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Abstract: Visual navigation is an important guidance method for industrial automated guided
vehicles (AGVs). In the actual guidance, the overexposure environment may be encountered by
the AGV lane image, which seriously reduces the accuracy of lane detection. Although the image
segmentation method based on deep learning is widely used in lane detection, it cannot solve the
problem of overexposure of lane images. At the same time, the requirements of segmentation accuracy
and inference speed cannot be met simultaneously by existing segmentation networks. Aiming at the
problem of incomplete lane segmentation in an overexposure environment, a lane detection method
combining image inpainting and image segmentation is proposed. In this method, the overexposed
lane image is repaired and reconstructed by the MAE network, and then the image is input into
the image segmentation network for lane segmentation. In addition, a convolutional skip triple
attention (CSTA) image segmentation network is proposed. CSTA improves the inference speed of
the model under the premise of ensuring high segmentation accuracy. Finally, the lane segmentation
performance of the proposed method is evaluated in three image segmentation evaluation metrics
(IoU, Fi-score, and PA) and inference time. Experimental results show that the proposed CSTA
network has higher segmentation accuracy and faster inference speed.

Keywords: lane detection; image segmentation; image inpainting; AGV

1. Introduction

Currently, AGVs are widely used in various industries such as automated production,
modern logistics warehousing, and transportation [1-3]. The guidance methods of AGV
include electromagnetic navigation, magnetic stripe navigation, laser navigation, and visual
navigation [4,5]. Among them, electromagnetic navigation needs to embed the line into
the ground in advance, which has high maintenance cost and is difficult to combine with
other navigation methods for intelligent navigation. Magnetic stripe navigation has a
similar problem. The equipment of laser navigation has a high manufacturing cost. Laser
navigation is sensitive to external light, and has high working environment requirements.
Visual navigation takes into account both low cost and high-precision navigation. Visual
navigation is divided into traditional computer visual navigation and deep learning-based
visual navigation.

Deep learning has been widely used in many fields, such as industry, intelligent
manufacturing, medical imaging, and automotive [6-9]. In this context, deep learning
has become one of the important components of AGV navigation [10]. The deep learning-
based lane detection is usually formulated as the image segmentation problem [11]. That
is, each pixel in the result of segmentation contains the label of its object class for each
input. The lane detection based on deep learning image segmentation has been widely
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used in the field of unmanned vehicle driving. However, in the field of AGV vision
line navigation, the deep learning-based image segmentation is not widely used. At
present, most of the AGV lane detection methods are based on traditional computer
vision lane segmentation and extraction algorithms [12-14], such as improved Hough
transform [15] and improved Canny algorithm [16]. Although these traditional vision-based
lane segmentation and extraction algorithms have made good progress, there is a large gap
in real-time performance, accuracy and robustness compared with deep learning methods.

In addition, the requirements of segmentation accuracy and inference speed cannot
be met simultaneously by existing image segmentation networks. These networks, such
as ERFNet [17], improve the inference speed, but their segmentation accuracy is not
satisfactory. PP-LiteSeg [18] and FLANet [19] have good segmentation accuracy, but their
real-time performance is poor. Good memory resource-saving ability is possessed by
CCNet [20], but its real-time performance is poor. CSTA segmentation network is proposed
in this paper, which has fast segmentation speed on the premise of satisfying segmentation
accuracy, and is suitable for a real-time AGV visual navigation system. However, when
the image collected by AGV has overexposed areas in the lane, all the existing image
segmentation methods cannot extract the lane completely. Aiming at the problem of image
overexposure in AGV lane detection, recent research mainly focuses on image filtering
algorithms and threshold adjustment algorithms [21,22]. When the overexposure degree
is too heavy, the existing algorithms cannot reconstruct the lane image. However, the
proposed method includes first inpainting the lane image based on deep learning, and
then performs image segmentation. By this way to extract the lane trajectory, the proposed
method achieved high accuracy in the experiment. The main objective of the work in this
paper are as follows:

1.  An AGV lane extraction method combining image inpainting and image segmen-
tation network is proposed to improve the accuracy of AGV lane segmentation in
overexposure conditions;

2. The network parameters of MAE are optimized, reduced, and verified by experiments.
On the premise of ensuring the repair quality, the inference speed of MAE model
is improved;

3. A convolutional skip triple attention network (CSTA) is designed. It meets the re-
quirements of segmentation accuracy and segmentation speed at the same time. A
lightweight backbone network is designed to improve the segmentation speed, and
the triple attention module is designed to improve the segmentation accuracy.

2. Related Works
2.1. Image Inpainting

Currently, deep learning-based image inpainting methods have become the dominant
approaches for image inpainting. Context encoders [23] is the first approach to employ
an encoder—decoder to solve the image inpainting. Currently, more and more work at-
tempts to use generative networks to solve the image inpainting problems. MNPS [24],
based on contextual encoders, maintains the structure and details of the missing regions
through joint optimization of content and texture networks. GL [25] ensures global and
local consistency by introducing global and local contextual discriminators. In addition,
some approaches introduce special modules to flexibly extract features. Shift-Net [26]
introduces a shift-connected layer in U-Net [27] to fill missing regions of varied shapes with
sharp structures and fine textures. SDCGN [28] adds a huge number of skip connections
in a symmetric codec set to maximize the semantic extraction process. EdgeConnect [29]
accomplishes image inpainting by dividing the problem into edge connection and image
complementation. MAE [30] acquires information from the masked regions of the image
and reconstructs the original signal based on that. Unlike ordinary self-encoders, MAE uses
an asymmetric coding structure where the input to the encoder is only a small partially
unmasked region. Moreover, the decoder reconstructs the original signal after adding the
position information of the masked region. Some approaches, such as the contextual atten-
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tion module [31], the multiscale attention module [32], the attention transfer network [33],
and the learnable bidirectional attention mechanism [34], include varied attention modules,
using features from the context as adaptive references.

2.2. Lane Detection

Due to the successful application of deep learning in computer vision, the research
of lane detection has shifted from conventional CV methods to deep learning methods.
There are two main deep learning-based methods: (1) row-wise classification method, (2)
segmentation-based method.

Row-wise classification method: The row classification method for lane detection
is based on the grid segmentation of the input image. The model predicts the cell that
is most likely to contain a portion of the lane marks for each row. The approach was
first proposed in E2E-LMD [35] and achieved more accurate results on two datasets. In
UFAST [36], the row classification method can achieve a high speed only at a limited loss
of accuracy. However, the result may be wrong in the cases of two lanes in the image while
the method can only identify one cell in each row. In addition, the performance of the
line classification method depends on the number of the subdivision of the lane. It is also
difficult to determine the shape of the lane accurately.

Segmentation-based detection method: This approach is to classify each pixel, as lanes
or background. SCNN [37] presented a segmentation scheme for long and continuous
shapes and its effectiveness of segmentation in a real application. However, the complicated
network structure leads to its slow inference, which makes it less applicable in practical
scenarios. A self-attention refinement module is proposed in CNNs [38] to aggregate
context, which uses a lightweight neural network to improve the real-time performance
while ensuring segmentation performance. In CurveLane-NAS [39], a curved lane detection
algorithm combined with NAS is proposed to capture the global coherence features. The
local curvature features of lanes for long lanes are extracted to solve problems in the curved
lane detection. Although curved lanes can be clearly identified, the computation time
is too long. While ERF-Net [17] guarantees the segmentation accuracy, it also ensures
the processing speed in real time. CCNet [20] proposes a crisscross attention module for
high-density context acquirement, which can obtain the image context from each pixel. The
complete inter-pixel dependency relationship of image can be finally obtained to improve
CCNet to achieved good results in the segmentation task. FLANet [19] reformulates the
self-attention mechanism into a fully attentional manner. FLANet can harvest feature
responses from all other channel maps, and the associated spatial positions as well, through
a novel fully attentional module. FLANet encodes both spatial and channel attentions in a
single similarity map while maintaining high computational efficiency. It effectively solves
the problem of lack of attention in the segmentation process.

3. Methods
3.1. Data Preprocessing

The image data preprocessing is shown in Figure 1. The overexposed region of the im-
age should be marked and fed into the image inpainting module to conduct the restoration.
Therefore, the overexposed region in the lane image needs to be obtained automatically
from the input image. Due to the convenience and low computational complexity of
threshold binarization, this method is utilized to label the overexposed region.

In this study, the lane image captured by the camera is converted to a grayscale image
firstly. The converted grayscale image is compared with the preset threshold. Therefore,
a 0-1 matrix with the same size of the original image can be obtained. Considering the
influence of noise on binarization processing, the erosion and expansion [40] are used to
filter the preliminary binarization result. The filtered binarization result is divided into
14 x 14 equal-size image patches. After the binarization, the output image should be judged
whether it is an image with a unique value. Every patch is labeled as an overexposed patch
and properly exposed patch according to the number of pixels with the value of 1. If the
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number of 1 s in some patch exceeds the threshold, the patch is labeled as overexposed
patch. If the output image is an image with a unique value, there is no overexposed region
existing in the image. Finally, the serial numbers of these overexposed mask patches are
recorded in the Id Store matrix for subsequent image inpainting networks. Moreover, the
binarized image should be sent into image inpainting module. Figure 2 shows an example
of the marked overexposed region.

Inpaintin g Lane
Module Segmentatmn J” Output

Threshold

InpU’t binarization

Figure 1. Data preprocessing procedure.

Erosion and Generate Inpainting \
Expansmn \ mask area display
_—

Figure 2. The result of marked overexposed region.
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3.2. Image Inpainting Module

The image inpainting module is used to restore the overexposed region in the original
image to improve the quality of lane segmentation. In the proposed method, MAE, which
is a scalable self-supervised learning scheme applied to computer vision, is adopted as the
network of image inpainting module. The architecture of MAE is shown in Figure 3.

As Figure 3 shows, the architecture of MAE is an asymmetric encoder—decoder struc-
ture [30]. To preserve position information, the encoder position embeddings and decoder
position embeddings are initialized by the 2D sine—cosine method. The size of encoder
position embeddings is m X e and the size of decoder position embeddings is m x d. The
input image is divided into n X n patches in horizontally and vertically, m =n X n; e and
d are the numbers of nodes of a single patch vector of encoder and decoder position em-
beddings. The input of the MAE encoder includes the original image, the encoder position
embeddings, and the Id Store matrix. The image is reshaped and linearly transformed into
anm X e sequence of patch vectors by the encoder. Then the sequence of patch vectors
is added to the encoder position embeddings. The information of image and position
are merged. The sequences set of unmasked patches in properly exposed regions can be
obtained from the Id Store matrix. The properly exposed patch vectors in the merged
embeddings are selected and input into the Transformer encoder blocks [41]. The encoded
latent vectors are finally output by the MAE encoder. The size of encoded latent vectors is
n X e, where n represents the number of unmasked patches.

The input of the MAE decoder includes encoded latent vectors, decoder position
embeddings, and Id Store matrix. The encoded latent vectors are linearly transformed into
n x d by the MAE decoder. Next, an (m — n) x d vector set of mask tokens is initialized by
the MAE decoder, and each mask token is a learnable vector. Mask tokens and encoded
latent vectors are concatenated by the decoder. The size of the concatenated sequence
of vectors is m x d. The unmasked patches vectors are restored to their corresponding
positions, and the complete set of tokens is output. The complete set of tokens and decoder
position embeddings are added and input into Transformer decoder blocks. The masked
patch vectors in the tokens set are reconstructed by Transformer decoder blocks. The
m X d vector sequence is output by Transformer decoder blocks, containing n X n patch
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vectors. Then the vector sequence is linearly transformed and reshaped to obtain the
reconstructed image.
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Figure 3. MAE architecture.

In the basic MAE model, the number of layers in the Transformer encoder block
is 12 and the number of layers in the Transformer decoder block is 8. Deeper network
layers can make the model have better generalization ability and can adapt to a variety of
application scenarios. However, the model parameters and inference time increase. The
application scenario in the manuscript is relatively single, which is only used for the repair
work of AGV lanes. The application scenarios do not require high generalization ability of
the model. So too, deep network layers are not needed. Since the application scenario of
the model is a real-time lane detection and navigation system, the real-time requirement
of the model is high. Under the premise of meeting the segmentation requirements, the
complexity of the network should be reduced as much as possible to speed up the model
inference time. A comparative experiment was set up to verify the impact of different
number of Transformer blocks on the inpainting effect.

The reduced model was compared with Transformer blocks 12-8. Transformer blocks
were set to 6-4 and 3-2, respectively. The comparison results are shown in Figure 4. Exper-
imental results show that the reduction in Transformer blocks from 12-8 to 6-4 has little
impact on the inpainting effect. However, the reduction in Transformer blocks from 6-4
to 3-2 has a large impact on the repair results. As can be seen from Figure 4, the edges of
the picture with Transformer blocks of 3-2 are too blurred and not clear enough, which
affects the effect of image segmentation. The inpainting effect of Transformer blocks 6-4
is not significantly different from that of Transformer blocks 12-8. Transformer blocks 6-4



Appl. Sci. 2022,12, 10675

60of 17

can simultaneously meet the requirements of inference speed and image segmentation. So,
6-4 Transformer blocks are selected for the proposed method. The average inference time
of three Transformer blocks with a different number of layers was also calculated. The
average inference time of Transformer blocks 12-8 is 17.80 ms; the average inference time
for Transformer blocks 6-4 is 9.78 ms; the average inference time for Transformer blocks 3-2
is 5.48 ms. It can be concluded that 6-4 is the best choice for this study in order to balance
inference time and repair quality.

Original  Transformer Transformer Transformer
blocks 3-2  blocks 6-4  blocks 12-8

Figure 4. Impact of different Transformer blocks on image inpainting results.

3.3. CSTA Network Structure

The structure of the proposed CSTA is shown in Figure 5. The encoder consists of
4 convolution modules. The decoder consists of 4 deconvolution modules and 3 attention
modules. The main function of the encoder is to down-sample the image to extract its
features. The input is the lane image restored by MAE and the size is 3 x 224 x 224. The first
two encoder modules have the same structure, consisting of one convolutional layer with a
kernel size of 3 x 3, one nonlinear layer, and one max-pooling layer. The following two
encoder modules consist of two convolutional layers, two nonlinear layers, and one max-
pooling layer. The size of the convolution kernel is also 3 x 3. The convolutional layer is
used to extract features. The function of the max-pooling layer is to retain the main features
while reducing the size of the data. The network doubles the number of feature channels
with each down-sampled module. The encoder finally outputs a 512 x 14 x 14 high-level
feature map.

‘ Conv 3x3—~Relu—~Max-pooling ' Conv 3x3—~Relu— Conv 3%3— Relu—~Max-pooling

'DeConv 3x3—+Relu—~BN ﬁ Conv 1x1 - Attention Block ---+ Skip connection

Figure 5. CSTA network structure diagram.



Appl. Sci. 2022,12, 10675

7 of 17

The decoder performs the up-sampling process, which compresses the number of
feature map channels through the deconvolution layer and enlarges the size. The size of
the kernel of the deconvolution layer is 3 x 3. After the feature image passes through
the nonlinear layer and batch normalization (BN) layer, the corresponding feature layer
in the down-sampling process is synchronously input into the attention module through
skip connection.

There are two reasons for using skip connections here. First, as the network deepens,
the image may lose some details, which are difficult to be recovered if only deconvolution
is used in the up-sampling process. The feature maps transmitted through skip connections
contain a lot of detailed information, which helps to improve the image quality during
the up-sampling deconvolution process. Secondly, Skip connections can speed up model
convergence and make network training easier when using gradient backpropagation. The
feature maps are up-sampled by 4 deconvolution modules and 3 attention modules. After
up-sampling, the size of the feature maps is changed to 32 x 224 x 224. Finally, the feature
maps go through a 1 x 1 convolutional layer to outputa 1 x 224 x 224 single-channel lane
segmentation image.

The segmentation of narrow lanes in the far field of view is incomplete and the effect of
general image segmentation is not ideal. Due to the better effect of the attention mechanism
in the field of image processing and image enhancement, the triple attention module is
designed to improve the segmentation ability of the proposed CSAT network. With the help
of the attention module, the blurred edges in the image can be well-segmented and the noise
can be effectively reduced. At the same time, more key features can be extracted for and the
robustness of the network model can be enhanced. The proposed triple attention modules
are Attention Gate (AG), Channel Attention (CA), and Spatial Attention (SA), respectively.

The schematic diagram of the triple attention module is shown in Figure 6. The AG
module in the triple attention module first process the data. The AG module is used to
analyze context and drive the network to pay more attention to local regions by scaling
the attention coefficients. The down-sampled feature map is fed into the Attention Gate of
the up-sampling process through skip connections, while the corresponding up-sampled
feature map is used as another input of the Attention Gate. After the two feature maps
undergo 1 x 1 convolution and one layer of BN, the size of image is changed from C x W
x Hto C/2 x W x H. Both results conduct the element-wise adding. The down-sampled
and up-sampled feature maps are first fused to retain part of the features obtained by
convolution. Then, the feature maps go through Relu, 1 x 1 convolution, and BN layers
to output a feature vector of size 1 x W x H. The semantically enriched high-level image
features obtained by the convolution is stored in the feature vector. The original down-
sampled feature map and feature vector conduct the element-wise product. AG finally
outputs a high-level feature map with attention weights.

Channel

. 1
Attention i‘

L—

_ Upsampling feature map ’ Downsampled feature map €D Element-wise add ) Element-wise product

Figure 6. Schematic diagram of triple attention module structure.
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There are different types of semantic features between the interior of the feature map.
Moreover, the features have different weights on the effect of image segmentation. The
feature map output by AG goes through a 3 x 3 convolutional layer, batch normalization
layer, Relu, and is divided into two branches. One branch is fed to CA and the other branch
is fed to SA. The CA and SA are combined with adaptive modulation feature representation
to obtain more relevant semantic features. Element-wise product is conducted on the
outputs of the CA and SA modules. The channel and spatial features of the feature map are
fused to output the weights of spatial attention and channel attention. The element-wise
product is conducted by the output feature map by AG and the output weights by CA and
SA. The feature map with high correlation is obtained. The output high-level feature maps
by AG and the output high-relevance feature maps by the two attention modules are fused.
Finally, the sigmoid activation function is passed by the attention module, and the output
result of the attention module of size C x W x H is obtained.

The structure of the CA module is shown in Figure 7a. The role of the CA module
is to globally extract important features. The weights of each channel of the input image
are calculated through the network, focusing on the channels containing key information.
The input of the CA module is a feature map with the size of C x W x H. In order to
assign different attentions to different types of feature maps, each feature channel of the
feature map along with the spatial dimension H x W is adopted separately. For global
max pooling and adaptive global average pooling operations, the specified output size is
1 x 1 and the number of channels remains the same. The feature vectors with the size of
C x 1 x 1 are obtained. In the first layer of convolution, a ratio y is adopted to change the
number of channels (yC X 1 x 1). v is a hyperparameter. Its value is set to 16. The number
of convolution kernels of the second convolution is the original number of channels, and the
size of the feature map is converted to the previous number of channels. Finally, through
the sigmoid activation function, a vector of C x 1 x 1 is obtained.

’r

Cx1x1

Channel Attention

y 4

Van)
€

@
Spatial Attention

=
B

(b)

s

1xWxH

Figure 7. The structure schematic diagram of channel attention and spatial attention module. (a) The
details of channel attention module; (b) the details of spatial attention module.

The structure of the SA module is shown in Figure 7b. The information contained in
the feature map varies depending on the spatial location. In order to better distinguish
the foreground and background regions in the image, it is necessary for the network to
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distinguish different local regions and better suppress noise and redundant features. On
this basis, the SA module is used to enhance the representation ability of the network,
making full use of the global information and focusing on the regions of interest in the
feature map. The input to the SA module is a feature map of size C x W x H. The mean and
maximum value of the feature map are calculated based on dim =1, and two 1 x W x H
feature maps are obtained. The information is merged through the concatenation. After
merging, a 7 X 7 convolution is used to compress and reconstruct the channels to complete
the feature interaction. Finally, through the sigmoid activation function, the feature map of
1 x W x H spatial attention is obtained. In the spatial attention module, local features are
combined with global features to help improve the network generation ability.

4. Experiments and Results
4.1. Dataset Construction

The dataset used for network training is the indoor lane dataset captured by the
CMOS camera in varied illumination conditions. The camera is Sony IMX219 (pixel: 800,
CMOS size: 1/4-inch, aperture: 2.0, focal length: 2.2 mm, size: 32 mm X 32 mm). The lane
dataset contains a total of 6000 images. The colors of the lane are red, yellow, and blue.
The background color is white. The ratio of lanes in colors is 1:1:1. The constructed lane
dataset contains a variety of different illumination scenarios. The illumination scenarios
are with the uniform natural light, uniform indoor illumination, strong sunlight, and
strong flashlight. The resolution of all the images in the dataset is 224 x 224 and the lane
images captured by the camera are manually labeled. The training dataset includes 15%
overexposed images and 85% properly exposed images

The testing datasets are also collected in a variety of illuminating environments. There
are two types of testing datasets in the experiment, which are properly exposed images
and overexposed images. In addition, properly exposed images for the same camera and
viewing field as the overexposed images are also collected. In the following experiments,
two testing datasets are employed to verify the segmentation of the network. One contains
only properly exposed images, and the other includes 15% overexposed images and 85%
properly exposed images.

As shown in Figure 8, the images in the first column are properly exposed images, such
lane images, which are clear and complete. Properly exposed images are used as a dataset
in a properly exposed environment. The images in the second column are the lane images
collected in the overexposed environment. The lane images of this kind are seriously
defective, and the image cannot be completely extracted by the existing segmentation
methods. All overexposed lane images have properly exposed images acquired with the
same camera view. Labels of properly exposed lane images can be obtained by labeling all
properly exposed images. These labels also apply to overexposed images from the same
camera view. Labels are used to verify the lane segmentation results in the overexposed
and properly exposed environments.

Properly exposed Overexposed Label
[ [—

/

=

Wl

Figure 8. Samples of the constructed lane dataset and the manual label.
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4.2. Loss Function

In the training process, the binary cross-entropy loss (BCE Loss) is used as the loss
function of the network. The training Epoch is 800. The initial learning rate (LR) is 0.01.
The weight decay is 10-4. The optimizer uses the SGD optimizer with momentum. The
momentum value is 0.7. The loss function is used to estimate the difference between the
training segmentation label and the actual segmentation result. When the value of the
loss function decreases, the difference between the labels and actual segmentation results
becomes smaller. The loss can be expressed as:

1 N
loss = N,;ln 1)

Here, represents the loss of a single sample, which is expressed as:
ln = —wlyn -logxy + (1 — yu) -log(1 — x,)] )

where x; represents the actual segmentation result of the nth sample, and y, represents
the training segmentation label. w is set to 1 for single-label binary classification. The loss
curve is used to explain the optimization process during the training process. The loss
curve in the training process of CSTA is shown in Figure 9. As Figure 9 shows, with the
increase in the epoch, the value of the loss function decreases. Moreover, when the epoch
is more than 300, the loss function curve tends to be stable. The whole training process is
relatively stable, which meets the requirements of training.

0.6

0.5 1

0.4 1

0.3 1

Loss

0.2 1

0.1

| U Y el

0.0 4

‘ . . ‘ . . . .
0 100 200 300 400 500 600 700 800
Epoch

Figure 9. The loss curve of CSTA in the training process.

The network model proposed in this paper is implemented using the PyTorch1.8.1 frame-
work, and the mobile version of NVIDIA GeForce RTX2070 is used for accelerated operations.

4.3. Experiment Result

The visual segmentation effects are shown in Figures 10 and 11. The figures show
almost all methods perform well in noise suppression. Compared with other segmentation
methods, the proposed method has great advantages in terms of lane edges and details.
The alleys in the field of view can become slender when the driveway tends to curve. The
proposed method can completely segment the lane without distortion, which is superior to
other methods in terms of accuracy and precision. This elongated part of the lane is the
key to the navigation prediction when the vehicle makes a turn. Accurate prediction of the
slender lane ahead endows the system with more reaction time.
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Figure 10. Lane segmentation with proper exposure.

Original ground CCNet ERFNet  PP-LiteSeg FLANet  Proposed
image

/

Figure 11. Lane segmentation with overexposure.

As shown in Figure 11, the proposed network has clear advantages for overexposed
images. The lanes in overexposed regions restored by other methods appear incomplete,
disconnected, and severely distorted. The proposed method can accurately segment the
lanes after MAE reconstruction, and maintain coherence when the distant lanes are thin
and narrow.

Performance Evaluation Metrics: The performance of the CSTA network is evaluated
by three common quantitative metrics for image segmentation:

(1) Pixel Accuracy (PA) is used to evaluate the ratio of correctly predicted pixels to the
total number of pixels, which can be expressed as:

Npred TP+ TN
Ny  TP+TN+EP+EN

PA = (©)]
where Ny, is the number of correctly predicted pixels, Ny is the total number of pixels, TP
is the number of positive samples to be predicted as positive, TN is the number of negative
samples to be predicted as negative, FP is the number of negative samples to be predicted
as positive, and FN is the number of positive samples to be predicted as negative;

(2) Since the boundaries of overexposed images are blurred after inpainting, F;-score
is used to evaluate the quality of segmentation boundaries. F;-score refers to the
average evaluation of Precision and Recall. The formula can be expressed as:

Precision x Recall
Fr=2x Precision + Recall )
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.. TP
Precision = TP TP 5)
TP
Recall = ———~
O = ENF TP ©)

(38) Intersection over Union (loU) is used to evaluate whether the lane region can be
accurately segmented by the network. That is, the intersection ratio of the predicted
samples and the actual samples, which can be expressed as:

B TP
" TP+ FP+FN

In addition, the inference speed indicator fwt is added to calculate the time it takes to
output the final result from an image. The processing of properly exposed and overexposed
images is different. There is no preprocessing for image inpainting for properly exposed
images. Therefore, in the calculation of the fwt of overexposed images, only overexposed
images are selected for testing, and the mean of their fwts is calculated. In practical
applications, there are relatively few cases of overexposure. The average inference speed of
the system is much faster and the average time cost is much smaller than this value.

The performance of the proposed method is quantitatively compared with ERF-
Net[17], CCNet [20], PP-LiteSeg [18], and FLANet [19] on IoU, F;-score, PA, and fwt. Table 1
shows the comparison results for the testing dataset with properly exposed images. Table 2
shows the comparison results for the testing dataset with 15% of overexposed images.

ToU (7)

Table 1. Comparison of segmentation evaluation results in proper exposure.

Method IoU F1-Score PA fwt (ms)
ERFNet 0.8009 0.8851 0.9795 19.5816
CCNet 0.7973 0.8814 0.9817 108.8108
PP-LiteSeg 0.9011 0.9474 0.9916 52.8683
FLANet 0.8967 0.9384 0.9907 39.2761
Proposed 0.9019 0.9461 0.9912 8.6956

Table 2. Comparison of segmentation evaluation results in overexposure.

Method IoU F1-Score PA fwt (ms)
ERFNet 0.7463 0.8452 0.9805 19.5031
CCNet 0.5646 0.7106 0.9674 108.3623
PP-LiteSeg 0.7052 0.8177 0.9803 53.0378
FLANet 0.7268 0.8334 0.9797 39.4803
Proposed 0.8355 0.9059 0.9889 18.5327

Table 1 shows the quantitative comparison results between the proposed CSTA seg-
mentation network and other segmentation networks on the proper exposure dataset. It
can be seen from Table 1 that the proposed network achieves satisfactory results compared
with other networks. Specifically, the proposed method has a significant improvement
in the evaluation indicators IoU, F;-score, and PA compared with ERFNet and CCNet.
Moreover, it is slightly improved compared with FLANet. Since PA represents the pro-
portion of the number of correctly predicted pixels in the total number of pixels, the
proportion of black background is high, so a small numerical fluctuation can reflect a large
gap. The performance of PP-LiteSeg on IoU, F-score, and PA is basically consistent with
the proposed CSTA, and its Fy-score and PA are slightly higher than CSTA. However, the
proposed CSTA network is much faster than other networks in fwt. It is sufficient to show
that the comprehensive performance improvement of the proposed network is significant
compared with other networks. Although the proposed network is slightly inferior to
PP-LiteSeg in some metrics, the huge improvement in inference speed makes CSTA more
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suitable for real-time application scenarios. Table 2 shows the results of quantitative com-
parison of segmentation performance between the proposed method and other methods
in overexposure environment. In the overexposure environment, the proposed method
combining image inpainting and image segmentation is compared with other segmentation
methods. Quantitative comparisons are performed on IoU, F;-score, PA, and fwt. The
quantitative comparison results of the proposed method have a huge improvement over
ERFNet, CCNet, PP-LiteSeg, and FLANet. The results show that the performance of the
proposed method in the overexposed environment is much better than the existing image
segmentation methods. In addition, the fwt value of the proposed method is also the
lowest, which indicates that the optimization of MAE network module is successful. It
not only meets the requirements of improving segmentation quality, but also meets the
requirements of improving processing speed. However, the inference time of the system is
longer in the condition of overexposure. The reason is that the inpainting preprocessing
of overexposed images adds extra time overhead. However, as far as the current level of
GPU chip development [42-45] is concerned, it can fully meet the real-time requirements
of embedded devices.

4.4. Ablation Experiment

Ablation experiments are set up to study the impact of individual sub-modules of the
triple attention module on network performance. In ablation experiments, three attention
modules are pruned and combined to verify the performance of each sub-module. An
encoder—decoder backbone network with skip connections and without attention is em-
ployed as a baseline model. The networks with only AG, only spatial attention, only channel
attention, and channel + spatial attention modules are designed respectively. The results of
network segmentation for six different module combinations are shown in Figure 12.

Original  Ground Spatial Channel Channel+
image truth attentlon attention attention  Spatial

IR
8- -0

| .l.l'l.l.l.l.l

Figure 12. Visual segmentation results of different attention module combinations.

Proposed

It can be seen from Figure 12 that all segmentation results with the attention module
are better than the results of the backbone network without the attention module. The AG
attention module is used to analyze contextual information. It increases the sensitivity of
the model to foreground pixels by scaling the attention coefficients to focus the network
more on local regions. The effect on the network is shown in the segmentation results,
where the lane thickness is more evenly contoured and smoother, with fewer burrs and
bumps than other censored combinations. However, additional noise is added due to the
increased pixel sensitivity.

The spatial attention module makes full use of global information and focuses on
the regions of interest in the feature map, indicating the distribution of key information
on individual channel feature maps. The performance of the spatial attention module
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in the segmentation results is shown by a significant reduction in noise. However, the
segmentation integrity of the spatial attention module is inferior to the combination of AG,
channel attention, and spatial + channel attention. The role of channel attention is similar
to that of spatial attention. The weights of each channel of the input image are calculated
through the network, and the channels containing key information are focused on spatial
attention, which guarantees the integrity and continuity improvement of the narrow lines
in the segmentation.

The spatial + channel attention combination combines the characteristics of both
attentions to reduce noise while the segmentations maintain integrity. It can be seen
from Figure 12, the combination of the three attention modules performs better overall,
although a single attention or the combination of any two attentions performs well. The
proposed method finally uses a combination of all three attentions. The advantages of
each module are complementary. Finally, the proposed method obtains the minimum error
of the segmentation to the ground truth. The segmentation evaluation results are shown
in Table 3.

Table 3. Segmentation evaluation results for different combinations of attention modules.

Module Composition Performance Evaluation Metrics
Spatial Channel
AG Attention Attention ToU F1-Score PA
X X X 0.7949 0.8806 0.9861
v X X 0.8114 0.8905 0.9873
X Vv X 0.8197 0.8954 0.9881
X X v 0.8073 0.8881 0.9867
X v Vv 0.8001 0.8841 0.9858
Vv Vv Vv 0.8293 0.9031 0.9885

From the segmentation evaluation metrics, the combination with the added attention
module significantly outperforms the networks without the attention module. The network
with only the spatial attention module performs better than the networks with only one
of the other modules. However, the overall segmentation of the triple attention module is
better than other combinations. It is shown that the proposed CSTA network has the best
segmentation performance.

5. Conclusions and Future Work

In summary, in order to solve the problem of inaccurate lane segmentation of in-
door AGV in an overexposure environment, a lane detection method combining image
inpainting and segmentation is proposed. In the proposed method, the overexposed lane
image is repaired and reconstructed by the MAE network, and then input into the image
segmentation network for lane segmentation and extraction. The optimal MAE parameters
suitable for the proposed method are obtained by experiments. The reduction in the MAE
network model parameters reduces the inference time of the proposed method in the
overexposed environment. An image segmentation network CSTA is proposed, which
uses a lightweight backbone network to improve inference speed. Moreover, the triple
attention module is used to improve the segmentation quality, so as to obtain clearer lane
contours. It is especially obvious when the lanes are narrow. Meanwhile, the proposed
method has better noise suppression. The effect and quality of the segmentation of the
network are significantly improved. Finally, the efficiency of the proposed lane extraction
method is verified by three image segmentation evaluation metrics (IoU, Fy-score, and
PA) and inference time in the case of overexposure and proper exposure. Experimental
results show that the proposed lane extraction method based on image inpainting and
image segmentation has excellent segmentation performance and fast inference speed in
an overexposure environment.
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However, the proposed method has limitations. The experimental scenes of the
proposed method are all set indoors, the lane lines used for collecting datasets are also
clear and clean. The experiment was not carried out on the ground with debris and dirt.
Therefore, in the future it is necessary to further study the treatment scheme of outdoor
AGYV lane overexposure or lane line defects and stains to further improve the practical
application scope of this research. In the future, we will strive to achieve this goal in a more
efficient manner.
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