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Abstract: The majority of the widely used scan statistics are based on distributional assumptions.
Contrary to the existing methods, with a new perspective in clustering, the Mann-Whitney Scan
Statistic was introduced to detect clusters in continuous data indexed by time or space, without
any distributional assumptions or parameters to set up. We propose an extension of the Mann-
Whitney Scan Statistic that can be applied to spatiotemporal data based on spatiotemporal distance
measure. This novel scan statistic is distribution-free and seems to be powerful against parametric
spatiotemporal scan statistics. The results are applicable in a wide variety of spatiotemporal domains,
including epidemiology, socioeconomic analysis and climate sciences, irrespective of continuous or
discrete data.

Keywords: scan statistics; non-parametric; spatiotemporal scan statistics; cluster detection; disease
outbreaks; COVID-19

1. Introduction

In general, scan statistics are designed and used for analyzing count data, i.e., point
processes. Past literature reveals the use of several versions of spatiotemporal scan statistics
in disease outbreak detection. Some of the related works are presented in [1–4]. In most
of these studies, scan statistics show a greater ability in detecting disease outbreak areas.
However, in all these studies, it is assumed that the response variable (i.e., disease-related
events) follows a Poisson distribution and thus that events are independent of each other.
For instance, both the Space Time Scan Statistic and Space Time Permutation Scan Statistic
assume that the number of occurrences follow a Poisson distribution. However, in reality,
the occurrences of communicable diseases are not independent of each other with respect
to time as well as space. For example, in the domain of disease data, it is unreasonable
to assume that disease events are independent. It is highly likely that disease cases are
dependent on each other based on both the location and time aspects. Hence, the use of
parametric scan statistics will not always yield the correct results and might distort the
real scenario.

Given these facts, with a new perspective of clustering, the authors of [5] introduced
the Mann-Whitney Scan Statistic, which allows the detection of clusters in continuous data
indexed by time or by space, without any distributional assumptions or parameters to set
up. This scan statistic is based on the Mann-Whitney test [6], which is used to test whether
the distributions of two samples of continuous observations are equal, or at least whether
their medians are equal.

The authors of [7] suggested that the use of the non-parametric concentration in-
dex may be more powerful than likelihood ratio tests to detect cluster presence in point
processes. Thus, the study [8] used the distribution-free null hypothesis, “the marks are
realizations of independent and identically distributed random variables”, in analyzing
the spatially marked point processes. The same null hypothesis was used by the authors
of [5] in defining the Mann-Whitney Scan Statistic but with continuous marks. The null
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hypothesis used in [1,9] is the same, but there is a specific pre-determined distribution
(Bernoulli, Poisson or Gaussian).

The methodology proposed in [5] is only focused on identifying the most significant
cluster, but not the secondary clusters. However, finding secondary clusters is straight-
forward using the procedure proposed in [10]. This method suggests, once a significant
cluster is found, to remove the data included in the significant cluster and restart the
analyzing process.

In literature, there are some studies which propose non-parametric tests, such as [11,12]. How-
ever, these studies focus only on spatial data. The study [5] introduced the Mann-Whitney
Scan Statistic either to be applied in a spatial or temporal context. The present paper
introduces the Mann-Whitney Scan Statistic that can also be applied to spatiotemporal data
using the spatiotemporal distance introduced in [13]. Taking this into account, the ultimate
objective of this study is to extend the Mann-Whitney Scan Statistic to be applied in the
spatiotemporal context.

The next section of this paper describes the development of the Spatiotemporal Mann-
Whitney Scan Statistic. Section 3 demonstrates its application to a simulated dataset and
real-time application to detect COVID-19 outbreak. Furthermore, this section explicitly
compares the performance of the novel Spatiotemporal Mann-Whitney Scan Statistic against
the widely used parametric scan statistics in disease outbreak areas. Finally, the Section 4
presents the concluding remarks and discusses the limitations and further improvements
of the study.

2. Methodology
2.1. A Spatiotemporal Mann-Whitney Scan Statistic

Likelihood-based Scan Statistics such as the Space Time Scan Statistic and Space
Time Permutation Scan Statistic are sensitive to the distribution of the response variable
and hence perform well only against specific alternatives. Thus, as discussed so far,
the Mann-Whitney Scan Statistic becomes a unique clustering alternative due to its non-
parametric nature. However, to date, the Mann-Whitney Scan Statistic has only been
developed to capture spatial variations with no regard for the temporal aspect. This section
comprehensively explains the improvement of the Mann-Whitney Scan Statistic to be used
in the spatiotemporal context.

2.1.1. Spatiotemporal Distance

The authors of [5] suggested that the Mann-Whitney Scan Statistic can be applied to
spatiotemporal data using the spatiotemporal distance introduced in [13]. This was the ma-
jor motivation behind the improvement of this concept. The authors of [13] introduced the
spatiotemporal distance as a weighted combination of the spatial and temporal Euclidian
distances along with a parameter establishing the correspondence between space and time.
The procedure can be explained as follows.

Let |A| denote the observation domain area and |T| the time observational interval

length. Let D = 2
√
|A|
π the diameter of a disc whose area is |A|. Therefore, D is the maximal

spatial distance between two points in the disc. Correspondingly, the spatiotemporal
distance is defined as follows [13].

dST [(x, y, t), (x0, y0, t0)]
2 = dS[(x, y), (x0, y0)]

2 +
D2

|T|2
dT [t, t0]

2 (1)

where dS and dT are the Euclidian spatial and temporal distances, respectively.
Furthermore, the study [11] stated that this defined distance can be considered as a

spatial Euclidean distance in R3 after rescaling the temporal axis. Hence, more precisely,
the spatiotemporal distance dST can be illustrated as follows:
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dST [(x, y, t), (x0, y0, t0)] = dS
[(

x, y,
D
T

t
)

,
(

x0, y0,
D
T

t0

)]
(2)

2.1.2. Calculation of the Spatiotemporal MW Concentration Index

Let S1, S2, . . . , Sn denote n distinct spatiotemporal locations. Suppose that the locations
are ordered: S1 < S2 < . . . < Sn based on the spatiotemporal distance (Equation (2)) with
respect to the coordinates and time factor of each of the distinct spatiotemporal locations
instead of using the spatial distance.

For example, suppose the observations over a period of 31 days are considered and
hence the observational time length (T) is 31, and the maximum spatial distance (D)
among the points of the area of interest is 30 km. Then, the spatiotemporal distance between
two points (40.7504, 73.9967, 3) and (40.722, −73.99, 5) can be calculated as follows.

dST [(40.7504, 73.9967, 3), (40.722,−73.99, 5)] = dS[(40.7504, 73.9967, 30
31 × 3

)
,
(
40.722,−73.99, 30

31 × 5
)]

=
√
(40.7504− 40.722)2 + (73.9967− (−73.99))2 + (

( 30
31 × 3

)
−
( 30

31 × 3
)
)

2
= 148.000217

The continuous marks attached to each spatiotemporal location are denoted by
X1, X2, . . . , Xn. Let X(1), X(2), . . . , X(n) be the order statistics associated with the X′i s such
that X(1) < X(2) < · · · < X(n). Let Rj be the rank of Xj such that X(Rj)

= Xj,
∀ j = 1, 2, . . . , n

Then Mann-Whitney Spatial Scan Statistic can be extended to the spatiotemporal
setting by considering a three-dimensional cylindrical scanning window with a base rep-
resenting space and a height representing time. Then, for each cylinder Cy, containing
nC distinct spatiotemporal locations, the standardized sum of ranks can be calculated
as follows.

Irank
(
Cy
)
=

SR
(
Cy
)
−M

(
Cy
)

√V
(
Cy
) (3)

where SR
(
Cy
)
= ∑

Sk∈Cy

Rk , M
(
Cy
)
= nC(n+1)

2 and V
(
Cy
)
= nC(n−nC)(n+1)

12 . Accordingly, the

spatiotemporal MW concentration index for high-rate clusters can be defined as

∧H
MWST = max

CyεS
Irank

(
Cy
)

(4)

According to the literature, it appears to be difficult to find the exact or even an
asymptotic distribution of this type of test statistic. Therefore, the p-value is estimated
using the Monte Carlo procedure where the observed scan statistic is compared to the scan
statistics computed after random permutations of the marks. This methodology proposed
in [5] is only focused on identifying the most significant cluster, but not the secondary
clusters. However, finding secondary clusters is straightforward using the procedure
proposed in [10], which suggests, once a significant cluster is found, to remove the data
included in the significant cluster and restart the analyzing process.

3. Experimental Results
3.1. A Simulation Study

The proposed scan statistic is first applied in the year 2004 to the simulated datasets
used in [14], which have been specifically designed for evaluating and comparing the
statistical power of spatiotemporal disease outbreak detection methods. These simulated
datasets can be found in http://www.satscan.org/datasets (accessed on 25 December 2021).

These datasets were simulated by Martin Kulldorf based on the geography and popu-
lation of New York City, including the effects of disease outbreaks of a hypothetical disease
of varying size and location. Accordingly, geographic coordinates (representing the approx-
imate center of each zip code) and population numbers for 176 New York City zip codes
were used for these datasets. Assuming outbreak occurred in seventeen different locations

http://www.satscan.org/datasets
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in New York City, with a high or moderate risk, 34 datafiles were created considering a
period of 31 days, with a random number of cases of the hypothetical disease. Each file
has 1000 simulated datasets. For each dataset, the total number of randomly allocated
cases is 100 multiplied by the number of days (i.e., 31 × 100 = 3100 cases). The number 100
was chosen to reflect the occurrence rate of certain syndromes common to the syndromic
surveillance system of New York City emergency department visits.

In the null model scenario of this context, each person living in New York City is
equally likely to contact the disease, and hence each case is assigned to a particular zip code
on any given day with a probability proportional to the population of that zip code. When
generating data for geographically localized outbreaks, an increased risk was assigned to
the zip codes in which the outbreaks are assumed to have occurred. Consequently, for each
such zip code and day combination, the corresponding population was multiplied by an
assigned relative risk.

This study attempts to detect the areas in which a disease outbreak has occurred
out of a larger geographic region using the improved Spatiotemporal Mann-Whitney
Scan Statistic. The wider geographical region includes areas belonging to the four main
boroughs of New York City: Brooklyn (A), Manhattan (B), Staten Island (C) and the Bronx
(E). The simulated datasets, which were created assuming that outbreak occurred only in
Williamsburg, Brooklyn (A), were selected to apply the novel spatiotemporal MW scan
statistic. The chosen datasets are simulated with a high risk of outbreak for a period of 31
days. Of the datasets simulated, assuming outbreak occurred in Williamsburg, Brooklyn,
10 datasets were chosen randomly for this study.

The main objective in this scenario is to determine whether the exact outbreak zip
code, 11211, of area A is identified by this scan statistic. If this zip code is not included in
the most likely cluster, secondary clusters are found using the method introduced in [1]
until this area is detected.

According to the results (see Appendix A), all the zip codes identified in the most
likely cluster of each sample belong to area A. In other words, the scan statistic has detected
A as the outbreak area in all cases, out of the four boroughs considered. Hence, the Spa-
tiotemporal MW Scan Statistic performs well in detecting the area of disease outbreak
in a larger geographical region. Furthermore, it detects four surrounding areas of the exact
outbreak zip code on average, in the most likely cluster. Moreover, 80% of the time, the
Spatiotemporal MW Scan Statistic identifies the exact outbreak zip code in the most likely
cluster. Therefore, it is reasonable to suggest that the Spatiotemporal MW Scan Statistic
can effectively detect the exact disease outbreak zip code in the majority of cases. In the
samples where the exact zip code was not detected in the most likely cluster, it was detected
in the first secondary cluster, implying that the spatiotemporal scan statistic has an ability
to detect the exact outbreak zip code in one of its significant clusters.

3.2. An Application to COVID-19 Data

We secondly applied the proposed scan statistic to reported COVID-19 cases in China
corresponding to the time period from January 2020 to May 2020. This dataset contains
cases reported in 33 major spatial areas in China. The data were extracted through the data
repository of the Center for Systems Science and Engineering at Johns Hopkins University.

Our main objective in this context is to determine disease outbreak areas with a signifi-
cantly higher number of reported cases using the improved Spatiotemporal Mann-Whitney
Scan Statistic. According to the results, 30 out of 33 locations are included in the most
significant cluster. In order to further confirm these results, we came up with the following
spatiotemporal visualizations.

The chart in Figure 1 was obtained excluding the Hubei region since it was an outlier
with a significantly higher number of cases over the period. The regions which are not
included in the highly likely cluster are boxed in Figure 1. According to the visualization,
these regions have little or no fluctuation over the considered period compared to the other
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regions. Furthermore, no significant peaks of cases can be seen in those regions over the
five months.
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Figure 1. Spatiotemporal plot of COVID-19 cases in China.

Table 1 shows the spatial averages of each region in ascending order. Accordingly,
three of the areas which are not included in the cluster have the lowest spatial averages.

Table 1. Spatial averages of COVID-19 cases.

Region Average Number of Cases

Tibet 0.007633588

Qinghai 0.13740458

Macau 0.34351145

Ningxia 0.572519084

Xinjiang 0.580152672

Gansu 1.061068702

Guizhou 1.13740458

Liaoning 1.13740458

Jilin 1.183206107

Hainan 1.290076336

Yunnan 1.41221374

Tianjin 1.465648855

Shanxi 1.511450382

Inner Mongolia 1.79389313

Guangxi 1.938931298

Shaanxi 2.351145038

Hebei 2.503816794
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Table 1. Cont.

Region Average Number of Cases

Fujian 2.732824427

Sichuan 4.389312977

Chongqing 4.419847328

Beijing 4.526717557

Jiangsu 4.984732824

Shanghai 5.129770992

Shandong 6.045801527

Jiangxi 7.152671756

Heilongjiang 7.213740458

Anhui 7.564885496

Hunan 7.778625954

Hong Kong 8.27480916

Zhejiang 9.679389313

Henan 9.740458015

Guangdong 12.17557252

Hubei 520.1145038

Moreover, according to Figure 2, the three areas which are not included in the cluster
are located away (towards left) from the rest of the locations. Even though the regions
Macau and Ningxia have relatively low spatial averages, they are located closer to the larger
outbreak areas and hence they could have been included in the most significant cluster.
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3.3. A Comparison Study

We thirdly conducted a comparison study on the simulated datasets mentioned in Sec-
tion 3.1 to assess and compare the performance of the novel Spatiotemporal Mann-Whitney
Scan Statistics with the existing widely used Space Time Scan Statistic and Space Time
Permutation Scan Statistic. A novel performance measure is introduced for the purpose of
comparing the performance due to the unavailability of a common measure which can be
used for both parametric and non-parametric scan statistics.

This novel performance measure is introduced as a Total Score which integrates
four sub-scores concerned with the following four major aspects in identifying disease
outbreak areas.

• Score 1: Ability to detect smaller areas of outbreak

As stated in Section 3.1, the data are simulated assuming that outbreak occurred in the
five zip codes of Williamsburg, Roosevelt Island, Bulls Head, La Guardia and West Farms
of the five major boroughs Brooklyn (A), Manhattan (B), Staten Island (C), Queens (D) and
the Bronx (E), respectively. Among these five major boroughs, Manhattan (B) and the Bronx
(E) are relatively small areas. In the occurrence of an outbreak in a zip code, it is highly
likely that the disease spreads quickly across smaller areas and that cases are reported from
several parts of that area. Thus, such a small area can be quickly detected when assessing
the number of incidents.

Therefore, if a scan statistic can identify at least one zip code belonging to either B or E
areas, Score 1 is equal to 1, whereas if it was able to identify at least one zip code belonging
to both areas B and E, Score 1 is equal to 2. Hence, Score 1 can take values 0, 1 or 2.

• Score 2: Ability to detect larger areas of outbreak

As opposed to the circumstances in Score 1, Score 2 is used to assess the ability of scan
statistics to detect larger areas given that outbreak occurred in a particular zip code. Unlike
the above scenario, when an outbreak occurs in a zip code of a larger area, it is unlikely to
spread to the entire region and that cases are reported from the entire region. Thus, large
areas such as A, C and D will not be quickly identifiable. Therefore, if a scan statistic can
identify at least one zip code belonging to either A, C or D, Score 2 is equal to 2. Thus, Score
2 can take the values 0, 2, 4 or 6.

• Score 3: Ability to detect neighborhoods of the outbreak location

Irrespective of the area of the outbreak zip code being small or large, if a scan statistic
can identify surrounding zip codes of the outbreak zip code, it should be rewarded. Identi-
fication of the surrounding zip codes of the exact outbreak zip codes helps to narrow down
the region in which health officials should take action. Thus, Score 3 is defined to assess
the ability of scan statistics in detecting adjacent zip codes of the exact outbreak zip code.
Accordingly, the standard adjacent zip codes of each outbreak zip code were identified,
and if a scan statistic can identify at least one adjacent zip code of an outbreak zip code,
Score 3 is equal to 0.1. Since there are five outbreak zip codes, score 3 can take the values 0,
0.1, 0.2, 0.3, 0.4 or 0.5.

• Score 4: Ability to detect the exact location of outbreak

Score 4 serves to assess the ability of the scan statistic to detect the exact zip codes in
which the outbreak occurred. If a scan statistic can identify the exact zip code in one of its
significant clusters, it should be given extra points. Accordingly, for the identification of
each exact zip code 0.3 marks are given. Hence, Score 4 can take the values 0, 0.3, 0.6, 0.9,
1.2 or 1.5.

The total score can be used to assess the overall performance of the scan statistics in
detecting disease outbreak areas, which is an aggregation of the four above-mentioned sub-
scores. Accordingly, the total score can take any value between 0 and 10. In the presence
of a single data sample, the total score obtained for each technique can be compared.
Accordingly, the higher the total score, the better the performance of the scan statistic.
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In the presence of many samples, the determined total score is compared based on the
coefficient of variation of the samples, and thus, the lower the coefficient of variation, the
better the performance of the scan statistic.

According to the results (Appendix B), both the Space Time Scan Statistic and the
Space Time Permutation Scan Statistic perform better in identifying outbreaks in narrow
areas than in wider areas. The Space Time Permutation Scan Statistic performs well in
detecting the surrounding areas of exact outbreak zip codes, while the Space Time Scan
Statistic performs well in identifying exact outbreak zip codes. The experimental results of
Section 3.1 reveal that the novel Spatiotemporal MW Scan Statistic performs significantly
well in detecting the area of disease outbreak in a larger geographical region. Moreover, it
can effectively detect the exact disease outbreak zip code in the majority of cases. Even if
the exact outbreak zip code was not detected in the most likely cluster, it was detected in
one of the secondary clusters by this scan statistic.

4. Discussion and Conclusions

We specifically focused on improving the existing MW Scan Statistic, incorporating
the time component and using it to detect disease outbreak areas. Following the suggestion
in [5], the Spatiotemporal MW Scan Statistic was improved in this study by using the
spatiotemporal distance defined in [11]. The performance of this improved scan statistic
was then evaluated.

Based on the obtained results, the Spatiotemporal MW Scan Statistic performs sig-
nificantly well in detecting the area of disease outbreak in a larger geographical region.
Moreover, it can effectively detect the exact disease outbreak area in the majority of cases.
Even if the exact outbreak area was not detected in the most likely cluster, it was detected
in one of the secondary clusters by this scan statistic.

It is important to acknowledge several limitations of the current study, which restrict
the generality of the conclusions that can be drawn from these experiments. Only a
limited number of samples were evaluated in assessing the performance of the newly
developed Spatiotemporal MW Scan Statistic due to higher computational time (approx.
10 h/sample). Moreover, the issue of the ties in ranking the response variable in calculating
the Spatiotemporal MW Scan Statistic might cause distortions of the results. Furthermore,
no population adjustments were considered in calculating the Spatiotemporal MW Scan
Statistic. Due to the unavailability of a common measure which can be used to evaluate
the performance of both parametric and non-parametric scan statistics, we applied only a
basic performance measure. A more appropriate probabilistic performance measure will
be developed to conduct future experiments.

The improvement of the Spatiotemporal MW Scan Statistic will be a promising alterna-
tive in the field of scan statistics as it can be applied to different scenarios without making
any assumptions of the distribution of the response variable and can still detect significant
spatiotemporal clusters. Even though the response variable of the applications used in
this study is a count variable, this improved scan statistic can be applied to continuous
data with the same framework provided. We aimed to identify the most likely clusters
(MLCs) over a specific time period. Thus, based on the results, the identified clusters are
the disease hotspots over the whole time period. This work can be further improved by
the consideration of clusters across variable time frames and by incorporating population
adjustments which will enable the detection of multiple outbreaks simultaneously, along
with their precise time characteristics.

Author Contributions: Conceptualization, C.D.T. and K.H.H.; Data curation, K.H.H.; Formal analy-
sis, K.H.H.; Investigation, K.H.H.; Methodology, K.H.H. and C.D.T.; Project administration, C.D.T.;
Software, K.H.H.; Supervision, C.D.T.; Validation, K.H.H.; Visualization, K.H.H.; Writing—original
draft, K.H.H.; Writing—review & editing, C.D.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.



Appl. Sci. 2022, 12, 10513 9 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found at http://www.satscan.org/datasets (accessed on 25 December 2021) (Simulated Datasets)
and https://github.com/CSSEGISandData/COVID-19 (accessed on 25 December 2021) (COVID-19
Data).

Acknowledgments: The authors thank Lionel Cucala (University of Montpellier) for providing the
basic R programs of the Mann-Whitney Scan Statistic along with his insights and expertise that
greatly assisted and improved the research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appl. Sci. 2022, 12, x FOR PEER REVIEW  9  of  15 
 

Acknowledgments: The authors thank Lionel Cucala (University of Montpellier) for providing the 

basic R programs of  the Mann–Whitney Scan Statistic along with his  insights and expertise  that 

greatly assisted and improved the research. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

 

 

Appl. Sci. 2022, 12, x FOR PEER REVIEW  9  of  15 
 

Acknowledgments: The authors thank Lionel Cucala (University of Montpellier) for providing the 

basic R programs of  the Mann–Whitney Scan Statistic along with his  insights and expertise  that 

greatly assisted and improved the research. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

 

 

Appl. Sci. 2022, 12, x FOR PEER REVIEW  9  of  15 
 

Acknowledgments: The authors thank Lionel Cucala (University of Montpellier) for providing the 

basic R programs of  the Mann–Whitney Scan Statistic along with his  insights and expertise  that 

greatly assisted and improved the research. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

 

 

http://www.satscan.org/datasets
https://github.com/CSSEGISandData/COVID-19


Appl. Sci. 2022, 12, 10513 10 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW  10  of  15 
 

 

 

 

Appl. Sci. 2022, 12, x FOR PEER REVIEW  10  of  15 
 

 

 

 

Appl. Sci. 2022, 12, x FOR PEER REVIEW  10  of  15 
 

 

 

 



Appl. Sci. 2022, 12, 10513 11 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW  11  of  15 
 

 

Appendix B 

 

Figure A1. Space Time Scan Statistics results summary (first 50 samples). 

Appendix B

Appl. Sci. 2022, 12, x FOR PEER REVIEW  11  of  15 
 

 

Appendix B 

 

Figure A1. Space Time Scan Statistics results summary (first 50 samples). Figure A1. Space Time Scan Statistics results summary (first 50 samples).



Appl. Sci. 2022, 12, 10513 12 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW  12  of  15 
 

 

Figure A2. Space Time Scan Statistics results summary (last 50 samples). 

   

Figure A2. Space Time Scan Statistics results summary (last 50 samples).



Appl. Sci. 2022, 12, 10513 13 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW  13  of  15 
 

 

Figure A3. Space Time Permutation Scan Statistic results summary (first 50 samples). 

   

Figure A3. Space Time Permutation Scan Statistic results summary (first 50 samples).



Appl. Sci. 2022, 12, 10513 14 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW  14  of  15 
 

 

Figure A4. Space Time Permutation Scan Statistic results summary (last 50 samples). 

 

Figure A5. Average score comparison. 

Figure A4. Space Time Permutation Scan Statistic results summary (last 50 samples).

Appl. Sci. 2022, 12, x FOR PEER REVIEW  14  of  15 
 

 

Figure A4. Space Time Permutation Scan Statistic results summary (last 50 samples). 

 

Figure A5. Average score comparison. Figure A5. Average score comparison.



Appl. Sci. 2022, 12, 10513 15 of 15

References
1. Kulldorff, M.; Athas, W.F.; Feurer, E.J.; Miller, B.A.; Key, C.R. Evaluating cluster alarms: A space-time scan statistic and brain

cancer in Los Alamos, New Mexico. Am. J. Public Health 1998, 88, 1377–1380. [CrossRef] [PubMed]
2. Kulldorff, M.; Heffernan, R.; Hartman, J.; Assunção, R.; Mostashari, F. A space–Time permutation scan statistic for disease

outbreak detection. PLoS Med. 2005, 2, e59. [CrossRef]
3. Kulldorff, M.; Mostashari, F.; Duczmal, L.; Katherine Yih, W.; Kleinman, K.; Platt, R. Multivariate scan statistics for disease

surveillance. Stat. Med. 2007, 26, 1824–1833. [CrossRef] [PubMed]
4. Kulldorff, M. Prospective time periodic geographical disease surveillance using a scan statistic. J. R. Stat. Soc. Ser. A 2001, 164,

61–72. [CrossRef]
5. Cucala, L. A Mann-Whitney scan statistic for continuous data. Commun. Stat. Theory Methods 2016, 45, 321–329. [CrossRef]
6. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.

Stat. 1947, 18, 50–60. [CrossRef]
7. Cucala, L. A Hypothesis-Free Multiple Scan Statistic with Variable Window. Biom. J. 2008, 50, 299–310. [CrossRef] [PubMed]
8. Cucala, L. A distribution-free spatial scan statistic for marked point processes. Spat. Stat. 2014, 10, 117–125. [CrossRef]
9. Kulldorff, M. A spatial scan statistic. Commun. Stat. Theory Methods 1997, 26, 1481–1496. [CrossRef]
10. Zhang, Z.; Assunção, R.; Kulldorff, M. Spatial scan statistics adjusted for multiple clusters. J. Probab. Stat. 2010, 2010, 642379.

[CrossRef]
11. Cucala, L.; Genin, M.; Occelli, F.; Soula, J. A multivariate nonparametric scan statistic for spatial data. Spat. Stat. 2019, 29, 1–14.

[CrossRef]
12. Jung, I.; Cho, H.J. A nonparametric spatial scan statistic for continuous data. Int. J. Health Geogr. 2015, 14, 30. [CrossRef] [PubMed]
13. Demattei, C.; Cucala, L. Multiple Spatio-Temporal Cluster Detection for Case Event Data: An Ordering-Based Approach. Commun.

Stat.-Theory Methods 2011, 40, 358–372. [CrossRef]
14. Kulldorff, M.; Zhang, Z.; Hartman, J.; Heffernan, R.; Huang, L.; Mostashari, F. Benchmark data and power calculations for

evaluating disease outbreak detection methods. MMWR Suppl. 2004, 53, 53–144. [CrossRef]

http://doi.org/10.2105/AJPH.88.9.1377
http://www.ncbi.nlm.nih.gov/pubmed/9736881
http://doi.org/10.1371/journal.pmed.0020059
http://doi.org/10.1002/sim.2818
http://www.ncbi.nlm.nih.gov/pubmed/17216592
http://doi.org/10.1111/1467-985X.00186
http://doi.org/10.1080/03610926.2013.806667
http://doi.org/10.1214/aoms/1177730491
http://doi.org/10.1002/bimj.200710412
http://www.ncbi.nlm.nih.gov/pubmed/18311853
http://doi.org/10.1016/j.spasta.2014.03.004
http://doi.org/10.1080/03610929708831995
http://doi.org/10.1155/2010/642379
http://doi.org/10.1016/j.spasta.2018.10.002
http://doi.org/10.1186/s12942-015-0024-6
http://www.ncbi.nlm.nih.gov/pubmed/26481724
http://doi.org/10.1080/03610920903411200
http://doi.org/10.1037/e307182005-026

	Introduction 
	Methodology 
	A Spatiotemporal Mann-Whitney Scan Statistic 
	Spatiotemporal Distance 
	Calculation of the Spatiotemporal MW Concentration Index 


	Experimental Results 
	A Simulation Study 
	An Application to COVID-19 Data 
	A Comparison Study 

	Discussion and Conclusions 
	Appendix A
	Appendix B
	References

