
Citation: Na, J.; Zhang, H.; Lian, J.;

Zhang, B. Partitioning DNNs for

Optimizing Distributed Inference

Performance on Cooperative Edge

Devices: A Genetic Algorithm

Approach. Appl. Sci. 2022, 12, 10619.

https://doi.org/10.3390/

app122010619

Academic Editors: Neil Yuwen Yen,

Chao-Tung Yang, Chen-Kun Tsung

and Vinod Kumar Verma

Received: 19 September 2022

Accepted: 18 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Partitioning DNNs for Optimizing Distributed Inference
Performance on Cooperative Edge Devices: A Genetic
Algorithm Approach
Jun Na 1 , Handuo Zhang 2, Jiaxin Lian 2 and Bin Zhang 1,*

1 Software College, Northeastern University, Shenyang 110169, China
2 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
* Correspondence: zhangbin@mail.neu.edu.cn

Abstract: To fully unleash the potential of edge devices, it is popular to cut a neural network into
multiple pieces and distribute them among available edge devices to perform inference cooperatively.
Up to now, the problem of partitioning a deep neural network (DNN), which can result in the optimal
distributed inferencing performance, has not been adequately addressed. This paper proposes a
novel layer-based DNN partitioning approach to obtain an optimal distributed deployment solu-
tion. In order to ensure the applicability of the resulted deployment scheme, this work defines the
partitioning problem as a constrained optimization problem and puts forward an improved genetic
algorithm (GA). Compared with the basic GA, the proposed algorithm can result in a running time
approximately one to three times shorter than the basic GA while achieving a better deployment.

Keywords: DNN partitioning; deployment optimization; genetic algorithm; distributed DNN
inferencing

1. Introduction

Internet of things (IoT), edge computing (EC), and artificial intelligence (AI) are three
technological pillars of the current industrial revolution [1,2]. One hot topic in applying
these techniques is edge intelligence [3–5], which involves running deep learning algo-
rithms at the edge of the networks instead of entirely offloading the inferencing tasks to the
cloud center. As edge intelligence can alleviate problems such as large bandwidth occu-
pancy, high transmission delay, slow response speed, poor network reliability, and leakage
of personal or sensitive information, it is being intensively researched and widely used
today. For example, it is common to deploy a trained convolutional neural network (CNN)
to the edge for performing real-time video analysis in applications including autonomous
driving [6], intelligent monitoring [7], industrial IoT [8], smart cities [9], etc. However,
as CNN inference is usually computationally intensive and some CNNs are huge, it is often
infeasible to deploy a complete CNN model or perform inference on a single-edge device.

On one hand, the above problem can be solved by pruning, quantization, or knowledge
distillation [10–12] to obtain a smaller DNN model before deploying and inferencing.
However, these techniques may sacrifice model inference accuracy somewhat. On the
other hand, the powerful cloud server is usually adopted to perform part of the inferencing
task [13–15]. In such a cloud-assisted approach, a DNN model is often divided into
two parts: one remains locally and the other runs at the remote cloud server. As with
offloading a complete DNN model to the cloud server, cloud-assisted approaches also
need to face the problem of private data leakage, which is natural in cloud computing.
Additionally, balancing the calculation accuracy, end-to-end delay, and resource occupancy
is also challenging.

To fully unleash the potential of edge devices, it is popular to cut a neural network
into multiple pieces and distribute them among available edge devices to perform the

Appl. Sci. 2022, 12, 10619. https://doi.org/10.3390/app122010619 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010619
https://doi.org/10.3390/app122010619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7132-8589
https://doi.org/10.3390/app122010619
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010619?type=check_update&version=2

Appl. Sci. 2022, 12, 10619 2 of 14

inference cooperatively [16,17]. This approach could overcome the problems above by
keeping the inferencing process in the edge network. Nevertheless, it is more challenging
to partition and distribute a neural network to achieve optimal performance, as it is an
NP-hard problem. Although some strategies have been developed in an attempt to split
a DNN into several parts effectively [18–20], most of them pay more attention to the
methodology of reorganizing the network structure rather than optimizing the process
for getting an optimal solution from the perspective of the actual system running. Hence,
the problem of partitioning a DNN model to achieve optimal deployment has not been
adequately addressed.

This paper proposes a novel layer-based partitioning approach to obtain an optimal
DNN deployment solution. In order to ensure the applicability of the resulting deployment
scheme, the partitioning problem is defined as a constrained optimization problem and
an improved genetic algorithm (GA) is proposed to ensure the generation of feasible
candidate solutions after each crossover and mutation operation. Compared to the basic
GA, the proposed GA in this paper results a running time that is one to three times shorter
than that of the basic GA, while obtaining a better deployment. The main contributions of
this paper are as follows:

• Firstly, the DNN model partitioning problem is modeled as a constrained optimization
problem and the corresponding problem is introduced.

• Secondly, the paper puts forward a novel genetic algorithm to shorten solving time by
ensuring the validity of chromosomes after crossover and mutation operation.

• Finally, experiments are performed on several existing DNN models, including
AlexNet, ResNet110, MobelNet, and SqueenzeNet, to present a more comprehen-
sive evaluation.

The remainder of this paper is organized as follows: Section 2 gives an overview
of the related work. Section 3 presents the problem definition of the DNN partition
problem. Section 4 introduces the details of the proposed algorithm. Section 5 provides the
experimental results, and Section 6 concludes the paper.

2. Literature Review

As most modern DNNs are constructed by layers, such as the convolutional layer,
the fully connected layer, and the pooling layer, layer-based partitioning is the most intuitive
DNN partitioning strategy. For example, Ref. [14] proposed to partition a CNN model at
the end of the convolutional layer, allocating the convolutional layers at the edge and the
rest of the fully-connected layers at the host. Unlike this fixed partitioning strategy, recent
methodologies have focused on adapting their results to the actual inferencing environment.
Generally, depending on the construction of the target deployment environment, existing
methods are divided into the following two categories.

According to the basic idea of the cloud-assisted approaches, some studies try to divide
a given DNN model into two sets and push the latter part to the cloud server. For example,
Ref. [13] designed a lightweight scheduler named Neurosurgeon to automatically partition
DNN computation between mobile devices and data centers based on neural network
layers. Similarly, Refs. [21–23] adopted the same strategy, while they took some further
processing. In [21], the authors integrated DNN right-sizing to accelerate the inference
by early exiting inference at an intermediate layer. In contrast, Ref. [22] first added early
exiting points to the original network and then partitioned the reformed network into
two parts. To determine the optimal single cut point, all of [13,21,22] applied exhaustive
searching, while [23] solved the problem with mixed-integer linear programming.

For making full use of the available resources in the edge environment, more DNN
partitioning strategies have been emerging to divide a DNN model into more than two
pieces for distributing the inference task among several edge devices. Generally, based on
the object to be partitioned, there are four kinds of main strategies, i.e., partitioning the
inputs [24,25], weights [26], and layers [18,19], as well as hybrid strategies [17,20,27–30].
Partitioning the inputs or weights focuses on the large storage requirements for storing

Appl. Sci. 2022, 12, 10619 3 of 14

large inputs or weights. Partitioning the DNN layers can solve the depth problem of DNN
inferencing. Furthermore, the hybrid strategies aim to solve both problems mentioned
above. For example, Ref. [27] employed input partitioning after layer-based partitioning
to obtain a small enough group of inferencing tasks to be executed. The authors of [20]
proposed fused tile partitioning (FTP) to fuse layers and partition them vertically in a grid
fashion. The authors of [29] modeled a neural network as a data-flow graph where vertices
are input data, operations, or output data and edges are data transfers between vertices.
Then, the problem was transformed into a graph partitioning problem.

Nearly all of the above works take inference delay or energy consumption as the opti-
mization objectives. Recently, more studies have begun to focus on the joint optimization of
DNN partitioning and resource allocation [31–33]. However, it is still an open and critical
challenge to achieve an optimal DNN distributed deployment. Unlike existing approaches,
this work models the DNN partitioning problem as a constrained optimization problem,
aiming to achieve the optimal inference performance with available resources in the edge
environment. Moreover, it proposes a novel genetic algorithm to optimize the solving
process of the formulated optimization problem.

3. System Model and Problem Formulation

This section provides an overview of the motivation and fundamental process of the
proposed DNN partitioning approach and presents a formal problem description. Suppose
that there are N edge devices and an edge server forming an edge network. The edge
server acts as a master to receive user requests, partition DNN models, and assign the
DNN inferencing tasks for each edge device. Take video-based fall detection in health
monitoring as an example. A video-based fall detection application takes a video stream as
the input and recognizes if there is a human falling based on a given neural network. Due
to the latency and privacy requirements, such applications are best deployed in an edge
environment. In order to avoid the edge server becoming the inference bottleneck of all the
edge intelligent applications, it is better to distribute the background inferencing task to
other edge devices.

As illustrated in Figure 1, after a user deploys a fall detection application in the edge
environment through a user interface, the edge server will extract the neural network
inferencing task and the corresponding neural network. It partitions and dispatches the
neural network according to the current status of each edge device, such as the smart
camera, the smart speaker, and the sweeping robot in Figure 1. Then, the neural network
is divided into three parts in this example, i.e., p1, p2, and p3, and deployed to the smart
camera, the smart speaker, and the sweeping robot, respectively. All these selected devices
will cooperate to complete a further distributed inferencing process without the edge server.
Specifically, the smart camera will run the partition p1 and send its output to the smart
speaker as the input of partition p2. The sweeping robot, in turn, performs the partition p3
after receiving the smart speaker’s output, then outputs the recognized result.

As a group of edge devices will cooperate in executing a single DNN, an edge device
must receive an input from a preceding device, perform the inferencing task, and deliver the
output to the next device. Suppose the DNN model is divided into n pieces and deployed
to n different edge devices. Using pi (i = 1, 2, . . . , n) to represent a sub-model of a given
DNN and dj(j = 1, 2, . . . , n) to represent a selected device, if a sub-model pi is deployed to
a device dj, the corresponding execution time ti,j is defined as

ti,j = tci,j + tri + tsi (1)

where tci,j is the time of executing sub-model pi on device dj, and tri and tsi are the time for
receiving the input of pi and sending the output of pi, respectively. If tti is used to represent
the total transmission time, then tti = tri + tsi and ti,j = tci,j + tti.

In addition, because not all sub-models can run directly on any edge device, it also
needs to consider whether an edge device can complete a specific inferencing task according
to its current state. For example, it is necessary to determine that the available memory is

Appl. Sci. 2022, 12, 10619 4 of 14

enough and its remaining battery capacity is sufficient. Suppose mj is the size of available
memory on device dj and rmi is the required memory for running sub-model pi. If pi can
be executed on device dj, the following inequality must be true.

rmi ≤ mj (2)

Similarly, if epj is the average running power of device dj and cj is the remaining battery
capacity on device dj, then if pi can be executed on device dj, the following inequality must
be true.

epj × ti,j ≤ cj (3)

Above all, the DNN partitioning problem is formulated as a constrained optimization
problem, trying to minimizing the total execution time of the DNN inferencing under given
limitation of edge devices’ available memory and energy. The corresponding objective
function is formulated as follows:

min
n

∑
i=1

n

∑
j=1

αi,j × ti,j

s.t.



rmi ≤ mj αi,j = 1,
epj × ti,j ≤ cj αi,j = 1,

∑n
i=1 αi,j = 1 ∀j ∈ {1, . . . , n},

∑n
j=1 αi,j = 1 ∀i ∈ {1, . . . , n},

αi,j ∈ {0, 1} ∀i, j ∈ {1, . . . , n}.

(4)

Here, αi,j is a coefficient to indicate whether model pi will be assigned to device dj
and the value of αi,j is either 0 or 1. When αi,j = 1, model pi will be assigned to device dj.
Otherwise, model pi will be assigned to other device rather than dj. Assume that the model
will be divided into n parts, and each part will be uniquely deployed to one specific device,
then for any device dj(j = 1, 2, . . . , n), the equation ∑n

i=1 αi,j = 1 is reasonable; the same is
true for any sub-model pi(i = 1, 2, . . . , n), ∑n

j=1 αi,j = 1. All of these αi,j(∀i, j ∈ {1, . . . , n})
form an n-by-n matrix. The goal is to achieve a specific matrix with the shortest execution
time under the constraints of memory and energy consumption.

Figure 1. Illustration of a distributed DNN inference by collaboration between multiple edge devices.

4. The Proposed Genetic Algorithm

Genetic algorithms (GA) are a method of searching for an optimal solution by simu-
lating the natural evolution process. When solving complex combinatorial optimization
problems, GA can usually obtain better optimization results faster than some conventional
optimization algorithms. This section will first analyze the problems that face the basic
genetic algorithm when solving the optimization problem formulated in the previous

Appl. Sci. 2022, 12, 10619 5 of 14

section. On this basis, it puts forward the ideas for the improvements in this work and then
describes the corresponding algorithms in detail.

4.1. Problems of Applying Basic GA for DNN Partitioning

The chromosome coding scheme is the fundamental element of GA. In solving the
above DNN partitioning problem, assume that each chromosome represents an actual
distributed deployment solution. Suppose the required DNN model has l layers, which
will be divided into n(n ≤ l) pieces and deployed to n different edge devices. To ensure
that each sub-model contains only continuous layers to avoid extra data transmission costs,
this study constructs a matrix of n rows and l columns to represent a specific deployment
scheme, i.e., a chromosome in the GA. For example, the following matrix denotes the
deployment scheme that partitions a DNN model with seven layers into three parts and
distributes it to three different devices.

c =

1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 1

 (5)

If Li is the ith (i = 1, 2, . . . , l) layer in a given DNN model, this chromosome represents
that L1 and L2 will be divided into a group and deployed on device d1, L3, L4 and L5 will
be divided into a group and deployed on device d2, and L6 and L7 will be divided into a
group and deployed on device d3.

The basic process of GA starts with generating an initial population, i.e., a set of
chromosomes following the above coding scheme. Then, it will run through the loop, in-
cluding individual evaluation, selection, crossover, and variation, until satisfying the given
termination condition. The cross operation plays a core role in GA, which acts on a group
of chromosomes and generates new individuals by replacing part of the chromosomes of
two father-generation individuals. Figure 2 shows a simple example of computation in a
partially mapped crossover operator.

Figure 2. Illustration of the computing process in the partially mapped crossover operator.

In Figure 2, C1 and C2 are the two father individuals, while C11 and C21 are two new
individuals generated by swapping the subsections in each father individual included in the
rectangles. It is not difficult to find that the assumption that each sub-model only contains
continuous layers is broken during the above crossover operation. For example, layers
L2 and L5 are grouped together and deployed to device d2 in the left new individual C11,
while layers L2, L5, and L6 are grouped together and L1, L3 and L4 are grouped together
in the right new individual C21. Such deployments will lead to extra network bandwidth
and equipment energy consumption caused by repeated transmission between devices.
For example, if deploying the DNN according to C11, the output of L1 will be sent from d1
to d2, and then the output of L2 will be sent back from d2 to d1. In turn, the output of L4
will be sent from d1 to d2 again. As a result, the intermediate results need to be transferred
four times among the three devices, twice as many as deployed according to C1.

Appl. Sci. 2022, 12, 10619 6 of 14

4.2. The Proposed Improvement

To ensure reasonable individuals that only group continuous layers together after
crossover and mutation, this work proposes to distinguish partitioning and deployment
by constructing two-layer chromosomes, i.e., partitioning chromosomes and deployment
chromosomes. A partitioning chromosome represents a certain partitioning scheme and
a deployment chromosome represents a specific deployment scheme. Figure 3 shows an
example of the relationship between a DNN structure, a partitioning chromosome, and a
deployment chromosome.

Figure 3. An example the relationship between a DNN structure, a partitioning chromosome and a
deployment chromosome.

In Figure 3, there is a DNN with seven layers. A partitioning chromosome is rep-
resented by a one-dimensional vector whose length is l − 1 (l is the number of layers
in a given DNN model), and each gene is a possible cut point. The given partitioning
chromosome represents that the DNN is divided into three parts by splitting at the end of
L2 and L5. According to this partitioning scheme, a group of corresponding deployments
can be generated. The meaning of the example deployment chromosome in Figure 3 is the
same as introduced in the above section.

Based on the description above, there is a one-to-many relationship between the parti-
tioning chromosome and the deployment chromosome. Especially if there are n devices to
participate in the collaborative inferencing, there would be n! different deployment chro-
mosomes generated from one partitioning chromosome. Conversely, only one partitioning
chromosome can be abstracted from a given deployment chromosome. The detail of the
conversion algorithms between partitioning chromosomes and deployment chromosomes
are presented in Algorithms 1 and 2 as below.

Algorithm 1 begins with initializing two empty sets DC_lines and DC to store possible
lines in a deployment chromosome and the required number of deployment chromosomes,
respectively. Then, all possible lines for a deployment chromosome are constructed through
lines 4 to 15. Then, the loop from lines 16 to 19 composed these possible lines in a random
order to construct n specific deployment chromosomes which make up the deployment
chromosome set DC.

Extracting a partitioning chromosome from a given deployment chromosome is more
straightforward than generating deployment chromosomes based on a given partitioning
chromosome. As shown in Algorithm 2, it only needs to read through the input deployment
chromosome and compare whether every two adjacent elements are the same or not (see
the for loop in Algorithm 2). If the two adjacent elements are the same, append a ′0′ to
the vector pc. Otherwise, append a ′1′ to pc (see the if-else statement in Algorithm 2).
At last, after checking the last pair of elements, the corresponding partitioning chromosome
is achieved.

Appl. Sci. 2022, 12, 10619 7 of 14

Algorithm 1: Deployment Chromosome Generation Algorithm
Input: a partitioning chromosome pc, the number of deployment chromosomes to

be generated n
Output: n deployment chromosomes

1 begin
2 DC_lines = {}
3 DC = {}
4 Extract all positions with 1 in pc and put these positions in a vector P
5 bp = 0
6 for pi ∈ P do
7 Create a vector v with len(pc) + 1 zeros
8 if pi is not the last element in P then
9 Set the value from position bp + 1 to pi in v to 1.

10 else
11 Set the value from position bp + 1 to len(pc) + 1 in v to 1.
12 end
13 Add v into DC_lines.
14 bp = i
15 end
16 for i = 0 to n do
17 Build a matrix dc by composing all vectors in DC_lines in a random order
18 Add dc into DC
19 end
20 return DC
21 end

Algorithm 2: Partitioning Chromosome Extraction Algorithm
Input: a deployment chromosome dc
Output: a partitioning chromosome pc

1 begin
2 pc = []
3 for Each line vi in dc do
4 e = vi[0]
5 for j = 1 to len(vi)− 1 do
6 if e == vi[j] then
7 Append 0 into pc
8 else
9 Append 1 into pc

10 end
11 e = vi[j]
12 end
13 end
14 return pc
15 end

On this basis, the basic GA needs to be improved in the following two aspects.

• On the one hand, the initial population generation needs to be modified according
to the above chromosome classification. The initialization process should be divided
into two steps: first, the random generation of a partitioning population. Then, the
derivation of the corresponding deployment population based on Algorithm 1.

• On the other hand, after selecting excellent individuals out of the deployment pop-
ulation, the corresponding partitioning population should be extracted based on

Appl. Sci. 2022, 12, 10619 8 of 14

Algorithm 2. Then, crossover and mutation should be performed on these partition-
ing chromosomes and corresponding deployment individuals should be selected to
produce a new deployment population.

To summarize, Algorithm 3 shows the complete framework of the improved genetic
algorithm in this paper. As mentioned above, if there are n candidate devices, each parti-
tioning chromosome can directly derive n! different deployment chromosomes. To control
the population size, the algorithm adopts a proportion pdc (0 < pdc <= 1). Then, it only
needs to generate n!× pdc deployment chromosomes for each partitioning chromosome.

Algorithm 3: The Framework of the Proposed Genetic Algorithm
Input: a DNN model description model, a performance description of a group of

candidate devices D, initial partitioning chromosome population size PCN,
the proportion of the initial deployment chromosome population pdc,
crossover probability pc, mutation probability pm, maximum number of
iterations MAXGEN, the number of consecutive occurrences of the same
optimal value SVG

Output: a deployment scheme dc
1 begin
2 n← number of candidate devices in D
3 l ← number of layers in model
4 latency[n][l]← each DNN layer’s execution times on each device in D
5 PP← randomly generate PCN partitioning chromosomes
6 population← generate n!× pdc deployment chromosomes for each

partitioning chromosome in PP
7 currentGen = 0
8 max f = 0
9 while currentGen < MAXGEN do

10 currentGen ++
11 OP = selection(population)
12 PP← extract partitioning chromosomes from OP
13 update PP through crossover and mutation
14 population← deployment chromosomes generated based on OP

conforming to PP
15 max f = max f itness(population)
16 if max f has appeared SVG times continuously then
17 break
18 end
19 end
20 return the individual that has the maximal fitness in current population
21 end

Algorithm 3 first predicts and stores the execution time of each DNN layer according
to Equation (1) for calculating individual fitness (from line 2 to line 4). Line 5 and line
6 initialize a deployment population. The while statement from line 9 to line 19 is the
main loop in the algorithm. First, line 10 updates the current number of iterations and
line 11 selects outstanding individuals from the current population to OP. Then, line 11
and line 12 extract the corresponding partitioning chromosomes from OP and perform
crossover and mutation to generate a new partitioning population PP. Line 14 constructs a
new deployment population according to OP and PP, each of which has a corresponding
partitioning chromosome in PP. In the end, the individual with the maximum fitness
in the current population is resulted through a specified number of times consecutively
as the stop condition. If so, the loop is exited. Otherwise, search is continued until
the maximum number of iterations MAXGEN is reached. Finally, the algorithm returns

Appl. Sci. 2022, 12, 10619 9 of 14

the deployment chromosome corresponding to the current maximum fitness as the final
optimal deployment scheme.

According to the optimization objectives described in Section 3, the fitness function is
defined as follows.

f itness(dc) =


105

∑n
i=1 ∑n

j=1 dci,j×ti,j
if dc satisfies all constraints

10−6 if dc does not satisfy all constraints
(6)

In the above fitness function, dc is the α matrix in the formulated problem definition
(shown in Equation (4)) for calculating the fitness of a specific deployment chromosome.

5. Performance Evaluation

This section evaluates the performance of the proposed DNN partitioning method
on four real-world CNNs. It presents experimental results and compares them to other
existing methodologies to demonstrate that the proposed algorithm can execute given
CNN inference on a group of distributed collaborative edge devices in a shorter time.

5.1. Experiment Setting

To provide a comprehensive comparison, four common CNNs designed for running
on edge devices are adopted, namely AlexNet [34], ResNet110 [35], MobileNet [36] and
SqueenzeNet [37]. All of these CNNs have a diverse number of layers, memory require-
ments, and performance. The CNN training and inferencing is based on the Cifar-10 data
set [38], which consists of 32× 32 color images divided into ten classes.

In addition, a simulated distributed system with seven devices with different configu-
rations is set up as shown in Table 1.

Table 1. Performance parameters of edge devices.

Device No. GFLOPS Battery Capacity (J) I/O Bandwidth
(MBPS)

1 0.218 250 140.85
2 9.92 20 1525.63
3 0.213 500 135.89
4 13.5 10 1698.25
5 0.247 300 140.91
6 3.62 200 159.45

To achieve the performance description of the candidate devices (D in Algorithm 3),
PALEO [39] is adopted, which is an analytical performance model that can efficiently and
accurately model the expected scalability and performance under a given deployment
assumption. Based on PALEO, the memory requirements and execution time of different
DNN layers on each given device are evaluated. In PALEO, the execution time of a single
DNN layer consists of the time it takes to receive input from the upper layer, the time it
takes for the current layer’s computation, and the time it takes to write the output to local
memory. Based on this, the energy consumption required to perform a given layer on a
specific device is calculated by multiplying device power with execution time.

The other parameter values in Algorithm 3 are set as follows. The initial size of the
partitioning chromosome population is five. In order to ensure fairness in comparing with
the basic GA, the population size of deployment chromosomes is set to 50 fixedly, which
is the same as population size set in basic GA. In both basic GA and the improved GA,
crossover probability is 0.5, mutation probability is 0.01, the maximum iteration number
is 200, and the algorithm will be terminated when the optimal fitness value remained
unchanged for 50 consecutive generations. In basic GA, the chromosomes are generated
according to the structure shown in Section 4.1.

Appl. Sci. 2022, 12, 10619 10 of 14

The experiments are executed on a laptop with an AMD Ryzen7 5700U CPU and 16 GB
memory in a Pycharm environment. The following results are collected by running a same
algorithm ten times as a group.

5.2. Comparison of Inference Performance

In order to achieve the optimally distributed deployment scheme, the partitioning
optimization and deployment optimization are considered either separately or simulta-
neously. The following experiments first compare the inferencing delay under a given
partition scheme and then compare both inferencing delay and device average energy cost
in considering partitioning and deployment simultaneously.

5.2.1. Comparison in Considering Partitioning Optimization and Deployment
Optimization Separately

To obtain an optimal partition scheme, the experiment adopts the DNN partitioning
algorithm proposed in [13,40] to optimally divide a given DNN into two parts and calculates
the optimal deployment by exhaustive searching. The average value, maximum value,
minimum value, mode, and standard deviation are achieved by running each algorithm
ten times. In Table 2, method-1 and method-2 present partitioning DNN based on [13,40],
respectively.

Table 2. Comparison on inferencing delay (ms).

DNN Model Method Avg Max Min Mode SD

AlexNet
Method-1 49.73 92.88 20.97 20.97 35.23
Method-2 42.54 92.88 20.97 20.97 32.95

Proposed method 28.90 92.88 20.97 20.97 21.44

SqueenzeNet
Method-1 36.13 51.81 20.45 51.81 15.68
Method-2 32.99 51.81 20.45 20.45 15.36

Proposed method 30.54 52.04 20.45 20.45 14.05

MobileNet
Method-1 96.20 114.10 84.27 84.27 14.61
Method-2 93.22 114.10 84.27 84.27 13.67

Proposed method 95.86 117.41 84.27 114.10 15.11

ResNet110
Method-1 232.05 259.54 204.56 259.54 27.49
Method-2 226.55 259.54 204.56 204.56 26.93

Proposed method 220.03 254.99 204.56 233.89 16.77

In Table 2, the average inferencing time by distributing inferencing according to the
proposed algorithm is superior to other methods. In addition, the proposed algorithm
results in smaller standard deviation values for partitioning most of these CNNs, which
means the proposed algorithm is relatively more stable.

5.2.2. Comparison in Considering Partitioning Optimization and Deployment
Optimization Simultaneously

As a genetic algorithm is an approximate algorithm, it cannot ensure obtaining the
absolute optimal solution. This experiment adopts an exhaustive method to obtain the
optimal inferencing delay and energy cost in any given setting as the baseline, and then
compares the corresponding results by running basic GA and the improved GA in consider-
ing partitioning optimization and deployment optimization simultaneously. The following
experimental results are all average values from running each algorithm ten times in every
test case.

Firstly, Figure 4 shows the comparison of inferencing delay in each test case. In this
figure, each sub-picture refers to a different CNN where the horizontal axis represents
the number of partitions and the vertical axis represents the average inferencing time in
milliseconds. It demonstrates that the inferencing delay resulting from the proposed GA is
closer to the optimal value than basic GA. In addition, the trends of the proposed GA and
the optimal value are also more similar.

Appl. Sci. 2022, 12, 10619 11 of 14

(a) Comparison on AlexNet (b) Comparison on SqueezeNet

(c) Comparison on MobelNet (d) Comparison on ResNet110

Figure 4. Average Inferencing Time Comparison.

A similar conclusion can be achieved by observation of Figure 5, which compares
device average energy costs in each test case.

(a) Comparison on AlexNet (b) Comparison on SqueezeNet

(c) Comparison on MobelNet (d) Comparison on ResNet110

Figure 5. Device Average Energy Consumption Comparison.

Appl. Sci. 2022, 12, 10619 12 of 14

As a result, the proposed algorithm can produce better deployments under different
scenarios compared to the basic genetic algorithm. The performance of some solutions is
even close to the optimal deployment generated by the exhaustive method.

5.3. Comparison of Algorithm Efficiency

From the perspective of the actual running process of an intelligent application system,
as mentioned in Section 3, the usability of each edge device may keep changing. It is
necessary to dynamically divide and deploy a DNN according to the latest status of edge
devices when a request arrives. In this scenario, the algorithm’s execution time will be
accumulated to the actual system response time. Therefore, this section compares the
algorithm running time of exhaustive method, basic genetic algorithm, and the proposed
method in different deployment scenarios. Table 3 shows the detailed comparison results.

Table 3. Comparison on algorithm running-time (ms) under different scenarios.

DNN Model Number of
Partitions Exhaustive Method Improved GA Basic GA

AlexNet
3 490.43 267.20 275.46
5 7870.74 6563.56 7214.8
7 3,675,603.00 6563.56 24,991.9

SqueezeNet
3 490.97 372.15 381.81
5 41,385.8 6568.28 6713.38
6 1,476,833 11,197.10 12,572.80

MobileNet
2 485.28 231.70 268.69
3 751.76 335.14 341.12
4 29,311.00 1238.22 1357.69

ResNet110
2 530.85 269.12 381.98
3 12,665.30 1620.24 4086.40
4 5,217,793.75 7322.81 19,345.10

The above table shows that the running time of all three algorithms increases sig-
nificantly with the growing number of devices or DNN layers. However, the improved
GA needs the least time to obtain a better solution. For example, in partitioning AlexNet,
the improved GA needs about 1.84×, 1.26×, and 166.74× shorter time than the exhaustive
method in each scenario. In partitioning ResNet110 into three parts, the improved GA can
save 712.13× running time compared to applying the exhaustive method and nearly 3×
running time compared to applying the basic GA. It can be seen that when the problem
size gets larger, the propose GA has better execution efficiency.

6. Conclusions

This paper establishes a dynamic DNN partitioning and deployment system model to
represent the actual application requirements of distributed DNN inferencing in an edge
environment. On this basis, the problem of optimal deployment-oriented DNN partitioning
is modeled as a constrained optimization problem. Considering that the crossover and
mutation operators in a basic genetic algorithm may produce many infeasible solutions,
it aims to distinguish two types of chromosomes, i.e., partitioning chromosomes and
deployment chromosomes. Then, it performs the crossover and mutation operations on
partitioning chromosomes to ensure generating reasonable deployment chromosomes and
produce new deployment chromosomes based on the updated partitioning population and
the select excellent deployment individuals for the next iteration. The experimental results
show that the proposed algorithm can not only result in shorter inferencing time and lower
device average energy cost, but also needs less time to achieve an optimal deployment.

To further improve this work, a potential future research direction is to try to reduce
working on CPU by constructing proper mathematical models. In addition, 3D image-
related applications will be considered in the future.

Appl. Sci. 2022, 12, 10619 13 of 14

Author Contributions: Conceptualization, J.N. and B.Z.; methodology, J.N., H.Z. and J.L.; validation,
J.L.; investigation, J.N. and H.Z.; data curation, H.Z. and J.L.; writing—original draft preparation,
J.N.; writing—review and editing, J.N.; supervision, B.Z.; funding acquisition, B.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Project of the National Natural Science Foundation of
China: U1908212.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets can be obtained from http://www.cs.toronto.edu/~kriz/
cifar.html (accessed on 17 November 2021).

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Dec, G.; Stadnicka, D.; Paśko, Ł.; Mądziel, M.; Figliè, R.; Mazzei, D.; Tyrovolas, M.; Stylios, C.; Navarro, J.; Solé-Beteta, X. Role of

Academics in Transferring Knowledge and Skills on Artificial Intelligence, Internet of Things and Edge Computing. Sensors 2022,
22, 2496. [CrossRef] [PubMed]

2. Paśko, Ł.; Mądziel, M.; Stadnicka, D.; Dec, G.; Carreras-Coch, A.; Solé-Beteta, X.; Pappa, L.; Stylios, C.; Mazzei, D.; Atzeni, D.
Plan and Develop Advanced Knowledge and Skills for Future Industrial Employees in the Field of Artificial Intelligence, Internet
of Things and Edge Computing. Sustainability 2022, 14, 3312.

3. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

4. Murshed, M.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine learning at the network edge: A
survey. Acm Comput. Surv. 2021, 54, 1–37. [CrossRef]

5. Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
6. Liang, X.; Liu, Y.; Chen, T.; Liu, M.; Yang, Q. Federated transfer reinforcement learning for autonomous driving. arXiv 2019,

arXiv:1910.06001.
7. Zhang, Q.; Sun, H.; Wu, X.; Zhong, H. Edge video analytics for public safety: A review. Proc. IEEE 2019, 107, 1675–1696.

[CrossRef]
8. Liang, F.; Yu, W.; Liu, X.; Griffith, D.; Golmie, N. Toward edge-based deep learning in industrial Internet of Things. IEEE Internet

Things J. 2020, 7, 4329–4341. [CrossRef]
9. Qolomany, B.; Al-Fuqaha, A.; Gupta, A.; Benhaddou, D.; Alwajidi, S.; Qadir, J.; Fong, A.C. Leveraging machine learning and big

data for smart buildings: A comprehensive survey. IEEE Access 2019, 7, 90316–90356. [CrossRef]
10. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A survey of model compression and acceleration for deep neural networks. arXiv 2017,

arXiv:1710.09282.
11. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive

survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]
12. Choudhary, T.; Mishra, V.; Goswami, A.; Sarangapani, J. A comprehensive survey on model compression and acceleration. Artif.

Intell. Rev. 2020, 53, 5113–5155. [CrossRef]
13. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the

cloud and mobile edge. ACM Sigarch Comput. Archit. News 2017, 45, 615–629. [CrossRef]
14. Ko, J.H.; Na, T.; Amir, M.F.; Mukhopadhyay, S. Edge-host partitioning of deep neural networks with feature space encoding for

resource-constrained internet-of-things platforms. In Proceedings of the 2018 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 1–6.

15. Jeong, H.J.; Lee, H.J.; Shin, C.H.; Moon, S.M. IONN: Incremental offloading of neural network computations from mobile
devices to edge servers. In Proceedings of the ACM Symposium on Cloud Computing, Carlsbad, CA, USA, 11–13 October 2018;
pp. 401–411.

16. Jouhari, M.; Al-Ali, A.; Baccour, E.; Mohamed, A.; Erbad, A.; Guizani, M.; Hamdi, M. Distributed CNN Inference on Resource-
Constrained UAVs for Surveillance Systems: Design and Optimization. IEEE Internet Things J. 2021, 9, 1227–1242. [CrossRef]

17. Tang, E.; Stefanov, T. Low-memory and high-performance CNN inference on distributed systems at the edge. In Proceedings of
the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion, Leicester, UK, 6–9 December 2021;
pp. 1–8.

18. Zhou, J.; Wang, Y.; Ota, K.; Dong, M. AAIoT: Accelerating artificial intelligence in IoT systems. IEEE Wirel. Commun. Lett. 2019,
8, 825–828. [CrossRef]

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://doi.org/10.3390/s22072496
http://www.ncbi.nlm.nih.gov/pubmed/35408110
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1145/3469029
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/JPROC.2019.2925910
http://dx.doi.org/10.1109/JIOT.2019.2963635
http://dx.doi.org/10.1109/ACCESS.2019.2926642
http://dx.doi.org/10.1109/JPROC.2020.2976475
http://dx.doi.org/10.1007/s10462-020-09816-7
http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.1109/JIOT.2021.3079164
http://dx.doi.org/10.1109/LWC.2019.2894703

Appl. Sci. 2022, 12, 10619 14 of 14

19. Zhou, L.; Wen, H.; Teodorescu, R.; Du, D.H. Distributing deep neural networks with containerized partitions at the edge. In
Proceedings of the 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19), Renton, WA, USA, 9 July 2019.

20. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. Deepthings: Distributed adaptive deep learning inference on resource-constrained iot
edge clusters. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2348–2359. [CrossRef]

21. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE
Trans. Wirel. Commun. 2019, 19, 447–457. [CrossRef]

22. Wang, H.; Cai, G.; Huang, Z.; Dong, F. ADDA: Adaptive distributed DNN inference acceleration in edge computing environment.
In Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, 4–6
December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 438–445.

23. Gao, M.; Cui, W.; Gao, D.; Shen, R.; Li, J.; Zhou, Y. Deep neural network task partitioning and offloading for mobile edge
computing. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13
December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

24. Mao, J.; Chen, X.; Nixon, K.W.; Krieger, C.; Chen, Y. Modnn: Local distributed mobile computing system for deep neural network.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31
March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1396–1401.

25. Mao, J.; Yang, Z.; Wen, W.; Wu, C.; Song, L.; Nixon, K.W.; Chen, X.; Li, H.; Chen, Y. Mednn: A distributed mobile system with
enhanced partition and deployment for large-scale dnns. In Proceedings of the 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 751–756.

26. Shahhosseini, S.; Albaqsami, A.; Jasemi, M.; Bagherzadeh, N. Partition pruning: Parallelization-aware pruning for deep neural
networks. arXiv 2019, arXiv:1901.11391.

27. Kilcioglu, E.; Mirghasemi, H.; Stupia, I.; Vandendorpe, L. An energy-efficient fine-grained deep neural network partitioning
scheme for wireless collaborative fog computing. IEEE Access 2021, 9, 79611–79627. [CrossRef]

28. Hadidi, R.; Cao, J.; Woodward, M.; Ryoo, M.S.; Kim, H. Musical chair: Efficient real-time recognition using collaborative iot
devices. arXiv 2018, arXiv:1802.02138.

29. de Oliveira, F.M.C.; Borin, E. Partitioning convolutional neural networks for inference on constrained Internet-of-Things
devices. In Proceedings of the 2018 30th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), Lyon, France, 24–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 266–273.

30. Mohammed, T.; Joe-Wong, C.; Babbar, R.; Di Francesco, M. Distributed inference acceleration with adaptive DNN partitioning
and offloading. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON,
Canada, 6–9 July 2020; IEEE: Piscataway, NJ, USA,2020; pp. 854–863.

31. He, W.; Guo, S.; Guo, S.; Qiu, X.; Qi, F. Joint DNN partition deployment and resource allocation for delay-sensitive deep learning
inference in IoT. IEEE Internet Things J. 2020, 7, 9241–9254. [CrossRef]

32. Tang, X.; Chen, X.; Zeng, L.; Yu, S.; Chen, L. Joint multiuser dnn partitioning and computational resource allocation for
collaborative edge intelligence. IEEE Internet Things J. 2020, 8, 9511–9522. [CrossRef]

33. Dong, C.; Hu, S.; Chen, X.; Wen, W. Joint Optimization With DNN Partitioning and Resource Allocation in Mobile Edge
Computing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3973–3986. [CrossRef]

34. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25. [CrossRef]

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

36. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

37. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360.

38. Krizhevsky, A.; Hinton, G.; Learning Multiple Layers of Features from Tiny Images; Technical Report, University of Toronto, Toronto,
ON, Canada, 2009.

39. Qi, H.; Sparks, E.R.; Talwalkar, A. Paleo: A performance Model for Deep Neural Networks. 2016. Available online: https:
//openreview.net/pdf?id=SyVVJ85lg (accessed on 12 June 2021).

40. Tian, X.; Zhu, J.; Xu, T.; Li, Y. Mobility-included DNN partition offloading from mobile devices to edge clouds. Sensors 2021,
21, 229. [CrossRef]

http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1109/TWC.2019.2946140
http://dx.doi.org/10.1109/ACCESS.2021.3084689
http://dx.doi.org/10.1109/JIOT.2020.2981338
http://dx.doi.org/10.1109/JIOT.2020.3010258
http://dx.doi.org/10.1109/TNSM.2021.3116665
http://dx.doi.org/10.1145/3065386
https://openreview.net/pdf?id=SyVVJ85lg
https://openreview.net/pdf?id=SyVVJ85lg
http://dx.doi.org/10.3390/s21010229

	Introduction
	Literature Review
	System Model and Problem Formulation
	The Proposed Genetic Algorithm
	Problems of Applying Basic GA for DNN Partitioning
	The Proposed Improvement

	Performance Evaluation
	Experiment Setting
	Comparison of Inference Performance
	Comparison in Considering Partitioning Optimization and Deployment Optimization Separately
	Comparison in Considering Partitioning Optimization and Deployment Optimization Simultaneously

	Comparison of Algorithm Efficiency

	Conclusions
	References

