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Abstract: The initial model plays an important role in seismic inversion. Generally, the initial model
is constructed by lateral extrapolation of parameters under horizons constraints. However, without
horizon data, initial modeling becomes a challenging task. Velocity spectrum is a 2D image that
can reflect the characteristics of the formations. We regard the problem of establishing the initial
model as the problem of similarity analysis of seismic lateral characteristics and propose a method of
establishing the initial inversion model based on velocity spectrum and Siamese network. Firstly,
the lateral variation of formation characteristics is tracked on velocity spectra generated by common
depth point (CDP) gathers. Then, the target tracking results at different CDP positions are obtained
with the triple Siamese network. Finally, the discrete inversion parameters are extrapolated along
the tracking paths to obtain the initial inversion model. The Siamese network can quickly obtain the
similarity of 2D images and does not need manual labels. The theoretical and practical results show
that our method can efficiently generate the initial model that conforms to the seismic structure and
stratigraphic characteristics without the constraint of interpreted horizon data.

Keywords: velocity spectrum; triple structure Siamese network; lateral automatic tracking; horizon
constraint framework; initial model of inversion

1. Introduction

Establishing the initial model is one of the necessary and key steps of the model-
based inversion method, which has a great impact on the inversion effect. Traditionally,
the method of generating the initial model is to extrapolate the inversion parameters
observed from the wells or vertical seismic profile (VSP) along the interfaces picked from
seismic profiles [1,2] or to extrapolate the seismic attributes [3–7]. In these methods, seismic
horizons are necessary and manual interpretations are required. Horizon picking is one of
the most time-consuming and labor-intensive steps [8]. Automatic horizon interpretation
technology has been developing. Many geophysicists have proposed a variety of algorithms
to improve the efficiency and accuracy of automatic horizons tracking [9–14], but these
methods still need some prior information, such as manually setting up seed points or
carrying out manual interpretation of large sets of strata. It is difficult to establish the
initial model directly without manual interpretation. In addition, seismic inversion usually
requires the initial model to cover the entire 3D region, but in practice, the automatic
interpretation of the entire data volume is difficult to achieve. Therefore, there is a need for
an efficient and accurate seismic extrapolation method to establish an initial model with
the condition of lack of horizons.

Neidall et al. [15] presented the concept of velocity spectrum. The seismic gathers are
automatically scanned with equal velocity intervals, and the velocity spectra are generated
by stacking energy or similarity coefficient. Compared with artificial horizon interpretation,
the velocity spectra are easier to generate. In conventional seismic data processing, stacking
or migration velocity is obtained by velocity analysis on velocity spectra. The hyperbolas
in the prestack seismic gathers reflect the characteristics of the interfaces, and the velocity

Appl. Sci. 2022, 12, 10593. https://doi.org/10.3390/app122010593 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010593
https://doi.org/10.3390/app122010593
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122010593
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010593?type=check_update&version=1


Appl. Sci. 2022, 12, 10593 2 of 13

spectrum contains the position and velocity information of each hyperbola in prestack
gathers. Compared with the gathers, the features on velocity spectrum are more focused.
The velocity spectrum is a 2D image, which can be used to identify the changes of the
lateral characteristics of the formation.

Deep learning technology has shown much better performance than traditional neural
network methods in speech and visual tasks, such as image classification [16], semantic
segmentation [17], and image segmentation [18]. This is mainly due to the strong feature
expression ability of deep networks such as convolutional neural network (CNN). In the
field of exploration geophysics, deep learning has been successfully applied to seismic
processing and interpretation [19,20]. However, most of the current applications need to
manually make and label samples first, and then extract the corresponding type of feature
information from the seismic images. For the establishment of the initial inversion model,
it is still unable to get rid of the dependence on horizons. Deep learning has the potential
to provide more global information. As an important part of computer vision, visual target
tracking technology has been developed rapidly. The Siamese network uses the idea of
similarity learning, describes the tracking problem as an object matching problem, and
judges the position of objects by comparing the similarity of objects [21,22].

In this paper, we transformed the parameter extrapolation problem in constructing
the initial inversion model into a 2D image tracking problem and proposed a method for
constructing the initial model based on velocity spectrum and Siamese network. Firstly,
the velocity spectra generated by CDP gathers were used to track the lateral variation
of formation characteristics. Then, the target tracking results at different CDP positions
were obtained by combining the similarity of the triple Siamese network analog velocity
spectrum. Finally, the discrete inversion parameters were extrapolated along the tracking
path to obtain the initial model. We proposed an improved triple Siamese structure, which
adds an update branch to solve the lateral variation of velocity spectrum characteristics
during target tracking. This improvement takes dynamic update into tracking. In order to
verify the applicability of the method, we carried out tests on theoretical and practical data.
The results show that it can automatically obtain the extrapolation paths and can be used
to establish the initial model of seismic inversion.

2. Materials and Methods
2.1. Velocity Spectrum

The velocity spectrum [15] is a 2D image generated by scanning and stacking (or
correlating) energy along different velocities on each CDP gather using the similarity
criterion. The x and y axes are the velocity and two-way travel time, respectively. The
velocity spectrum is composed of a series of energy clusters, and the velocity information
is determined according to the abscissa position of the energy clusters. Most of the current
research on velocity spectrum focuses on improving the resolution of velocity spectrum and
then improving the accuracy of velocity pickup [23–29]. The application of deep learning
in velocity analysis almost focuses on the automatic pickup of energy clusters in velocity
spectrum [30–32].

In addition to the position and velocity information that can be used for velocity
analysis in conventional seismic processing, velocity spectrum is also a 2D image that
can reflect formation characteristics. Velocity spectra also have advantages in identifying
lateral characteristics of formation. The reasons are as follows: firstly, the interference of
complex underground structures and noise always leads to incomplete, staggered, and
amplitude varying hyperbolas, while the velocity spectrum scans and superimposes the
events along the hyperbola, which can attenuate the non-hyperbolic noise to a certain
extent. Secondly, in most cases, the energy clusters in velocity spectrum corresponds to
the interfaces. Because the formation interfaces have relatively coherent structure in the
underground space, the velocity spectra of adjacent CDP points have similarity, and the
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characteristics of the formation interface can be obtained from the velocity spectra by this
similarity. The velocity spectrum Formula (1) is as follows:

S =
∑M

j=0

(
∑N

i=1 Ai,j

)2

I ∑M
j=0 ∑N

i=1
(

Ai,j
)2 (1)

where M is the length of the time window, N is the offset length, I is the number of seismic
traces in the CDP gather, and Ai,j is the amplitude at offset i and time j. According to
Formula (1), if all seismic traces are the same, S equals to 1. If each seismic trace is a
random value, S approaches 0. Only when the scanning velocity is equal to the normal
move-out (NMO) velocity, the waveforms of each trace are the most similar, in-phase
stacking is realized within the time window, and S is close to 1. Here, we use real seismic
data after conventional data processing and prestack migration to show the consistency
between energy clusters in velocity spectrum and formation interfaces. Figure 1a is the
common reflection point (CRP) gather at the location of CDP number 30 (CDP 30), which
has undergone NMO removal processing with v = 1500 m/s. Figure 1b is the velocity
spectrum generated from the gather shown in Figure 1a. The x and y axes are the velocity
and two-way travel time, respectively. The center of the energy clusters in velocity spectrum
corresponds to the maximum value of stacking energy. Figure 1c is the stack section. It
can be seen that the centers of the energy clusters correspond to the events on the seismic
section. Each energy cluster corresponds to an obvious formation interface. Figure 2a–c are
velocity spectra of CDP 32, CDP 34, and CDP 36, respectively. The three velocity spectra
have high similarity. With the similarity of the energy clusters in lateral, the positions of
the formation interfaces can be obtained by tracking the energy clusters.
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Figure 1. Consistency between energy clusters in velocity spectrum and formation interfaces. (a) CDP
gather at CDP 30; (b) velocity spectrum generated from the gather shown in (a); (c) stack section.
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2.2. The Triple Structure Siamese Network for Velocity Spectra Lateral Target Tracking

For lateral target tracking in velocity spectra, the prior materials are the images of
the energy clusters in the given windows. The tracking algorithm needs to overcome the
challenges of target deformation, background interference, scale change, and angle rotation,
and also needs to take into account the accuracy and efficiency. The Siamese network can
find a set of parameters, so that the similarity of input images is large when they belong to
the same category and small when they belong to different categories. Another advantage
of the Siamese network is that the input is a pair of images rather than an image, so it can
naturally increase the amount of training data and make full use of limited datasets to
train, which is very important in the field of target tracking. In this paper, we improved
the traditional Siamese network structure by adding an input update branch. A triple
structure Siamese network for velocity spectra lateral target tracking is presented. We set
the target area as a positive sample, and the background area and other morphological
energy clusters as negative samples. Firstly, the tracking algorithm extracts the features
of the target through a series of convolution operations and trains the classifier. Next,
the well-trained classifier is used to find the most similar region in the velocity spectra of
different CDP positions. Finally, the lateral extrapolation path of inversion parameters can
be obtained through the change trend of the target positions. The added update branch
can take the prediction result of the current position as an input and update the initial
target according to the current tracking result, so as to adapt to the lateral change of the
velocity spectrum.

2.2.1. Triple Siamese Network Structure

The traditional Siamese network always uses the initial image as the tracking target.
However, the velocity spectrum varies in the lateral direction. With the deepening of the
tracking process, the information contained in the initial sample is insufficient to track
the subsequent targets. We solve this problem by adding an update of target features in
the tracker. The velocity spectrum samples at the initial position provide the most basic
characteristics of the target and play a leading role in the tracking process. With the lateral
movement of the target position, tracking by fusing the previous position features is better
than using only the initial samples. Based on this consideration, we proposed a triple
structure Siamese network based on the traditional Siamese network. We added an update
branch of the current target and used the current prediction result as the target to track the
velocity spectrum of the next position. During the tracking process, the current target will
be updated with the result of target tracking. The structure of the triple velocity spectrum
tracking network is shown in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

Figure 3. Structure of the triple velocity spectrum tracking network. 

Different from the traditional Siamese network, the triple network consists of three 
branches: an initial branch I with an initial target as an input, a search branch S with a 
search area as an input, and an update branch U with a tracking result at the previous 

location as an input. The backbone models in the three branches share the same CNN 
architecture. Through the same network model, the responses of I, S, and U are 𝜑(𝐼), 

𝜑(𝑆), and 𝜑(𝑈), which are embedded into the feature space of subsequent tasks. I is the 
initial branch, and the specified initial velocity spectrum is used as the sample. I remains 
unchanged throughout the tracking process. U is the update branch, that is, the previous 

target tracking result. U will be updated with the tracking process. In order to embed the 

information of these branches, we use the feature map of the updated branch and the 

feature map of the search area to perform cross-correlation operations. Similar to the 
traditional Siamese network, the triple network uses a full convolution network for fea-
ture extraction, and each channel also generates a corresponding mapping response R. 

Since there are three branches, the mapping results of two channels are generated, which 
are: 

𝑅1 = 𝜑(𝑆) ∗ 𝜑(𝐼) (2) 

𝑅2 = 𝜑(𝑆) ∗ 𝜑(𝑈) (3) 

where * represents a cross-correlation operation. R1 is the mapping result of the initial 
branch and the search branch, and R2 is the mapping result of the update branch and the 

search branch. In order to use the two-mapping information, the mapping results are 
fused weighted 𝑅𝑓: 

𝑅𝑓 = 𝑎1𝑅1 + 𝑎2𝑅2 (4) 

where 𝑎1 and 𝑎2 are the weight coefficients, and 𝑎1 + 𝑎2 = 1. 

2.2.2. Weight Coefficients 

The weight coefficient is determined by the similarity between the current target 
image and the previously saved image. Here, we use a perceptual Hash algorithm to 

judge the similarity [33]. We know that the high-frequency information in an image can 
provide details, and the low-frequency information can describe the frame. Hash algo-
rithm is a method to detect the similarity between images with the low-frequency in-

formation of images. First, the image is down-sampled to 8 × 8 to remove high-frequency 
information and discard the difference caused by different sizes. Next, the image is con-

verted into a gray-scale image, and its gray-scale average value is calculated. Further, 
the gray value of each pixel in the image is compared with the average gray value. If the 
gray value is greater than or equal to the average value, it is recorded as 1, and if the 

gray value is less than the average value, it is recorded as 0. Finally, these 64 values are 
combined to form the Hash fingerprint of this image. This method is fast and efficient 

and is not affected by image size or scale. The main process of determining the weight 
coefficient with Hash algorithm is as follows: 

Figure 3. Structure of the triple velocity spectrum tracking network.

Different from the traditional Siamese network, the triple network consists of three
branches: an initial branch I with an initial target as an input, a search branch S with a
search area as an input, and an update branch U with a tracking result at the previous
location as an input. The backbone models in the three branches share the same CNN
architecture. Through the same network model, the responses of I, S, and U are ϕ(I),
ϕ(S), and ϕ(U), which are embedded into the feature space of subsequent tasks. I is the
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initial branch, and the specified initial velocity spectrum is used as the sample. I remains
unchanged throughout the tracking process. U is the update branch, that is, the previous
target tracking result. U will be updated with the tracking process. In order to embed
the information of these branches, we use the feature map of the updated branch and
the feature map of the search area to perform cross-correlation operations. Similar to the
traditional Siamese network, the triple network uses a full convolution network for feature
extraction, and each channel also generates a corresponding mapping response R. Since
there are three branches, the mapping results of two channels are generated, which are:

R1 = ϕ(S) ∗ ϕ(I) (2)

R2 = ϕ(S) ∗ ϕ(U) (3)

where ∗ represents a cross-correlation operation. R1 is the mapping result of the initial
branch and the search branch, and R2 is the mapping result of the update branch and the
search branch. In order to use the two-mapping information, the mapping results are fused
weighted R f :

R f = a1R1 + a2R2 (4)

where a1 and a2 are the weight coefficients, and a1 + a2 = 1.

2.2.2. Weight Coefficients

The weight coefficient is determined by the similarity between the current target image
and the previously saved image. Here, we use a perceptual Hash algorithm to judge the
similarity [33]. We know that the high-frequency information in an image can provide
details, and the low-frequency information can describe the frame. Hash algorithm is a
method to detect the similarity between images with the low-frequency information of
images. First, the image is down-sampled to 8 × 8 to remove high-frequency information
and discard the difference caused by different sizes. Next, the image is converted into a
gray-scale image, and its gray-scale average value is calculated. Further, the gray value
of each pixel in the image is compared with the average gray value. If the gray value is
greater than or equal to the average value, it is recorded as 1, and if the gray value is less
than the average value, it is recorded as 0. Finally, these 64 values are combined to form
the Hash fingerprint of this image. This method is fast and efficient and is not affected
by image size or scale. The main process of determining the weight coefficient with Hash
algorithm is as follows:

Step 1: calculate the Hash fingerprint of the initial target image and each predicted image.
Step 2: calculate the number Num of different points of the Hash fingerprint between

the target image and the predicted image.
Step 3: determine the weight coefficients a1 and a2 according to the value of Num.

There are several situations. If Num < 5, the current target is considered to be similar to the
initial target image, replace the initial target with the current target, and set a1 = 0, a2 = 1.
If 5 < Num < 10, perform image fusion and set a1 = 0.5, a2 = 0.5. If Num > 10, there is a
large difference between the current target and the initial target image, the current image is
discarded and set a1 = 1, a2 = 0, that is, the initial target image will not be updated. The
reasonable threshold (5 and 10 or other number) can be determined by manual test.

2.2.3. Loss Function and Network Parameters

In the mapping result, the points within the search area are positive samples, and
the points outside the area are negative samples. The loss function for each point in the
mapping result is:

Lp(x, s) = lg
(
1 + e−xs) (5)
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where s is the true value of the point, x is the label of the point, and x∈{+1, −1}. The overall
loss of the mapping result is the average of the losses of all points, that is:

LALL(x, s) = ∑
D

Lp(x(z), s(z)) (6)

where z is the position, x(z) is expressed as:

x(z) =
{

1 h|z− c| ≤ R
−1 others

(7)

where h is the step size of the network, c is the center point, and R is the radius of the
search area.

The weight coefficients of the similarity discriminant function are solved by the gradi-
ent descent method to minimize the error between the sample labels x and the similarity
discriminant function. The specific parameters of the network are shown in Table 1. The
maximum pooling layer is used after the first two convolution layers, respectively. The Relu
nonlinear activation function is used after each convolution layer except the last layer. The
batch normalization (BN) layer is embedded after each linear layer. There is no padding in
the network.

Table 1. Network parameters.

Network Layers Conv1 Pool1 Conv2 Pool2 Conv3 Conv4 Conv5

Convolution kernel 11 × 11 3 × 3 7 × 7 3 × 3 3 × 3 3 × 3 3 × 3

Step size 2 2 2 2 1 1 1

2.3. Workflow

After the initial target image on the velocity spectrum is given, all subsequent images
are compared with the initial target image for similarity. The Siamese network performs full
convolution on the search image. In order to find the position of the target in the searched
image, all possible positions can be tested exhaustively, and the image with the greatest
similarity to the target can be determined. The triple Siamese structure actually calculates
the cross-correlation between the two input branches and the search branch, determines
the weight coefficient of the branch fusion according to the similarity of the image, and
adapts to the lateral change of the velocity spectrum by updating the initial target. The
main implementation steps of the method are as follows:

Step 1: generate velocity spectrum images of all positions.
Step 2: extract the target image feature Hi at the specified position and within the

specified window by using the initial branch.
Step 3: extract the image feature Hc of the search area at the current position by using

the search branch.
Step 4: calculate the cross-correlation between the features Hi and Hc to obtain the

target response R1.
Step 5: extract the target image feature Hr at the specified position and within the

specified window by using the update branch.
Step 6: calculate the cross-correlation between the features Hr and Hc to obtain the

target response R2, and take R2 as the current position tracking result.
Step 7: determine the fusion weight coefficients a1 and a2, and obtain R f = a1R1 + a2R2

as the new input of the update branch.
Step 8: move the window, repeat steps 3–7 until the velocity spectrum of this position

is traversed, and then end the current position task.
Step 9: move the position, repeat steps 2–8 until the velocity spectra of all positions

are traversed, and then the whole task is completed.
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3. Model Test

In order to verify the feasibility of the method, we carried out tests on theoretical
model data and real seismic data. The lateral extrapolation path of inversion parameters is
obtained by tracing the lateral position of velocity spectrum according to the method in this
paper. In our tests, the interval velocity is used as the inversion parameter to check the ex-
trapolation result. The tests were carried out on a PC equipped with Intel (R) i7 12,700 CPU,
an RTX3060TI GPU, 16 GB RAM, and Ubuntu 19 operating system.

3.1. Theoretical Model

A theoretical model with four interfaces is designed to synthesize seismic data and
test the method. The depth of the model is 5500 m and the sampling interval is 5 m. The
width of the model is 1000 m, and 100 CDP points are set. The theoretical model of interval
velocity is shown in Figure 4. CDP gathers are obtained through forward modeling, with
the time length of 1 s and the maximum offset of 3100 m. Figure 5a–c are the CDP gathers
at positions of CDP 30, CDP 50, and CDP 70, respectively. For each CDP gather, NMO
removal processing is performed according to the root mean square velocity of 1500 m/s
and a velocity spectrum is generated. Figure 6a–c are the velocity spectra of CDP 30, CDP
50, and CDP 70, respectively.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 13 
 

Step 2: extract the target image feature 𝐻𝑖 at the specified position and within the 
specified window by using the initial branch. 

Step 3: extract the image feature 𝐻𝑐 of the search area at the current position by us-

ing the search branch. 
Step 4: calculate the cross-correlation between the features 𝐻𝑖 and 𝐻𝑐 to obtain the 

target response 𝑅1. 
Step 5: extract the target image feature 𝐻𝑟 at the specified position and within the 

specified window by using the update branch. 

Step 6: calculate the cross-correlation between the features 𝐻𝑟 and 𝐻𝑐 to obtain the 
target response 𝑅2, and take 𝑅2 as the current position tracking result. 

Step 7: determine the fusion weight coefficients 𝑎1 and 𝑎2, and obtain 𝑅𝑓 = 𝑎1𝑅1 +

𝑎2𝑅2 as the new input of the update branch. 
Step 8: move the window, repeat steps 3–7 until the velocity spectrum of this posi-

tion is traversed, and then end the current position task. 

Step 9: move the position, repeat steps 2–8 until the velocity spectra of all positions 
are traversed, and then the whole task is completed. 

3. Model Test 

In order to verify the feasibility of the method, we carried out tests on theoretical 
model data and real seismic data. The lateral extrapolation path of inversion parameters 
is obtained by tracing the lateral position of velocity spectrum according to the method 

in this paper. In our tests, the interval velocity is used as the inversion parameter to 
check the extrapolation result. The tests were carried out on a PC equipped with Intel (R) 

i7 12,700 CPU, an RTX3060TI GPU, 16 GB RAM, and Ubuntu 19 operating system. 

3.1. Theoretical Model 

A theoretical model with four interfaces is designed to synthesize seismic data and 
test the method. The depth of the model is 5500 m and the sampling interval is 5 m. The 

width of the model is 1000 m, and 100 CDP points are set. The theoretical model of in-
terval velocity is shown in Figure 4. CDP gathers are obtained through forward model-

ing, with the time length of 1 s and the maximum offset of 3100 m. Figure 5a–c are the 
CDP gathers at positions of CDP 30, CDP 50, and CDP 70, respectively. For each CDP 
gather, NMO removal processing is performed according to the root mean square veloci-

ty of 1500 m/s and a velocity spectrum is generated. Figure 6a–c are the velocity spectra 
of CDP 30, CDP 50, and CDP 70, respectively. 

 

Figure 4. Theoretical model of interval velocity. 
Figure 4. Theoretical model of interval velocity.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 13 
 

   
(a) (b) (c) 

Figure 5. CDP gathers at different positions. (a) CDP 30; (b) CDP 50; (c) CDP 70. 

   
(a) (b) (c) 

Figure 6. Velocity spectrum. (a) CDP 30; (b) CDP 50; (c) CDP 70. 

3.2. Model Training 

The velocity spectrum of CDP 50 is used as the tracking target of the training da-

taset. As shown in Figure 6b, there are four energy clusters. We take the energy cluster 
of 0.2–0.35 s (as shown in Figure 7a) as an example to explain the generation of a training 
dataset. Based on the energy cluster of 0.2–0.35 s, 100 training samples labeled as posi-

tive are generated by stretching, compression, and filtering. Figure 7b,c are examples of 
images after deformation and stretching, and Figure 7d–f are examples of images after 

filtering. The positive samples are set to 1. 
The energy clusters of 0.1–0.2 s, 0.35–0.5 s, and 0.5–0.65 s in Figure 6b are stretched, 

compressed, and filtered to generate 300 training samples marked as negative, as shown 

in Figure 8. The negative samples are set to 0. The training process has 500 iterations, 
and the learning rate is set to 0.0001. After this training process is completed, set the 

tracking target as the energy cluster of 0.35–0.5 s, and set the energy clusters of 0.1–0.2 s, 
0.2–0.35 s, and 0.5–0.65 s as the negative samples, and then repeat the same training pro-
cess. 

   
(a) (b) (c) 

Figure 5. CDP gathers at different positions. (a) CDP 30; (b) CDP 50; (c) CDP 70.



Appl. Sci. 2022, 12, 10593 8 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 13 
 

   
(a) (b) (c) 

Figure 5. CDP gathers at different positions. (a) CDP 30; (b) CDP 50; (c) CDP 70. 

   
(a) (b) (c) 

Figure 6. Velocity spectrum. (a) CDP 30; (b) CDP 50; (c) CDP 70. 

3.2. Model Training 

The velocity spectrum of CDP 50 is used as the tracking target of the training da-

taset. As shown in Figure 6b, there are four energy clusters. We take the energy cluster 
of 0.2–0.35 s (as shown in Figure 7a) as an example to explain the generation of a training 
dataset. Based on the energy cluster of 0.2–0.35 s, 100 training samples labeled as posi-

tive are generated by stretching, compression, and filtering. Figure 7b,c are examples of 
images after deformation and stretching, and Figure 7d–f are examples of images after 

filtering. The positive samples are set to 1. 
The energy clusters of 0.1–0.2 s, 0.35–0.5 s, and 0.5–0.65 s in Figure 6b are stretched, 

compressed, and filtered to generate 300 training samples marked as negative, as shown 

in Figure 8. The negative samples are set to 0. The training process has 500 iterations, 
and the learning rate is set to 0.0001. After this training process is completed, set the 

tracking target as the energy cluster of 0.35–0.5 s, and set the energy clusters of 0.1–0.2 s, 
0.2–0.35 s, and 0.5–0.65 s as the negative samples, and then repeat the same training pro-
cess. 

   
(a) (b) (c) 

Figure 6. Velocity spectrum. (a) CDP 30; (b) CDP 50; (c) CDP 70.

3.2. Model Training

The velocity spectrum of CDP 50 is used as the tracking target of the training dataset.
As shown in Figure 6b, there are four energy clusters. We take the energy cluster of
0.2–0.35 s (as shown in Figure 7a) as an example to explain the generation of a training
dataset. Based on the energy cluster of 0.2–0.35 s, 100 training samples labeled as positive
are generated by stretching, compression, and filtering. Figure 7b,c are examples of images
after deformation and stretching, and Figure 7d–f are examples of images after filtering.
The positive samples are set to 1.
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The energy clusters of 0.1–0.2 s, 0.35–0.5 s, and 0.5–0.65 s in Figure 6b are stretched,
compressed, and filtered to generate 300 training samples marked as negative, as shown in
Figure 8. The negative samples are set to 0. The training process has 500 iterations, and the
learning rate is set to 0.0001. After this training process is completed, set the tracking target
as the energy cluster of 0.35–0.5 s, and set the energy clusters of 0.1–0.2 s, 0.2–0.35 s, and
0.5–0.65 s as the negative samples, and then repeat the same training process.
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3.3. Tracking Results

The velocity spectrum images of all 100 CDP points are sequentially tracked. The
tracking results of CDP 50 to CDP 55 are shown in Figure 9. The red rectangle is the tracking
target, and the yellow rectangle is the velocity spectrum tracking results of different CDPs.
The tracking path is formed by connecting the midpoint positions of the tracking results. As
shown in Figure 10, the four color lines are the paths of the energy clusters to track laterally.
It can be found by comparing Figure 4 that the four tracking paths are consistent with the
four interfaces in the model. By extrapolating seismic parameters along the tracking path,
the initial model conforming to the underground structure can be obtained.
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3.4. Initial Velocity Model

The interval velocity curve is extracted at the theoretical velocity model CDP 30 to
simulate the data of a well. The layer velocity curve at CDP 30 is extrapolated under
the paths constraint shown in Figure 10 to obtain a interval velocity model, as shown in
Figure 11, which is consistent with the theoretical model shown in Figure 4. The vertical
difference is because the theoretical velocity model is in depth domain and the extrapolation
result is in time domain.
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4. Real Data Applications

In the real data test, we used the land seismic data from eastern China. The CRP
gathers after prestack time migration were used to generate velocity spectra. The number
of CRP gathers was 500. The maximum offset was 2200 m. The longitudinal time was 2.5 s.
The sampling interval was 2 ms. The stack section is shown in Figure 12a. Figure 12b is the
CRP gather at CDP 203, and Figure 12c is the velocity spectrum at CDP 203.
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The velocity spectrum at CDP 203 was used as the tracking target of the training
data set. Since there was no obvious boundary between the energy clusters in the velocity
spectrum in Figure 12, we used the sliding window to realize the target tracking. The time
window length is given as 250 ms. The tracking windows are shown in Figure 13a. The
real data samples were made in the same way as the theoretical data. The training process
had 500 iterations, and the learning rate was set to 0.0001. The position of the window was
changed and the same training process repeated until the tracking of the target in the whole
time range was completed. The tracking results of all CDP points were connected to form
the final tracking paths as shown in Figure 13b. Comparing Figure 13b with Figure 12a, the
tracking paths are consistent with the interfaces. The faults between CDP 200–CDP 350
and 1.3–1.8 s can be correctly identified on the tracking results. Along the tracking path,
the parameter to be inversed can be extrapolated from the well, and the initial inversion
model consistent with the structure can be obtained.
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5. Discussions

This method also has some application limitations. Because the characteristics of the
energy clusters in the velocity spectrum are closely related to the reflection characteristics
of the formation, the method can obtain ideal tracking results when the reflection charac-
teristics from the same formation interface are relatively stable in lateral. In contrast, if
the reflection characteristics of the formation change dramatically in lateral, the velocity
spectrum tracking will be unstable and the results may be multi-solution. This requires
manual intervention or adding constraints to obtain reliable tracking results, such as lim-
iting the trend of the tracking path within a certain range or limit the maximum change
of the tracking results of adjacent traces. In addition, if the signal-to-noise ratio of real
seismic data is very low, the velocity spectrum features will not be significant, and it will
be difficult to extract features and track targets.

In the velocity spectrum tracking of real seismic data, there may be difficulties such
as unclear clusters features or background interference. In these cases, the accuracy of
target tracking can be improved by changing the window length. The tracking task can be
carried out with different window lengths, and the corresponding similarity results will be
output for each window length. The results with the highest similarity can be extracted
and combined as the final target tracking result.

The extrapolation path of geophysical parameters can be obtained by lateral tracking
of velocity spectrum, which can be used as a constraint framework to construct the initial
model. The essence of the method is the similarity of the characteristics of velocity spectrum
in lateral, that is, the invariable part of the velocity spectrum. In fact, the characteristics of
the velocity spectrum have certain changes in lateral, and this change also represents the
lateral changes of geophysical parameters to a certain extent. In the absence of gooddata,
how to make full use of the characteristics of velocity spectrum to provide more geophysical
information will be the next possible research direction.

6. Conclusions

A lateral tracking method of velocity spectrum based on a triple Siamese network
structure is proposed in this paper. With this method, the positions of the target image
on the velocity spectrum of each CDP can be tracked. The results of the tracking paths
can constrain the lateral extrapolation of seismic parameter to establish an initial inversion
model, for example, an initial velocity model for prestack depth migration or P-wave, S-
wave and density models for elastic parameters inversion. The method does not depend on
the interpretation horizons and manual annotation samples. The theoretical and practical
results show that the method can efficiently generate the initial model that conforms to
the seismic structure and stratigraphic characteristics without the constraint of interpreted
horizon data.
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