT/Duroid
5880 in a high-frequency structural simulator (HFSS) simulates and analyzes the antenna
characteristics. With total dimensions of 24 × 18 × 1.57 mm3, the result generated a
maximum gain of 5.3 dB. A series-fed microstrip array antenna was also proposed in [19]
for X-band applications by using an array structure with a dimension of 156 × 9 mm2.
In [20], a 3D printed corrugated plate antenna with high gain and aperture efficiency
was proposed in the work. It is reported that the gain of the antenna is improved with
the increment of the number of corrugated structures. The highest gain of 24.2 dB was
achieved when 10 corrugations were implemented in the antenna structure. A proximity
coupled technique is also being proposed for microstrip patch antennas (PC-MSPA) in
S/C/X-band applications as reported in [21]. The prediction of the impedance response was
conducted for a two-layer and single-material design structure. As a result, a new prediction
model based on an electric equivalent circuit was introduced accordingly. To achieve the
acceptable performance of an antenna using 3D electromagnetic simulation software, such
as CST, HFSS, FEKO, and ADS, is a very challenging and time-consuming task. To mitigate
these limitations, many researchers apply machine learning (ML) and deep learning (DL)
approaches to optimize the antenna design, predict the results, such as resonance frequency
( fr), gain, return loss (s11), bandwidth, and so on, and select the antennas for wireless
applications [22–29]. Authors in [30] proposed an artificial neural network (ANN)-based
microstrip patch antenna where the antenna dimension and resonance frequencies were
predicted. However, the accuracy of the predicted results in terms of percentage of error,
such as MSE, MAE, and RMSE, was not considered. Moreover, the prediction results of the
proposed ANN model were not compared with the other existing ML models to validate
the prediction. Another research work was carried out to predict the resonance frequency
of patch antennas using ANN in [31]. In this research work, the percentage of error was
calculated from the difference between actual value and predicted value divided by the
actual value. It is noteworthy that the percentage of error in terms of MSE, MAE, and RMSE
was not evaluated. In addition, most of the existing ML-based antenna design research
work has not measured the variance score. In this research work, six regression ML models,
such as linear regression (LR), random forest regression (RFR), decision tree regression
(DTR), Lasso regression, ridge regression (RR), extreme gradient boosting (XGB) regression,
and one DL model (CNN), are used to predict the operating frequency of the proposed
antenna. Various performance metrics, such as mean square error (MSE), mean absolute



Appl. Sci. 2022, 12, 10505 3 of 18

error (MAE), root MSE (RMSE), and variance score are observed to validate the prediction
of the fr using the mentioned models [32].

Recently, a new technique has been explored by using multiple regression algorithms
along with convolutional neural networks (CNN) to predict the fr by using CST electro-
magnetic (EM) simulation tools. Furthermore, the simulated fr using CST and ADS and
measured fr is compared with the predicted fr using the proposed ML algorithms.

The main contributions of this research work are summarized as follows:

i Simulate and analyze the performance of a microstrip patch antenna using CST EM
simulation tools.

ii Validate the CST simulation results using ADS simulation software, and the simulated
S11 is compared with the measured S11.

iii The resonance frequency ( fr) is predicted using six ML regression algorithms and
CNN. A comparative study of the different models based on the different predicted
results is incorporated.

The remaining sections of this study are organized as follows. Section 2 explains
several generic design formulas and the geometrical structure of the proposed antenna
and the required performance analysis of the various machine learning algorithms. The
results of the necessary simulations and measurements are presented in Section 3 and,
consequently, the concluding remarks are highlighted in Section 4.

2. Design Methodology

In microstrip patch antennas, the size and shape of the patch determine the antenna’s
resonance frequency, bandwidth, return loss, gain, and radiation pattern. Radiation effi-
ciency and resonance frequency are two of the many variables whose values are directly
determined by the patch’s width and length. The feasible and efficient dimensions (length
and width) of a rectangular microstrip antenna can be calculated using the formulae below.
Based on the transmission line model, the dimensions of a radiation patch can be calculated
using the following equations [33,34]:

W =
c

2 fr

√
2

εr + 1
(1)

L =
c

2 fr

√
εe f f + 1

− 2∆L (2)

where

∆L = 0.412h
εe f f + 0.3

εe f f − 0.258

[ w
h + 0.264

w
h + 0.8

]
(3)

εe f f =
εr + 1

2
+

εr − 1
2

[
1 + 12

h
w

]− 1
2

(4)

and feedline W0 is evaluated from the input impedance Zin:

Zin =
120π

√
εr

[
h
w + 1.393 + 0.667ln

(
h
w + 1.444

)] (5)

Here, c is the speed at which light travels through a vacuum, ( fr) is the resonance
frequency, and εr is the relative permittivity (also called the dielectric constant) of the
dielectric material. In real life, the fields do not just stay on the patch. The fringing field
is a field component that goes beyond the patch’s physical limits (L ×W). The effective
patch width could be calculated using the effective dielectric constant (εre f f ) for the width
of the patch (W) while considering the influence of the fringing field effect. The effective
dielectric constant (εre f f ) is determined by the following equation:
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εe f f =
εr + 1

2
+

εr − 1
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[
1 + 12

h
w

]− 1
2

(6)

Here, h is the thickness of dielectric substrate. To account for the influence of the
fringing field given a patch length L, both ends of the line must have a length added
to them.

∆Lεe f f

h
= 0.412h

(
εe f f + 0.3

)(w
h + 0.264

)(
εe f f − 0.258

)(w
h + 0.8

) (7)

The antenna has a total footprint of 28.2 × 23.8 × 1.6 mm3 with a patch area of
28.2 × 23.8 mm2. Annealed copper is used as a patch and ground plane material and is
matched to the real-world antenna construction material.

FR4 is, rightly, the most commonly used material in PCB construction. Boards from
FR4 are robust, water resistant, and provide sound insulation between copper layers that
minimize interference and support good signal integrity. This research investigated the
feasibility of using the FR-4 substrate for microstrip antennas throughout a wide frequency
range (8–12 GHz). The purpose of this investigation was to examine the FR-4 substrate as
a potential option for designing an X-band microstrip antenna, aiming to achieve a high
degree of agreement between simulated and measured results. Due to its inexpensive
cost and widespread availability, FR-4 was selected for this research because it can be
utilized for prototyping microstrip antennas. A microstrip feed line with a 50 Ω impedance
was used to feed the input signal to the antenna. CST carries out the preliminary design
and performance optimization. The dimensional parameters of the proposed MPA are
presented in Table 1.

Table 1. Antenna design parameters.

Parameters Full Form of
Parameters

Dimensions
(mm) Parameters Full Form of

Parameters
Dimensions

(mm)

LS
Length of
Substrate 23.8 L f

Length of
Feed Line 10

LG
Length of
Ground 28.2 W f

Width of
Feed Line 3

WG
Width of
Ground 9.6 Li

Length of
Inset 5

LP
Length of

Patch 13.8 Wi
Width of

Inset 3.6

WP
Width of

Patch 19 MtP
Thickness of

patch 0.035

h Thickness of
substrate 1.6 Mt

Thickness of
Ground 0.035

WS
Width of
Substrate 28.2 - - -

The proposed MPA utilizes FR-4 Epoxy dielectric material, which has a relative permit-
tivity of εr = 4.4 and loss tangent of 0.007. The antenna features a rectangle-shaped patch
with two inset slot cuts and a partial ground plane with a smaller area than the substrate.
The parametric analysis in CST derives the optimal dimensions of insets and ground planes.
Optimized dimensions of inset slots in combination with a partial ground plane give an
excellent wideband response. Figure 1a,b depict a simulated 3D view; the partial ground
plane of the proposed MPA and Figure 2a shows the dimensions of substrate, patch, and
feedline of the proposed X-band MPA and Figure 2b depicts the fabricated prototype view
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of the proposed wideband MPA that has the capability to satisfy X-band applications
requirement.
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3. Result Analysis of the Proposed MPA

The simulated and measured results of the proposed MPA are discussed in this section.
The simulated S11 using CST is also compared with the results obtained from the advanced
design system (ADS). Finally, different machine learning algorithms are discussed briefly
to predict the proposed antenna’s resonance frequency.

3.1. Simulated and Measured Results

The simulated and measured S11 plot is shown in Figure 3. The simulated and
measured S11 plot ensures that the proposed MPA will provide satisfactory performance
across the whole X-band. Moreover, the S11 graph shows that the antenna will be suitable
for the entire X-band and a portion of the lower part of the Ku-band. The MPA provides
two resonance frequencies of 9 GHz and 13 GHz with return loss magnitudes of S11 −35 dB
and −18 dB, respectively. The MPA offers a −10 dB impedance bandwidth of 5.8 GHz,
ranging from 8.35 GHz to 14.15 GHz. However, the measured return loss graph is slightly
different from the simulated return loss graph. It may have occurred because the antenna
is excited using a waveguide port during simulation, but practically the antenna is excited
using the SMA connector. The connector loss influences the response of the antenna. In
addition, the near-field scattering objects, the losses due to the feed connector, and the



Appl. Sci. 2022, 12, 10505 6 of 18

coaxial cable also affect the response of the antenna performance. Figure 4 shows that the
VSWR is less than 1.5 at both resonance frequencies, ensuring good impedance matching
characteristics.
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The surface current distribution of the designed MPA indicates that the antenna has
the most current in the middle of its length and the least current near its edges, as illustrated
in Figure 5. To validate the simulated and measured S11, the equivalent RLC model of the
proposed antenna is designed using Agilent ADS software and the resonance frequencies
obtained from the RLC equivalent model of the proposed MPA using ADS Agilent software
are almost equal to the simulated (using CST) and measured resonance frequencies. In
addition, the S11 using ADS is −34 dB and −35 dB at both resonance frequencies.

The radiation pattern of the proposed antenna is depicted in Figure 6, which shows
the main lobe direction, main lobe magnitude, side lobe level (SLL), and a 3-dB beam width.
At the two distinct resonance frequencies, the 3-dB beam width is 148.2 degrees for 9 GHz
and 71 degrees for 13 GHz. The SLL at a resonance frequency of 13 GHz is −6.3 dB and at
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a frequency of 9 GHz it is −10 dB. Gain is a measurement of the energy delivered to the
main beam. The gain vs. frequency curve of the proposed antenna is presented in Figure 7.
From the figure, the gain of the microstrip patch antenna varies from 2.2 dB to 6.25 dB in
the entire simulated frequency range. The designed antenna gained 4.0614 dB at 9 GHz
and 3.4589 dB at 13 GHz.
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3.2. RLC Lumped Element Extraction and Equivalent Circuit of the Proposed MPA Using ADS

The equivalent RLC model of the proposed MPA using Agilent ADS software is
presented in Figure 8. The values of R, L, and C have been chosen so that the equiva-
lent impedance of the designed antenna is reasonably matched with the characteristic
impedance (50 Ω) of the transmission line. An optimal impedance match between the
antenna and the transmission line is required to transfer maximum power from the input
port of the antenna to its antenna structure [35]. For the resonance frequencies of 9 GHz
and approximately 13 GHz, resistance R1 = 52.56 Ω, inductance L1 = 49.8 pH, and ca-
pacitance C1 = 6.369 pF are assigned to the parallel RLC circuit, along with resistance
R2 = 51.88 Ω, inductance L2 = 135.8 pH, and capacitance C2 = 1.10 pF as presented in
Figure 8. As the antenna input port, the input terminal source in ADS is configured as
a terminal block (Term is G) with a 50 Ω characteristic impedance and acts as an input
port for the antenna. The values of R, L, and C are considered in such a manner that the
equivalent circuit impedance is equal to the antenna input port impedance. The impedance
matching performance is observed in ADS using the S-parameter block. In the S-parameter
block, the intended frequency range is swept from 7 GHz to 17 GHz in 10 KHz increments.
The plot of the return loss response (dB (S (1,1)) is chosen for plotting the resonant circuit’s
output result. The resonant circuit yields a resonant frequency of 9.0 GHz with a return
loss of −33 dB, and at 13 GHz with a return loss of -35 dB, as shown in Figure 9.
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3.3. Machine Learning-Based Resonance Frequency Prediction

To achieve simplicity in the design of the antenna and predict the antenna perfor-
mances, different ML and/or DL models are introduced. Using those models, the design
and optimization of the antennas are much easier than with the traditional EM simulation
tools. In this study, we are investigating and showing a wide variety of regression methods
along with convolutional neural networks (CNN). All these algorithms are used to predict
the resonance frequency of the proposed MPA. A brief description of the different mod-
els that are used for the prediction of resonance frequency is provided in the following
subsection.

4. Brief Description of the Learning Models

Machine Learning Models:

Machine learning creates algorithms from data and then uses those algorithms to gener-
ate predictions based on other data. Multiple methods, including regression, classification,
and deep learning, see heavy rotation in the machine learning toolkit (Neural Network).
To solve this problem, we are investigating and showing various regression methods. It is
common practice to employ regression when making predictions and forecasts.

Convolutional Neural Network (CNN):

CNN has been proposed for use on one-dimensional data in addition to its widespread
application in image recognition and text analysis. In convolutional neural networks, there
are three types of layers: input, hidden, and output. Both the input and output layers are
activated linearly. However, since neural networks can have multiple hidden layers, their
activation functions are often nonlinear. Hidden layers in convolutional neural networks
(CNNs) convolve the input and send the result to the next layer [36,37]. Table 2 shows the
hyperparameter settings of the CNN model. The CNN architecture is shown in Figure 10.

Table 2. Hyperparameter setting for used CNN.

Hyperparameter Configuration

Dense layer’s activation function ReLU

Batch size 16

Epoch 100

Optimization function Adam

Loss MSE

Linear Regression:

Linear regression is a well-known approach in the fields of statistics and machine
learning. This is a mathematical technique used in forecasting or predicting results. A
linear regression model aims to establish a correlation between a set of characteristics and a
continuous dependent variable [38].

Random Forest Regression:

Classification and regression with random forests involve constructing a set of tree
predictors, each of which is built with a random vector that is chosen independently of the
input vector. Regression with tree predictor uses numerical values in place of class labels.
Random forest regression constructs a tree when using variables at each node [39].

Decision Tree Regression:

Decision tree regression considers an object’s qualities and trains a model to predict
future data and give useful continuous output. It is a tree structure for quantitatively
forecasting the results of the dependent variable [40].
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Lasso Regression:

Lasso regression is one type of linear regression that employs the shrinkage method.
Researchers often turn to lasso regressions for modeling scenarios with many features [41]
because of its efficiency in executing feature selection.

Ridge Regression:

A valuable method for analyzing multiple regression on data that exhibits multi-
collinearity is known as ridge regression. It is a regularization model where an extra
variable (tune parameter) is added and optimized to address numerous variables in linear
regression [42].
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XGB Regression:

When it comes to fixing regression or classification issues, the most efficient method is
extreme gradient boosting (XGBoost). This approach uses a gradient boosting framework
to make use of decision trees. It provides features that significantly affect the model’s
efficacy [43].

The data generation flow diagram is shown in Figure 11. There are six regression
models, linear regression, random forest regression, decision tree regression (DTR), lasso
regression, ridge regression, XGB regression, and CNN, used to predict the resonance
frequency. The comparisons between the simulated and the predicted resonance frequencies
of the 18 test data samples using DTR and CNN are shown in Tables 3 and 4, respectively
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Table 3. Simulated and predicted resonant frequency comparison of the test set using DTR.

No.
Simulated
Frequency

(GHz)

Predicted
Frequency

(GHz)

Error
Percentage

(%)
No.

Simulated
Frequency

(GHz)

Predicted
Frequency

(GHz)

Error
Percentage

(%)

1 8.1414 8.1113 0.3697 10 9.064 9.0285 0.3917

2 9.0396 9.0285 0.1228 11 9.0296 9.0296 0

3 9.1176 9.0953 0.2446 12 8 8.1526 1.9075

4 9.0507 9.0507 0 13 11.81 11.794 0.1355

5 7.2623 7.2623 0 14 9.1413 9.2296 0.9659

6 9.351 9.3841 0.354 15 11.734 11.634 0.8522

7 11.988 11.794 1.6183 16 11.649 11.794 1.2447

8 8.1487 8.1526 0.0479 17 9 9.0173 0.1922

9 11.865 11.712 1.2895 18 9.0639 9.0753 0.1258
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Table 4. Simulated and predicted resonant frequency comparison of the test set using CNN.

No.
Simulated
Frequency

(GHz)

Predicted
Frequency

(GHz)

Error
Percentage

(%)
No.

Simulated
Frequency

(GHz)

Predicted
Frequency

(GHz)

Error
Percentage

(%)

1 8.1414 8.6086 5.73869 10 9.064 9.222 1.74353

2 9.0396 9.225 2.05042 11 9.0296 9.6116 6.44494

3 9.1176 9.2757 1.73436 12 8 8.7789 9.7363

4 9.0507 9.265 2.36726 13 11.81 10.3787 12.11948

5 7.2623 8.7624 20.65657 14 9.1413 9.2286 0.95446

6 9.351 9.7752 4.53594 15 11.734 10.8604 7.44519

7 11.988 10.3457 13.69946 16 11.649 9.7128 16.62076

8 8.1487 8.8375 8.45233 17 9 9.2611 2.90101

9 11.865 10.2844 13.32168 18 9.0639 9.8493 8.6656

Performance Evaluation of the ML Models

Different performance metrics of the ML models are investigated to validate the
prediction of the resonance frequency with respect to the simulated and the measured
resonance frequency. In this research work, the mean absolute error (MAE), the mean
squared error (MSE), the root mean squared error (RMSE), and the variance score are
observed as performance indicators of the ML regression models. Predicting errors are
computed, and prediction models are assessed using these metrics. The mean absolute
error, mean squared error, and root-mean-squared error are well-known scale-dependent
measurements based on absolute and squared values [44,45]. The MAE considers the
average amount of error over a group of projections but ignores the direction of the
mistake, giving less weight to extreme predictions [46]. In [47], the MAE is mathematically
formulated as:

MAE =
1
n ∑n

i=1 |Pi−Oi| (8)

where n = number of errors and |Pi−Oi| = Absolute error.
The MSE is a common statistic used in estimation. The root-mean-squared error

(RMSE) is used in place of MSE by taking the square root. The root-mean-squared error
(RMSE) quantifies how far estimates deviate from reality. The definition of RMSE is [48]:

RMSE =

√
1
n ∑n

i=1 (Pi−Oi)2 (9)

Another performance indicator is the explained variance score that reflects the error
scatter in a data collection. It can be defined as [49]:

explained variance(y, ŷ) = 1− Var(y− ŷ)
Var(y)

(10)

Figure 12 shows that a total of 86 samples were used to predict the resonance frequency
of the designed MPA. Among the 86 samples, 68 samples were used to train the models and
18 samples were used to test the models’ performance. The number of training samples
and the number of sampling data determines the accuracy of the prediction model. The
86 data samples were generated using CST simulation software by varying the different
dimensional parameters of the proposed MPA.
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Figure 12. Pie chart for splitting the data set.

Figure 13 shows a heat map plot (correlation matrix) which represents each of the ten
attributes of antenna design parameters named Lp, Ls, Lg, Wp, h, Ws, Mtp, Mt, S11, and
frequency on the y- and x-axis of the plot. These values represent the input dimensions of
the proposed antenna structure, as shown in Table 1 and Figure 2 in the previous section.
The maximum correlation occurs at the center of the plot with a value of 1.00. As the point
moves away from the maximum line (1.00), the correlation decreases accordingly. In this
mapping plot, the correlation value ranges from 0.03 to 0.72.
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Figure 14 shows the simulated vs. predicted frequency of test data samples using DTR
and CNN, respectively, for 18 test samples. In the analysis, the frequency tuning ranges
from 7 GHz to 12 GHz. It is shown in Figure 14a that there is a small deviation (close
to 0) between the actual and predicted frequencies for DTR. Among the 18 test samples,
3 test samples were accurately predicted, with zero percentage of error. In addition,
the percentage of error in most cases is less than one. As a result, the predicted result
almost perfectly matches the simulated result, as shown in Figure 14a. Somehow, there are
deviations for CNN with magnitudes ranging from 0.95446% to 20.65657% as depicted in
Figure 14b. It is found that the percentage of predicted errors in CNN is slightly higher
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than in DTR. Hence, DTR is selected for better prediction performance as compared to
CNN.
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The performance metrics of ML for CNN, linear regression, random forest regression,
decision tree regression (DTR), lasso regression, ridge regression, and XGB regression
algorithms are tabulated in Table 5. The magnitude values of MAE, MSE, RMSE, and the
variant score are evaluated to determine the error performance of each algorithm. It is
shown that the DTR model generates a small percentage error for MAE, MSE, RMSE, and
the variant score magnitude with values of 5.63%, 0.71%, 8.42%, and 99.68%, respectively.
The DTR method has performed better than the rest of the regression models and yields
the highest quality results in all four scenarios. It is also shown that the XGB model is
considered as a secondary selection, where it generates values of 7.03%, 1.06%, 10.27%, and
99.54%, respectively. It depicts the XGB model, performing close to DTR. Somehow, the per-
formance of the CNN and Lasso models produced lower percentage magnitudes of 76.41%,
92.49%, 96.17%, and 57.62% and 55.01%, 63.25%, 79.53%, and 70.97%, respectively. Hence,
they are not good for method selection for proposed research work. The performance
comparison for all algorithms viewed in the bar chart is illustrated in Figure 15.

Table 5. The resonant frequency prediction performance of ML algorithms.

Algorithms MAE MSE RMSE Var Score

CNN 0.7641 0.9249 0.9617 0.5762

Linear Regression 0.5312 0.5226 0.7229 0.7627

Random Forest Regression 0.1261 0.0352 0.1875 0.9848

Decision Tree Regression 0.0563 0.0071 0.0842 0.9968

Lasso Regression 0.5501 0.6325 0.7953 0.7097

Ridge Regression 0.5061 0.5159 0.7183 0.7668

XGB Regression 0.0703 0.0106 0.1027 0.9954
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5. Conclusions 
This article discusses the integration of simulation, measurement, development of 

the RLC equivalent circuit model, and applying machine learning approaches to evaluate 
the performance of the proposed antenna. In terms of frequency, the designed antenna 
supports the whole X-band as well as some portions of the Ku-band. The prototype was 
built and analyzed to confirm the intended performance. In addition, the RLC equivalent 
model of the proposed MPA designed with the ADS Agilent software yields resonance 
frequencies nearly identical to those generated by simulation (with CST) and measure-
ment. Furthermore, six machine learning and one deep learning (CNN) algorithm have 
been developed to determine the resonant frequency of the MPA. When the predicted and 
simulated resonant frequencies are compared, it is observed that they are almost identical. 
Different performance metrics, such as MAE, MSE, RMSE, and variance scores, are calcu-
lated to validate the prediction using the learning algorithms. These metrics are obtained 
through the process of computing the results of the prediction. The predicted results show 
that the error performances of the decision tree regression model are comparatively better 
than other models. The MAE, MSE, RMSE, and variance scores (in percentage) of the DTR 
model are 5.63, 0.71, 8.42, and 99.68, respectively. The XGB model (MAE = 7.03%, MSE = 
1.06%, RMSE = 10.27%, and var score = 99.54%) performs better than the other learning 
models that were introduced in this study, except DTR. The performance of the deep 
learning model (CNN) is slightly lower than the presented regression models, which may 
have occurred due to the inadequate number of data samples for the CNN model. Despite 
the fact that the proposed MPA has two resonant frequencies, we have only predicted one 
(9 GHz) using ML models. In addition, the designed MPA has a lower gain of 4.06 dB at 
9 GHz and 3.46 dB at 13 GHz. The measured resonance frequency range (7.90 GHz to 14.6 
GHz) does not quite correspond to the predicted resonance frequency range (8.35 GHz to 
14.25 GHz). In the future, we will generate an adequate number of data samples to achieve 
better results using DL models, such as CNN, and predict the multiple frequencies for a 
multiband antenna. Furthermore, we will develop the ML models to predict the return 
loss, gain, length, and width of the proposed antenna. Moreover, we will ensure better 
impedance matching between the proposed MPA and the SMA connector so that the sim-
ulated and measured frequencies are completely matched. Finally, it can be concluded 
that the simulated, measured, and predicted results ensure the reliability of the proposed 
antenna in the whole X-band and part of Ku-band applications. 
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5. Conclusions

This article discusses the integration of simulation, measurement, development of the
RLC equivalent circuit model, and applying machine learning approaches to evaluate the
performance of the proposed antenna. In terms of frequency, the designed antenna supports
the whole X-band as well as some portions of the Ku-band. The prototype was built and
analyzed to confirm the intended performance. In addition, the RLC equivalent model of
the proposed MPA designed with the ADS Agilent software yields resonance frequencies
nearly identical to those generated by simulation (with CST) and measurement. Further-
more, six machine learning and one deep learning (CNN) algorithm have been developed
to determine the resonant frequency of the MPA. When the predicted and simulated res-
onant frequencies are compared, it is observed that they are almost identical. Different
performance metrics, such as MAE, MSE, RMSE, and variance scores, are calculated to
validate the prediction using the learning algorithms. These metrics are obtained through
the process of computing the results of the prediction. The predicted results show that the
error performances of the decision tree regression model are comparatively better than
other models. The MAE, MSE, RMSE, and variance scores (in percentage) of the DTR model
are 5.63, 0.71, 8.42, and 99.68, respectively. The XGB model (MAE = 7.03%, MSE = 1.06%,
RMSE = 10.27%, and var score = 99.54%) performs better than the other learning models
that were introduced in this study, except DTR. The performance of the deep learning
model (CNN) is slightly lower than the presented regression models, which may have
occurred due to the inadequate number of data samples for the CNN model. Despite the
fact that the proposed MPA has two resonant frequencies, we have only predicted one
(9 GHz) using ML models. In addition, the designed MPA has a lower gain of 4.06 dB
at 9 GHz and 3.46 dB at 13 GHz. The measured resonance frequency range (7.90 GHz to
14.6 GHz) does not quite correspond to the predicted resonance frequency range (8.35 GHz
to 14.25 GHz). In the future, we will generate an adequate number of data samples to
achieve better results using DL models, such as CNN, and predict the multiple frequencies
for a multiband antenna. Furthermore, we will develop the ML models to predict the
return loss, gain, length, and width of the proposed antenna. Moreover, we will ensure
better impedance matching between the proposed MPA and the SMA connector so that the
simulated and measured frequencies are completely matched. Finally, it can be concluded
that the simulated, measured, and predicted results ensure the reliability of the proposed
antenna in the whole X-band and part of Ku-band applications.
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