Kinetic and Equilibrium Studies of Fe(III) Sorption from an Aqueous Solution Using Palmyra Palm Fruit Fibres as a Biosorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent Preparations
2.2. Synthetic Wastewater
2.3. Characterisation of the Biosorbents
2.4. Variation in Optimal Operating Conditions
2.5. Effect of Initial Concentration of Fe(III)
2.6. Equilibrium Adsorption Isotherm
2.7. Adsorption Kinetic Study
3. Results
3.1. Physical Characteristics of the Biosorbents
3.2. Adsorption Behaviours of the Biosorbents
3.2.1. Effect of Adsorbent Dosages
3.2.2. Effect of pH
3.2.3. Effect of Contact Time
3.2.4. Effect of Initial Concentration of Fe(III)
3.3. Adsorption Mechanism
3.4. SEM-EDX Analysis
3.5. Adsorption Isotherms
3.6. Kinetic Models of the Fe(III) Adsorption Process
3.7. Comparison of Adsorption Capacities with Other Biosorbents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Marquez, L.; Espinosa-Araujo, J.; Atencio-Garcia, V.; Olivero-Verbel, J. Effects of cadmium exposure on sperm and larvae of the neotropical fish Prochilodus magdalenae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 225, 108577. [Google Scholar] [CrossRef] [PubMed]
- Nawar, N.; Ebrahim, M.; Sami, E. Removal of Heavy Metals Fe3+, Mn2+, Zn2+, Pb2+ and Cd2+ from Wastewater by Using Rice Straw as Low Cost Adsorbent. Acad. J. Interdiscip. Stud. 2013, 2, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Al-Anber, M.A. Removal of high-level Fe3+ from aqueous solution using natural inorganic materials: Bentonite (NB) and quartz (NQ). Desalination 2010, 250, 885–891. [Google Scholar] [CrossRef]
- He, W.-L.; Feng, Y.; Li, X.-L.; Wei, Y.-Y.; Yang, X.-E. Availability and toxicity of Fe(II) and Fe(III) in Caco-2 cells. J. Zhejiang Univ. Sci. B 2008, 9, 707–712. [Google Scholar] [CrossRef]
- Karthikeyan, G.; Andal, N.M.; Anbalagan, K. Adsorption studies of iron(III) on chitin. J. Chem. Sci. 2005, 117, 663–672. [Google Scholar] [CrossRef]
- Alomar, T.S.; Habila, M.A.; AlMasoud, N.; Alothman, Z.A.; Sheikh, M.; Soylak, M. Biomass-Derived Adsorbent for Dispersive Solid-Phase Extraction of Cr(III), Fe(III), Co(II) and Ni(II) from Food Samples Prior to ICP-MS Detection. Appl. Sci. 2021, 11, 7792. [Google Scholar] [CrossRef]
- Das, B.; Hazarika, P.; Saikia, G.; Kalita, H.; Goswami, D.C.; Das, H.B.; Dube, S.N.; Dutta, R.K. Removal of iron from groundwater by ash: A systematic study of a traditional method. J. Hazard. Mater. 2007, 141, 834–841. [Google Scholar] [CrossRef]
- Altameemi, I.A.; Alasadi, T. A new sample method for the treatment of waste water containing Cu(II) and Zn(II) ions using adsorption on dried conocarpus erectus leaves. J. Basrah Res. 2013, 39, 125–135. [Google Scholar]
- Mosa, A.A.; El-Ghamry, A.; Trüby, P. Chemically Modified Crop Residues as a Low-Cost Technique for the Removal of Heavy Metal Ions from Wastewater. Water Air Soil Pollut. 2010, 217, 637–647. [Google Scholar] [CrossRef]
- Rojas, J.; Suarez, D.; Moreno, A.; Silva-Agredo, J.; Torres-Palma, R.A. Kinetics, Isotherms and Thermodynamic Modeling of Liquid Phase Adsorption of Crystal Violet Dye onto Shrimp-Waste in Its Raw, Pyrolyzed Material and Activated Charcoals. Appl. Sci. 2019, 9, 5337. [Google Scholar] [CrossRef]
- Phuengphai, P.; Singjanusong, T.; Kheangkhun, N.; Wattanakornsiri, A. Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Sci. Eng. 2021, 14, 286–294. [Google Scholar] [CrossRef]
- Wattanakornsiri, A.; Rattanawan, P.; Sanmueng, T.; Satchawan, S.; Jamnongkan, T.; Phuengphai, P. Local fruit peel biosorbents for lead(II) and cadmium(II) ion removal from waste aqueous solution: A kinetic and equilibrium study. South Afr. J. Chem. Eng. 2022, 42, 306–317. [Google Scholar] [CrossRef]
- Wattanakornsiri, A.; Pasada, S.; Kornram, S.; Satchawan, S.; Kheangkhun, N.; Phuengphai, P. Removal of Lead(II) from Aqueous Solution Using Fibroin from Cocoon Waste as a Potential Biosorbent. Sci. Technol. Asia 2022, 27, 84–97. [Google Scholar]
- Ghorbel-Abid, I.; Trabelsi-Ayadi, M. Competitive adsorption of heavy metals on local landfill clay. Arab. J. Chem. 2015, 8, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-F.; Lee, A.Y.W. Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environ. Sci. Pollut. Res. 2015, 22, 10144–10158. [Google Scholar] [CrossRef]
- Rao, R.A.K.; Uddin, M.K. Adsorption studies of Cd(II) on ball clay: Comparison with other natural clays. Arab. J. Chem. 2016, 9, S1233–S1241. [Google Scholar] [CrossRef] [Green Version]
- Soliman, E.M.; Ahmed, S.A.; Fadl, A.A. Reactivity of sugar cane bagasse as a natural solid phase extractor for selective removal of Fe(III) and heavy-metal ions from natural water samples. Arab. J. Chem. 2011, 4, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Abdulrasaq, O.O.; Basiru, O.G. Removal of Copper (II), Iron (III) and Lead (II) Ions from Mono-Component Simulated Waste Effluent by Adsorption on Coconut Husk. African J. Environ. Sci. Technol. 2010, 4, 382–387. [Google Scholar]
- Artnarong, S.; Masniyom, P.; Maneesri, J. Isolation of yeast and acetic acid bacteria from palmyra palm fruit pulp (Borassus flabellifer Linn.). Int. Food Res. J. 2016, 23, 1308–1314. [Google Scholar]
- Muthuvelammais. Processing of Palmyra Palm Fruit Fiber. IRE J. 2017, 1, 56–63. [Google Scholar]
- Abe, S.; Saito, T.; Suda, M. Simultaneous determination of iron(II) and iron(III) in aqueous solution by kinetic spectrophotometry with tiron. Anal. Chim. Acta 1986, 181, 203–209. [Google Scholar] [CrossRef]
- Feng, N.-C.; Guo, X.-Y.; Liang, S. Enhanced Cu(II) adsorption by orange peel modified with sodium hydroxide. Trans. Nonferrous Met. Soc. China 2010, 20, s146–s152. [Google Scholar] [CrossRef]
- Pan, R.; Bu, J.; Ren, G.; Zhang, Z.; Li, K.; Ding, A. Mechanism of Removal of Hexavalent Chromium from Aqueous Solution by Fe-Modified Biochar and Its Application. Appl. Sci. 2022, 12, 1238. [Google Scholar] [CrossRef]
- Morán, J.I.; Álvarez, V.; Cyras, V.P.; Vázquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2007, 15, 149–159. [Google Scholar] [CrossRef]
- Al-Anber, M.; Al-Anber, Z.A. Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination 2008, 225, 70–81. [Google Scholar] [CrossRef]
- Deng, Z.; Gu, S.; Cheng, H.; Xing, D.; Twagirayezu, G.; Wang, X.; Ning, W.; Mao, M. Removal of Phosphate from Aqueous Solution by Zeolite-Biochar Composite: Adsorption Performance and Regulation Mechanism. Appl. Sci. 2022, 12, 5334. [Google Scholar] [CrossRef]
- Kukret, H.; Amuthavalli, K. MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. J. Cell Biochem. 2020, 121, 3070–3089. [Google Scholar] [CrossRef] [PubMed]
- Tandorn, S.; Arqueropanyo, O.-A.; Naksata, W.; Sooksamiti, P.; Chaisri, I. Adsorption of arsenate from aqueous solution by ferric oxide-impregnated Dowex Marathon MSA anion exchange resin: Application of non-linear isotherm modeling and thermodynamic studies. Environ. Earth Sci. 2019, 78, 136. [Google Scholar] [CrossRef]
- Márquez, C.O.; García, V.J.; Guaypatin, J.R.; Fernández-Martínez, F.; Ríos, A.C. Cationic and Anionic Dye Adsorption on a Natural Clayey Composite. Appl. Sci. 2021, 11, 5127. [Google Scholar] [CrossRef]
- Bartczak, P.; Norman, M.; Klapiszewski, Ł.; Karwańska, N.; Kawalec, M.; Baczyńska, M.; Wysokowski, M.; Zdarta, J.; Ciesielczyk, F.; Jesionowski, T. Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab. J. Chem. 2018, 11, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008, 99, 6709–6724. [Google Scholar] [CrossRef] [PubMed]
- Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci. Rep. 2019, 9, 16530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Rosero, J.; Urbina-López, M.E.; Rodríguez-González, B.E.; León-Villegas, S.X.; Luna-Cruz, I.E.; Cárdenas-Chávez, D.L. Development and Characterization of Bioadsorbents Derived from Different Agricultural Wastes for Water Reclamation: A Review. Appl. Sci. 2022, 12, 2740. [Google Scholar] [CrossRef]
- Abualnaja, K.; Alprol, A.; Ashour, M.; Mansour, A. Influencing Multi-Walled Carbon Nanotubes for the Removal of Ismate Violet 2R Dye from Wastewater: Isotherm, Kinetics, and Thermodynamic Studies. Appl. Sci. 2021, 11, 4786. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Environ. Sci. Health Part A 1999, 34, 1179–1204. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1996, 57, 1100–1107. [Google Scholar]
- Johnson, R.D.; Arnold, F.H. The temkin isotherm describes heterogeneous protein adsorption. Biochim. et Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1995, 1247, 293–297. [Google Scholar] [CrossRef]
- Ghasemi, M.; Zahedi, G.; Alwi, S.R.W.; Goodarzi, M.; Javadian, H. Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L. Int. J. Environ. Sci. Technol. 2014, 11, 1835–1844. [Google Scholar] [CrossRef]
- Al-Harby, N.F.; Albahly, E.F.; Mohamed, N.A. Synthesis and Characterization of Novel Uracil-Modified Chitosan as a Promising Adsorbent for Efficient Removal of Congo Red Dye. Polymers 2022, 14, 271. [Google Scholar] [CrossRef]
- Shavandi, M.; Haddadian, Z.; Ismail, M.; Abdullah, N.; Abidin, Z. Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite. J. Taiwan Inst. Chem. Eng. 2012, 43, 750–759. [Google Scholar] [CrossRef]
Biosorbent | Pore Volume (cm3/g) | Pore Size (Å) |
---|---|---|
N–PPF | 0.00314 | 30.1640 |
C–PPF | 0.01069 | 450.2094 |
Fibre Component | Wave Number (cm−1) | Functional Group | Compounds |
---|---|---|---|
Cellulose | 4000–2995 | OH | Acid, methanol |
2890 | H–C–H | Alkyl, aliphatic | |
1640 | Fibre–OH | Adsorbed water | |
1270–1232 | C–O–C | Aryl–alkyl ether | |
1170–1082 | C–O–C | Pyranose ring skeletal | |
C–OH | |||
1108 | OH | ||
Hemicellulose | 4000–2995 | OH | Acid, methanol alkyl, aliphatic |
2890 | H–C–H | Ketone and carbonyl | |
1765–1715 | C=O | C–OH | |
1108 | OH | ||
Lignin | 4000–29,995 | Acid, methanol | |
2890 | H–C–H | Alkyl, aliphatic | |
1730–1700 | Aromatic | ||
1632 | C=C | Benzene | |
stretching | |||
ring | |||
1613–1450 | C=C | Aromatic | |
stretching mode | |||
1430 | O–CH3 | Methyl–O–CH3 | |
1270–1232 | C–O–C | Aryl–alkyl ether | |
1215 | C–O | Phenol | |
1108 | OH | C–OH | |
900–700 | C–H | Aromatic | |
Hydrogen |
Biosorbent | Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | ||||||
---|---|---|---|---|---|---|---|---|---|
qm (mg/g) | b (L/mg) | R2 | Kf (mg/g)/(mg/L)1/n | N | R2 | AT | B | R2 | |
N–PPF | 0.0833 | 0.9103 | 0.6516 | 36.9 | 1.66 | 0.9369 | 12.0709 | 0.0163 | 0.7781 |
C–PPF | 0.4147 | 0.2579 | 0.6570 | 82.0 | 1.19 | 0.9768 | 6.7197 | 0.0495 | 0.9325 |
Biosorbent | Pseudo-First Order | Pseudo-Second Order | ||||||
---|---|---|---|---|---|---|---|---|
qe (mg/g) experimental | qe (mg/g) calculated | k1 (1/min) | R2 | qe (mg/g) calculated | k2 (g/(mg·min−1)) | h (mg/(g·min)) | R2 | |
N–PPF | 0.249 | 0.1972 | −0.0037 | 0.9616 | 0.2655 | 0.0348 | 0.0025 | 0.8157 |
C–PPF | 0.3760 | 0.2997 | 0.0122 | 0.9870 | 0.4311 | 0.0484 | 0.0090 | 0.9890 |
Biosorbent | Intra-Particle Diffusion | ||||||||
---|---|---|---|---|---|---|---|---|---|
kid1 mg/(g·min1/2) | kid2 mg/(g·min1/2) | kid3 mg/(g·min1/2) | C1 | C2 | C3 | R12 | R22 | R32 | |
N–PPF | 0.0390 | 0.0094 | 0.0024 | 0.0557 | 0.0228 | 0.2229 | 0.9719 | 0.9339 | 0.9832 |
C–PPF | 0.0222 | 0.0093 | 0.0012 | 0.0570 | 0.2163 | 0.3529 | 0.9413 | 0.9674 | 0.7745 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satchawan, S.; Phuengphai, P.; Ratanamanee, A.; Meethong, N. Kinetic and Equilibrium Studies of Fe(III) Sorption from an Aqueous Solution Using Palmyra Palm Fruit Fibres as a Biosorbent. Appl. Sci. 2022, 12, 10540. https://doi.org/10.3390/app122010540
Satchawan S, Phuengphai P, Ratanamanee A, Meethong N. Kinetic and Equilibrium Studies of Fe(III) Sorption from an Aqueous Solution Using Palmyra Palm Fruit Fibres as a Biosorbent. Applied Sciences. 2022; 12(20):10540. https://doi.org/10.3390/app122010540
Chicago/Turabian StyleSatchawan, Suphapan, Pongthipun Phuengphai, Acharaporn Ratanamanee, and Nonglak Meethong. 2022. "Kinetic and Equilibrium Studies of Fe(III) Sorption from an Aqueous Solution Using Palmyra Palm Fruit Fibres as a Biosorbent" Applied Sciences 12, no. 20: 10540. https://doi.org/10.3390/app122010540
APA StyleSatchawan, S., Phuengphai, P., Ratanamanee, A., & Meethong, N. (2022). Kinetic and Equilibrium Studies of Fe(III) Sorption from an Aqueous Solution Using Palmyra Palm Fruit Fibres as a Biosorbent. Applied Sciences, 12(20), 10540. https://doi.org/10.3390/app122010540