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Abstract: Cracks in a building can potentially result in financial and life losses. Thus, it is essential to
predict when the crack growth is reaching a certain threshold, to prevent possible disaster. However,
long-term prediction of the crack growth in newly built facilities or existing facilities with recently
installed sensors is challenging because only the short-term crack sensor data are usually available
in the aforementioned facilities. In contrast, we need to obtain equivalently long or longer crack
sensor data to make an accurate long-term prediction. Against this background, this research aims to
make a reasonable long-term estimation of crack growth within facilities that have crack sensor data
with limited length. We show that deep recurrent neural networks such as LSTM suffer when the
prediction’s interval is longer than the observed data points. We also observe a limitation of simple
linear regression if there are abrupt changes in a dataset. We conclude that segmented nonlinear
regression is suitable for this problem because of its advantage in splitting the data series into multiple
segments, with the premise that there are sudden transitions in data.

Keywords: deep recurrent neural networks; LSTM; Seq2Seq LSTM; segmented nonlinear regression;
long-term prediction; crack growth

1. Introduction

Infrastructure (e.g., tunnel, road, system communication, and power plant) is essential
in social and economic activities in contemporary civilization. Investment in infrastructure
development has given an crucial impact on economic improvement. Private and public
sectors can utilize the infrastructure to increase the efficiency of goods transportation and
services. Therefore, it is necessary to prevent those losses before a fatal disaster happens.

Specifically, in this paper, we consider the problem of detecting crack growth in a
building structure. Exponential crack growth in a building structure (e.g., concrete and
steel frame) could make the structure unstable, thereby damaging the whole structure.
However, generally speaking, predicting such property in the short term is not a viable
option. Moreover, decision-makers typically consider a long-term projection to formu-
late their policies. Hence, predicting long-term crack growth is essential in preventing
infrastructure disturbance.

We approach this problem with segmented nonlinear regression as an estimator of long-
term prediction for the crack growth in infrastructure. We perform diverse experiments to
evaluate the effectiveness of segmented nonlinear regression. We then compare the result
with three other models: long short-term memory (LSTM), Sequence-to-Sequence (Seq2Seq)
LSTM, and simple linear regression. As a result, we have found that our implementation of
segmented regression is comparable to the Seq2Seq LSTM model. Moreover, our segmented
regression model outperformed the LSTM model and the linear regression model.
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2. Materials and Methods
2.1. Crack Sensor Data

To evaluate our approach, we aggregate crack sensor data from various locations in
South Korea. We consider two kinds of infrastructure for this study: an underground facility
and a bridge. We collect the sensor data within different time frames and with different
sampling rates. The data used in this research had been provided by Infranics Co., Ltd. in
Seoul, Korea, a software company working with KT Corporation (formerly Korea Telecom,
Korea’s largest telecommunications company). Due to confidential reasons, we do not
disclose the types and the positions of the sensors.

In this paper, we report the data in millimeter measurements with varying sample
rates. Due to the continuous form of the data, we perform several time-series related data
preprocessing methods, described in Section 3.1.

2.2. Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) [1] is a feed-forward neural network with the
addition of feedback connections. The output of a unit in an RNN model at the current
timestep is supplied back to the unit of the RNN model as an additional input for the
subsequent step. This architecture innately enables the RNN model to learn temporal
dependence in the data. For this reason, we consider RNN as one of our approaches to
perform long-term prediction in this research.

In this section, we briefly discuss the Jordan Network [2], one of the widely recognized
classical RNN architectures. Let each step t, with input xt, hidden state ht, and the output
yt, then the architecture and operation of the Jordan Network can be expressed as follows:

ht = tanh(Whxt + Uyyt−1 + bh) (1)

yt = tanh(Wyxt + Uyht−1 + bh) (2)

where Wh and Uh are hidden state parameter matrices, Wy and Uy are the output parameter
matrices, bh is parameter vectors, and tanh is the hyperbolic tangent activation function
for non-linearity. The gradients of the above units (Equations (1) and (2)) are computed
using back-propagation through time (BPTT) algorithm [3]. BPTT unfolds RNN’s hidden
units backward over time, and back-propagates the gradients of the hidden units at the
corresponding time step. The parameters of the hidden units are updated according to the
gradients in the respective time steps.

Several studies have reported that RNN has a problem with a long-term dependency
issue [4,5]. One of the main reasons is vanishing and exploding gradient problems [5],
which can happen when a gradient-based machine learning algorithm tries to fit its model
using data with long-term dependencies. Long short-term memory (LSTM) addressed
this issue by introducing gates to control the flow of information [6]. In this work, we
consider LSTM and Sequence-to-Sequence (Seq2Seq) LSTM architecture as our long-term
estimator candidate.

2.2.1. Long-Short Term Memory (LSTM)

Long-Short Term Memory (LSTM) determines the quantity of information needed to
be preserved and forgotten with the gates mechanism. A basic LSTM unit consists of a
cell state ct, a forget gate ft, an input gate it, and an output gate ot. LSTM uses a cell state
ct as a memory that stores information from all computations. To prevent the storage of
unnecessary information in a long sequence of inputs, a forget gate ft discards a fragment
of it. Using an input gate it, LSTM can select inputs that maximize outputs. The purpose of
an output ot gate is to decide which part of the cell state ct is relevant to the output. Finally,
a hidden state ht of a basic LSTM is an element-wise product of ot and the hyperbolic
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tangent of ct. For every time-step t, the compact forms of the equations for the forward
pass of an LSTM unit, based on the descriptions above, are described as follows:

it = σ(Wixt + Uiht−1 + bi) (3)

ft = σ(W f xt + U f ht−1 + b f ) (4)

ot = σ(Woxt + Uoht−1 + bo) (5)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (6)

ht = ot � tanh(ct) (7)

where xt ∈ Rd is the input; W ∈ Rhxd, U ∈ Rhxh, and b ∈ Rh are weight matrices and
bias vector parameters respective to each function; σ and tanh are sigmoid and hyperbolic
tangent functions, respectively.

2.2.2. Sequence-to-Sequence LSTM

Sequence-to-Sequence (Seq2Seq) LSTM is an architecture that uses two sections of
LSTM that act as an encoder and a decoder [7]. This architecture has been implemented in
many natural language processing (NLP) tasks (e.g., machine translation [8] and summa-
rization [9]). There are two parts in Seq2Seq LSTM: an encoder and a decoder. The encoder
reads an input sequence and extracts the necessary information. Then, the decoder pro-
duces an output prediction based on information from the hidden state vector of the
encoder. Lastly, the decoder, which is trained with the teacher forcing method [10], uses the
actual output ot as an input in the next time step xt+1. Figure 1 illustrates the architecture
of Seq2Seq LSTM.

Figure 1. Diagram of Seq2Seq LSTM.

2.3. Regression Analysis

In this section, we briefly describe two methods of regression analysis that we imple-
ment in this study to find the relationship of changes in crack sensor values over time.

2.3.1. Linear Regression

Linear regression is one of the regression analysis methods for mapping the dependent
variable y with the independent variable x, such that:

yn = αxn + β + εn (8)

where α and β are the intercept and bias parameters, respectively; ε is residual, and n is
the number of observations. Various methods, such as Ordinary Least Square (OLS) or
Gradient Descent, can be used to estimate two parameters by minimizing the appropriate
loss function. A widely used loss function is a mean square error (MSE) function, which
minimizes the sum of residuals between the true label and the model output (y).
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2.3.2. Segmented Nonlinear Regression

Segmented nonlinear regression—also known as piecewise regression—is a regression
analysis method that partitions the independent variable data into segments, and fits each
segment using linear regression methods. Dynamic programming (DP) [11] and greedy
merging [12–15] are the existing approaches for finding the breakpoint locations of the
input data and fit line equations for each segment. Although DP [11] has shown promising
results, it is not practical for implementation on massive data points, due to its quadratic
running time, O(n2) [13,14].

In this paper, here we implement a greedy merging approach by Acharya et al. [14]
that has achieved efficient computation with the tradeoff of a slight decrease in precision.
Algorithm 1 is the pseudocode for the entire process of segmented nonlinear regression
with greedy merging. The algorithm initially makes a partition of n number of data points
into n segments with a length of 1. Then, it performs the least square method to calculate
the loss of a linear function for merging neighboring pairs of segments. Acharya et al. have
defined the error of merging two adjacent segments S2c−1 and S2c as:

εc = ‖yc − Xcαc‖2
2 − s2|S2c−1 ∪ S2c| (9)

where c is the index for the two segments, yc is the true value of the data points of the two
segments, Xc are the input data points of the two segments, αc is the weight of least square
fit, Xcαc is the prediction, and S is the set of all segments. In simple terms, the merging
error is the mean-squared error of the pair of segments subtracted by variance s2 times the
length of the pair of segments. Consequently, Algorithm 1 merges the pairs when the pairs
are not one of the τ-largest errors, where τ is a hyperparameter. The merging processes
continue until they met the target number of segments T.

Algorithm 1: Segmented Nonlinear Regression

Function GreedyMerging(s,T,τ, Xn, yn):
/* Perform partition of n data points into segments of length 1

*/
S← {{1}, {2}, ..., {n}}
i← 0
/* Merge the segments in a greedy way with T as the target number

of segments. */
while |Si| > T do

Let mi be the current number of segments.
for c ∈ {1, 2, ..., mi

2 } do
/* Calculate the least squares LS fit. */
αc ← LS(X, y, S2c−1 ∪ S2c)
/* Calculate the merging errors */
εc = ‖yc − Xcαc‖2

2 − s2|S2c−1 ∪ S2c|
end
Let A be the set of indices c with the τ-largest errors εc.
Let B be the set of the other indices.
/* Keep the segments unmerged with large merging errors. */
Si+1 ← ∪

c∈A
{S2c−1, S2c}

/* Merge the other segments. */
Si+1 ← Si+1 ∪ {S2c−1 ∪ S2c|c ∈ B}
i← i + 1

end
return S // the least squares fit to the data on every segment in

Si
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3. Experiment Details
3.1. Data Preprocessing

In the experiment to evaluate our approach, we have gathered data from four crack
sensors in two different facilities. We label the data from the first position of the first
facility as Crack A1, and the data from the second position of the first facility as Crack
A2. Similarly, we put labels to the data from the second facility at respective positions as
Crack B1 and Crack B2. We perform data collection for each crack sensor at a distinct time
frame. Specifically, we have collected Crack A1 and Crack A2 data from 25 February 2019
to 31 August 2019, and from 1 June 2019 to 31 July 2019, respectively. As for Crack B1
and Crack B2, we have accumulated them from 21 June 2019 to 31 August 2019 and from
13 June 2019 to 31 August 2019, respectively.

We discover two issues from the sensor data at all facilities. The first issue is that
the sampling rates are not consistent, and the second issue is that there are many missing
values. We conjecture that these problems happen due to either transmission error or
device glitch. We perform downsampling to establish a consistent sampling rate, which
decreases the original sampling rate into hourly intervals and computes the mean value
in each hour. To address the missing values, we apply linear interpolation between two
data points where the gap happens. Figure 2 shows the results of preprocessed data with
the interpolation of Crack A1 data. Overall, we preprocess the data into 4513 data points
for Crack A1, 1465 data points for Crack A2, 1729 data points for Crack B1, and 1907 data
points for Crack B2.

Figure 2. Preprocessed data: the blue line shows the data points after linear interpolation filled the
gap of missing values in the Crack A1 data.

Since we are dealing with time-series data, we split them such that the first 90%
sequences are a training set and the last 10% are a test set. Figure 3 illustrates the general
data splitting strategy used in this paper. We will detail this strategy in the next section.

Figure 3. Illustration of training and test data split of time-series data.
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3.2. Sliding Window

Since LSTM and Seq2Seq LSTM need a fixed sequence of data as an input to train the
model and to make inferences from the model, we applied data reshaping with a fixed-
length sliding window. The fixed-length window slides through the preprocessed data that
eventually formed several batches of fixed sequence data. Then, we feed these batches into
both LSTM models and Seq2Seq LSTM models as inputs for training. Subsequently, we
perform batch training that enables fast and efficient computation. Additionally, the batches
with the sliding window ensure that the model can capture the lagged dependencies in the
whole sequence of data.

As an illustration, let the sequence of toy data (x1...x8) and the fixed-length sliding
window with a length of 6 in LSTM operate as follows. The fixed-length window in the
first batch covers from x1 to x6. Then, the window slides to the next sequence comprising
x2 to x7. Afterward, the window proceeds to the next sequence containing from x3 to x8.
Lastly, we set the last data point in each batch as the ground truth that we compare with
the output of LSTM.

In our experiment, we choose 100 as the length of the sliding window in the training
setup for LSTM, and select the 100th data point as the ground truth. We illustrate this
sliding window mechanism in Figure 4. As aforementioned, we labeled the last data point
in each batch as ground truth to calculate the gradient.

Figure 4. Illustration of the sliding window operation for LSTM on toy data. Blue boxes denoted as
input data for LSTM, red boxes denoted as ground truth that needed to be predicted using LSTM,
and orange rectangles are the sliding windows.

As for Seq2Seq LSTM, we perform a fixed-length sliding window operation that is
similar to what has previously been described, but with a slight change. We divide the
sequence sampled by the sliding window in half, which produces two new sequences.
We select the first sequence as input for the encoder, and the rest as the ground truth to
compare with the decoder’s prediction. We move the fixed-length window to stride as long
as the length of the ground truth to prevent the network from peeking the future for every
batch. In the experiment, we use the sliding window with a length of 256 and divide it into
two sequences, where the length of each sequence is 128. Figure 5 illustrates the sliding
window process in Seq2Seq LSTM on the toy data.
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Figure 5. Illustration of the sliding window operation for Seq2Seq LSTM on toy data. Blue boxes
denoted as the input data for encoder, red boxes denoted as the ground truth to be predicted by
decoder, orange rectangles denoted as the sliding windows.

Note that we do not perform data reshaping for the linear regression method and the
segmented nonlinear regression method we have applied, because we let them process one
data point at one time step.

3.3. Model Hyperparameters

To make a fair comparison between the LSTM and Seq2Seq LSTM model, we train
both models with similar hyperparameters. Both models consist of two stacked LSTMs,
64 hidden units, and a fully connected layer as an output layer. We train both models with
10,000 epochs and choose the optimally performing model based on loss value. We adopt
the root mean square error (RMSE) estimator as a loss function for the LSTM and Seq2Seq
LSTM models. We set the initial learning rate of LSTM and Seq2Seq LSTM as 0.0001.

For regression analysis, we train linear regression and segmented nonlinear regression
with OLS to estimate the parameters. We carry out hyperparameter searching for segmented
nonlinear regression. As a result, we discover that the model with hyperparameters T
of 8 and τ of 4 has shown the highest performance. We also set s hyperparameter as
0 in segmented nonlinear regression after we discover that it can introduce too high a
variance in the experiment results. Since we handle time series data, we make use of the
last segment’s parameter in the segmented nonlinear regression model to perform inference,
because the test set is the next continuity of the training set.

3.4. Hardware Systems

For fair comparison, we perform a series of data preprocessing and experiments in the
same hardware system. We use Intel Xeon E5-2620, which has eight cores and 16 threads
in a central processor. To handle a huge dataset, we utilize 64 GB of RAM. Finally, we use
Nvidia 1080Ti 11 GB as a GPU to accelerate the training and inference of the LSTM and
Seq2Seq LSTM models.

3.5. Evaluations

We choose the root mean square error (RMSE) as our quantitative evaluation measure
for models’ predictions in the test set. The model with a lower RMSE score indicates the
best-performed model. We also analyze the long-term prediction capability of all models
with 10-year growth predictions on the Crack A2 data.
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4. Results
4.1. Long Short-Term Memory (LSTM)

Figure 6a shows that the LSTM model’s predictions are constant, and that the discrep-
ancies between the ground truth are visible. The same figure shows the model produced
a constant value of 0.078 throughout the end of the Crack A2 test set, while the ground
truth varies with the highest value of 0.076. We observe the model performed poorly, with
similar behavior in in the remaining models. As a result, the LSTM models achieved the
worst RMSE score compared with other models. We believe this outcome is because the
model failed to capture the lagged dependencies of the training data.

(a) LSTM (b) Seq2Seq LSTM

(c) Linear Regression (d) Segmented Nonlinear Regression

Figure 6. Evaluation of each model on Crack A2 test set.

4.2. Seq2Seq LSTM

In Figure 6b, we observe the Seq2Seq LSTM model successfully emulated the Crack
A2 test set from date 26 July 2019 until 27 July 2019. However, the model overshoots for
the remaining test set with a margin of 0.024 at the last data point. We suspect the model
showed such a behavior because it could not effectively learn temporal dependencies on the
data that exhibited abrupt changes. Although the model exhibited overshooting, it achieved
the best RMSE score among the models. Table 1 shows that the Seq2Seq LSTM model
outperforms the LSTM, linear regression, and segmented nonlinear regression models for
all the test sets.

4.3. Linear Regression

We observe the performance of the linear regression model is relatively effective on
Crack A1 and Crack A2 test set. However, its predictions are inferior to other algorithms on
the Crack B1 and Crack B2 test sets, as shown in Table 1. We assume that the model could
not make a compelling prediction owing to a sudden change in the train set, as is observed
from Figure 7d. In the figure, we discover the linear regression model’s predictions were
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disparate than the ground truth on the Crack B1 train set. Therefore, the linear regression
model produced an unsatisfactory result on the Crack B1 test set with an RMSE score of
0.12429; in the meantime, the Seq2Seq LSTM model obtained 0.00253.

(a) (b)

(c) (d)
Figure 7. Prediction of linear regression and segmented nonlinear regression on Crack A1 and Crack
B1 train set. (a) Linear Regression on Crack A1 train set. (b) Segmented Nonlinear Regression on
Crack A1 train set. (c) Linear Regression on Crack B1 train set. (d) Segmented Nonlinear Regression
on Crack B1 train set.

4.4. Segmented Nonlinear Regression

We discover the segmented nonlinear regression model considerably outperformed
the linear regression model and the LSTM model based on the RMSE score. The model also
rivals the Seq2Seq LSTM model’s result on the Crack A2 test set. From Table 1, we find
the segmented nonlinear regression model significantly surpassed the linear regression
model on any test set. Figure 7d shows that the model can approximate broken segments
effectively, despite abrupt changes on the Crack B1 train set.

Table 1. Performance comparison of all the models on the test sets. Scores in the table are from RMSE
metric. A low score means high performance. The highest performances are in bold.

Prediction Model Crack A1 Crack A2 Crack B1 Crack B2

LSTM 0.00834 0.00439 0.07238 0.20018
Seq2Seq LSTM 0.00064 0.00166 0.00253 0.00235

Linear Regression 0.00169 0.00178 0.12429 0.90953
Segmented Nonlinear Regression 0.00167 0.00158 0.02490 0.02920
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4.5. Long-Term Prediction Analysis

In addition to quantitative evaluations based on the RMSE metric, we analyze the long-
term prediction capability of each model. We conduct experiments in which individual
models produce two kinds of prediction: (1) 10 years and (2) eight months on each sensor.
We present the prediction results on Crack A2 in Figure 8, where each model obtains similar
performance in terms of the RMSE metric.

(a) Ten-year prediction of all models on Crack A2. (b) Eight month prediction of all models on Crack A2.

Figure 8. Long-term prediction of all models on Crack A2. (a) Ten-year prediction of each model
on Crack A2 from 1 August 2019 to 1 August 2029, and (b) displays eight-month prediction of each
model on Crack A2 from 1 August 2019 to 1 April 2020.

We discover that the outputs of the LSTM model and the Seq2Seq LSTM model are
indistinguishable, as both models output constant values after a few steps. Figure 8b shows
that the Seq2Seq LSTM model produced its predictions in a logarithmic fashion in less than
a month until it generated fixed outputs for the rest of its prediction. We observe that the
LSTM model performed similarly, with an exception in which the model produced static
outputs from the beginning. As a result, both models failed to emulate the crack’s growth
in the long term, as in our experiment for 10-year prediction. Figure 8a shows the results
mentioned earlier on Crack A2 data. Furthermore, the training process has required a
tremendous amount of time on both models. Similarly, the inference process for the 10-year
prediction took a massive span of durations for the LSTM model and the Seq2Seq LSTM
models, as we report in Table 2. For these reasons, we consider that the LSTM model and
the Seq2Seq LSTM model may not be suitable for long-term predictions.

Table 2. Average time consumption of the training process, and 10-year inference for each model
on every sensor. We report the duration for both cases in h:mm:ss format, where h is hours, mm is
minutes, and ss is seconds. The fastest time is in bold.

Prediction Model Training Duration Inference Duration

LSTM 1:18:27 8:23:57
Seq2Seq LSTM 1:15:34 1:25:11

Linear Regression 0:00:07 0:01:03
Segmented Nonlinear Regression 0:00:11 0:01:06

Contrary to the LSTM model and the Seq2Seq LSTM model, the linear regression
requires a small amount of training and inference time. On average, the model only took a
minute and three seconds to produce 10-year predictions. Although the linear regression
model achieved the fastest training and inference time among the models, we discover the
linear regression model produced negative increment outputs on 10-year and eight-month
predictions, as shown in Figure 8a and Figure 8b, respectively. We conjecture that the
decremental happened as a result of the inaccurate prediction. Figure 6c supports our
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assumption where it shows that the model produced linearly decreasing values, while the
ground truth abruptly increases. Thus, we consider that the linear regression model may
be inadequate for long-term prediction as well.

We observe that the segmented nonlinear regression model generated incremental
values, while the other models produced either constant values or decremental outputs in
Figure 8a,b. Moreover, Table 1 shows that the model produced predictions that had
comparable performance to the Seq2Seq LSTM model on each sensor, despite several
abrupt changes in presence. Above all, the segmented nonlinear regression model required
a short period of training and inference processes that are comparable to those of the
linear regression model. Considering the factors as mentioned earlier, it is reasonable to
conclude that the segmented nonlinear regression model is an acceptable application for the
long-term prediction of crack growth when there are multiple abrupt changes in the data.

5. Conclusions and Future Work

In this study, we exhaustively explore several methods for the long-term prediction
of crack growth in two separate facilities that are practically in use. We evaluate the per-
formance of LSTM, Seq2Seq LSTM, linear regression, and segmented nonlinear regression
models on the test set, with RMSE as our evaluation metric. We also analyze 10-year and
eight-month predictions of the models on each crack sensor. Our experiment results show
that the LSTM model has the worst performance among the models in terms of RMSE
score. On the other hand, the Seq2Seq LSTM model achieves the highest performance
in the same test sets. While the linear regression model is comparable to the segmented
nonlinear regression model on the Crack A1 and Crack A2 test set, the segmented nonlinear
regression model obtains more satisfactory results when there are abrupt changes apparent
in the data, such as Crack B1 and Crack B2. The long-term prediction results show that
the LSTM model and Seq2Seq LSTM model are ineligible as the predictor, due to a failure
to emulate the crack growth, where both models give a constant output. Additionally,
both models require a tremendous amount of time for training and inference. Finally, our
analysis of long-term prediction points to segmented nonlinear regression being the ideal
candidate as the predictor, which is computationally efficient and exhibits comparably
high performance.

In future work, we would like to consider other research directions for more robust
prediction. The first one is to incorporate temperature as the independent variable of
prediction, which we assume causes rapid expansion and shrinkage of the materials that
lead to the growth of the crack. The next one to regard in the regression analysis are the
external shocks that cause abrupt changes in crack sensor reading. Finally, we plan to
extend our machine learning and deep learning-based research to accomodate the influence
on the stress distribution in the cracked region using the geometry of the structure and
loading cases [16–19].
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