Pharmacoinformatics Analysis Reveals Flavonoids and Diterpenoids from Andrographis paniculata and Thespesia populnea to Target Hepatocellular Carcinoma Induced by Hepatitis B Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Plants and Retrieval of Phytocompounds
2.2. Druggability and Toxicity Profile
2.3. Target Identification
2.4. Gene Ontology and Pathway Enrichment Analysis
2.5. Network Construction
2.6. Structure Refinement, Homology Modeling, and Assessment of Active Site Residues
2.7. Least Potential Energy Conformation by Molecular Dynamics (MD) Simulation
2.8. Molecular Docking
2.8.1. Preparation of Ligand and Protein Target
2.8.2. Ligand–Protein Molecular Docking
2.9. Stability of Protein–Ligand Complex
2.10. Statistical Analysis
3. Results
3.1. Selection of Plants and Mining of Phytocompounds
3.2. Druglikeness and Toxicity Profile
3.3. Target Identification
3.4. Gene Set Enrichment Analysis and Network Construction
3.5. Network Analysis
3.6. Structure Refinement, Homology Modeling, and Active Sites Assessment
3.7. Model Stability and Lowest Potential Energy Conformation Sampling by MD Simulation
3.8. Molecular Docking Study
3.9. Stability of Protein–Ligand Complexes
3.9.1. Andrographin and WT–EGFR Complex
3.9.2. Gossypetin and WT–EGFR Complex
4. Discussion
Andrographis paniculata and Thespesia Populnea
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Yang, S.; Wang, K.; Bao, X.; Liu, Y.; Zhou, S. Alkaloids from Traditional Chinese Medicine against Hepatocellular Carcinoma. Biomed. Pharmacother. 2019, 120, 109543. [Google Scholar] [CrossRef] [PubMed]
- Torresi, J.; Tran, B.M.; Christiansen, D.; Earnest-Silveira, L.; Schwab, R.H.M.; Vincan, E. HBV-Related Hepatocarcinogenesis: The Role of Signalling Pathways and Innovative Ex Vivo Research Models. BMC Cancer 2019, 19, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, B.; Hann, H. Hepatitis B Virus–Related Hepatocellular Hepatitis Hepatocellular Carcinoma: Carcinoma: Carcinogenesis, Prevention, and Treatment. Update Liver Cancer 2017, 13, 986. [Google Scholar]
- Reddy, D.C.S. Elimination of Viral Hepatitis: Evolution and India’s Response. Indian J. Public Health 2019, 63, 275–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. Oxidative Stress and Liver Cancer: Etiology and Therapeutic Targets. Oxid. Med. Cell. Longev. 2016, 2016, 7891574. [Google Scholar] [CrossRef] [Green Version]
- Tarocchi, M.; Polvani, S.; Marroncini, G.; Galli, A. Molecular Mechanism of Hepatitis B Virus-Induced Hepatocarcinogenesis. World J. Gastroenterol. 2014, 20, 11630–11640. [Google Scholar] [CrossRef]
- Ayub, A.; Ashfaq, U.A.; Haque, A. HBV Induced HCC: Major Risk Factors from Genetic to Molecular Level. Biomed. Res. Int. 2013, 2013, 810461. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Karin, M. NF-κ B and STAT3–Key Players in Liver Inflammation and Cancer. Cell Res. 2010, 21, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Mao, R.; Yang, J. NF-κ B and STAT3 Signaling Pathways Collaboratively Link Inflammation to Cancer. Protein Cell 2013, 4, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.Y.; Chung, E.Y.; Kwun, H.J.; Jang, K.L. Transcriptional Repression of P21 Waf1 Promoter by Hepatitis B Virus X Protein via a P53-Independent Pathway. Gene 2001, 275, 163–168. [Google Scholar] [CrossRef]
- Bouchard, M.; Giannakopoulos, S.; Wang, E.H.; Tanese, N.; Schneider, R.J. Hepatitis B Virus HBx Protein Activation of Cyclin A–Cyclin-Dependent Kinase 2 Complexes and G 1 Transit via a Src Kinase Pathway. J. Virol. 2001, 75, 4247–4257. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.K.; Qiao, L.; Fang, Y.; Ly, S.; Gilfor, D.; Fisher, P.B.; Grant, S.; Hylemon, P.B.; Peterson, D.; Dent, P. Regulation of P21 and P27 Expression by the Hepatitis B Virus X Protein and the Alternate Initiation Site X Proteins, AUG2 and AUG3. J. Gastroenterol. Hepatol. 2003, 18, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Mukherji, A.; Janbandhu, V.C.; Kumar, V. HBx-Dependent Cell Cycle Deregulation Involves Interaction with Cyclin E/A–Cdk2 Complex and Destabilization of P27 Kip1. Biochem. J. 2007, 256, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gearhart, T.L.; Bouchard, M.J. The Hepatitis B Virus HBx Protein Modulates Cell Cycle Regulatory Proteins in Cultured Primary Human Hepatocytes. Virus Res. 2011, 155, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Slagle, B.L.; Bouchard, M.J. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb. Perspect. Med. 2016, 6, a021402. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, A.; Khan, Z.; Alloghbi, A.; Said Ahmed, T.S.; Ashraf, M.; Hammouda, D.M. Hepatocellular carcinoma: Molecular mechanisms and targeted therapies. Medicina 2019, 55, 526. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hamid, N.M.; Nazmy, M.H.; Mahmoud, A.W.; Fawzy, M.A. A Survey on Herbal Management of Hepatocellular Carcinoma. World J. Hepatol. 2011, 3, 175–183. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network Pharmacology: The next Paradigm in Drug Discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Upadhya, V.; Hegde, H.V.; Mesta, D.; Belchad, S.; Hampannavar, V.; Kholkute, S.D. Digital Database on Ethno-Medicinal Plants of Western Ghats. Curr. Sci. 2010, 99, 1658–1659. [Google Scholar]
- Dr. Duke’s Phytochemical and Ethnobotanical Databases Home Page. Available online: https://phytochem.nal.usda.gov/phytochem/search (accessed on 7 March 2021).
- Degtyarenko, K.; de Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught, A.; Alcántara, R.; Darsow, M.; Guedj, M.; Ashburner, M. ChEBI: A Database and Ontology for Chemical Entities of Biological Interest. Nucleic Acids Res. 2008, 36, D344–D350. [Google Scholar] [CrossRef]
- Molsoft, L.C.C. Available online: https://molsoft.com/mprop/ (accessed on 15 March 2021).
- Ivanov, S.M.; Lagunin, A.A.; Rudik, A.V.; Filimonov, D.A.; Poroikov, V.V. ADVERPred-Web Service for Prediction of Adverse Effects of Drugs. J. Chem. Inf. Model. 2018, 58, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A Web-Accessible Database of Experimentally Determined Protein-Ligand Binding Affinities. Nucleic Acids Res. 2007, 35, D198–D201. [Google Scholar] [CrossRef]
- UniProt. Available online: https://www.uniprot.org/ (accessed on 9 April 2021).
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering Workflow-Based Network Analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Patil, V.S.; Khatib, N.A. Triterpene Saponins from Barringtonia acutangula (L.) Gaertn as a Potent Inhibitor of 11β-HSD1 for Type 2 Diabetes Mellitus, Obesity, and Metabolic Syndrome. Clin. Phytosci. 2020, 6, 61. [Google Scholar] [CrossRef]
- Gajiwala, K.S.; Feng, J.; Ferre, R.; Ryan, K.; Brodsky, O.; Weinrich, S.; Kath, J.C.; Stewart, A. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure. 2013, 21, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003, 1, 2–3. [Google Scholar] [CrossRef]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Protein Sci. 2007, 50, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the IEEE ACM/IEEE SC 2006 Conference (SC’06), Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar]
- Samdani, A.; Vetrivel, U. POAP: A GNU Parallel Based Multithreaded Pipeline of Open Babel and AutoDock Suite for Boosted High Throughput Virtual Screening. Comput. Biol. Chem. 2018, 74, 39–48. [Google Scholar] [CrossRef]
- Spicer, J.F.; Rudman, S.M. EGFR Inhibitors in Non-Small Cell Lung Cancer (NSCLC): The Emerging Role of the Dual Irreversible EGFR/HER2 Inhibitor BIBW 2992. Target. Oncol. 2010, 5, 245–255. [Google Scholar] [CrossRef]
- Westphal, M.; Maire, C.L.; Lamszus, K. EGFR as a Target for Glioblastoma Treatment: An Unfulfilled Promise. CNS Drugs 2017, 31, 723–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maennling, A.E.; Tur, M.K.; Niebert, M.; Klockenbring, T.; Zeppernick, F.; Gattenlöhner, S.; Meinhold-Heerlein, I.; Hussain, A.F. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials. Cancers 2019, 11, 1826. [Google Scholar] [CrossRef] [Green Version]
- Berasain, C.; Avila, M.A. The EGFR Signalling System in the Liver: From Hepatoprotection to Hepatocarcinogenesis. J. Gastroenterol. 2014, 49, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Komposch, K.; Sibilia, M. EGFR Signaling in Liver Diseases. Int. J. Mol. Sci. 2015, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Fu, W.; Zhou, R.; Hu, W. Network Pharmacology-Based Study on the Mechanism of Yiganling Capsule in Hepatitis B Treatment. BMC Complement. Med. Ther. 2020, 20, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandri, M.; Petersen, J. Mechanism of Hepatitis B Virus Persistence in Hepatocytes and Its Carcinogenic Potential. Clin. Infect. Dis. 2016, 62, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayaaslan, B.; Guner, R. Adverse effects of oral antiviral therapy in chronic hepatitis B. World J. Hepatol. 2017, 9, 227. [Google Scholar] [CrossRef]
- Li, Y.; Martin, R.C.G., II. Herbal Medicine and Hepatocellular Carcinoma: Applications and Challenges. Evid. Based Complementary Altern. Med. 2011, 2011, 541209. [Google Scholar] [CrossRef] [Green Version]
- Alshammari, T.M. Drug Safety: The Concept, Inception and Its Importance in Patients’ Health. Saudi Pharm. J. 2016, 24, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Raschi, E.; Ponti, F. De Drug- and Herb-Induced Liver Injury: Progress, Current Challenges and Emerging Signals of Post-Marketing Risk. World J. Hepatol. 2015, 7, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
- Stickel, F.; Patsenker, E.; Schuppan, D. Herbal Hepatotoxicity. J. Hepatol. 2005, 43, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, H.; Cao, Y.; Wang, Y.; Hu, Z.; Zhu, Z.; Chai, Y. Drug Target Identification Using Network Analysis: Taking Active Components in Sini Decoction as an Example. Sci. Rep. 2016, 6, 24245. [Google Scholar] [CrossRef] [Green Version]
- Todorov, D.; Hinkov, A.; Shishkova, K.; Shishkov, S. Antiviral Potential of Bulgarian Medicinal Plants. Phytochem. Rev. 2014, 13, 525–538. [Google Scholar] [CrossRef]
- Herrscher, C.; Roingeard, P.; Blanchard, E. Hepatitis B Virus Entry into Cells. Cells 2020, 9, 1486. [Google Scholar] [CrossRef]
- Iwamoto, M.; Saso, W.; Nishioka, K.; Ohashi, H.; Sugiyama, R.; Ryo, A.; Ohki, M.; Yun, J.H.; Park, S.Y.; Ohshima, T.; et al. The Machinery for Endocytosis of Epidermal Growth Factor Receptor Coordinates the Transport of Incoming Hepatitis B Virus to the Endosomal Network. J. Biol. Chem. 2020, 295, 800–807. [Google Scholar] [CrossRef]
- Iwamoto, M.; Saso, W.; Sugiyama, R.; Ishii, K.; Ohki, M.; Nagamori, S.; Suzuki, R.; Aizaki, H.; Ryo, A.; Yun, J.H.; et al. Epidermal Growth Factor Receptor Is a Host-Entry Cofactor Triggering Hepatitis B Virus Internalization. Proc. Natl. Acad. Sci. USA 2019, 116, 8487–8492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.W.; Himeno, M.; Koui, Y.; Sugiyama, M.; Nishitsuji, H.; Mizokami, M.; Shimotohno, K.; Miyajima, A.; Kido, T. Modulation of Hepatitis B Virus Infection by Epidermal Growth Factor Secreted from Liver Sinusoidal Endothelial Cells. Sci. Rep. 2020, 10, 14349. [Google Scholar] [CrossRef]
- Schiffer, E.; Housset, C.; Cacheux, W.; Wendum, D.; Desbois-Mouthon, C.; Rey, C.; Clergue, F.; Poupon, R.; Barbu, V.; Rosmorduc, O. Gefitinib, an EGFR Inhibitor, Prevents Hepatocellular Carcinoma Development in the Rat Liver with Cirrhosis. Hepatology 2005, 41, 307–314. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, Y.; Hong, Y.G.; Wang, M.C.; Yuan, S.X.; Wang, Z.G.; Bi, F.R.; Hao, L.Q.; Yan, H.L.; Zhou, W.P. Tropomodulin 3 Modulates EGFR-PI3K-AKT Signaling to Drive Hepatocellular Carcinoma Metastasis. Mol. Carcinog. 2019, 58, 1897–1907. [Google Scholar] [CrossRef]
- Zhangyuan, G.; Wang, F.; Zhang, H.; Jiang, R.; Tao, X.; Yu, D.; Jin, K.; Yu, W.; Liu, Y.; Yin, Y.; et al. VersicanV1 Promotes Proliferation and Metastasis of Hepatocellular Carcinoma through the Activation of EGFR–PI3K–AKT Pathway. Oncogene 2020, 39, 1213–1230. [Google Scholar] [CrossRef]
- Liu, Z.; Ning, F.; Cai, Y.; Sheng, H.; Zheng, R.; Yin, X.; Lu, Z.; Su, L.; Chen, X.; Zeng, C.; et al. The EGFR-P38 MAPK Axis up-Regulates PD-L1 through MiR-675-5p and down-Regulates HLA-ABC via Hexokinase-2 in Hepatocellular Carcinoma Cells. Cancer Commun. 2021, 41, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Ghosh, R.; Mandal, V.; Mandal, S.C. Recent Advances in Herbal Medicine for Treatment of Liver Diseases. Pharm. Biol. 2011, 49, 970–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakumar, T.; Hsieh, C.; Lee, J.; Sheu, J. Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evid. Based Complement. Altern. Med. 2013, 2013, 846740. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, A.K.; Karuppayil, S.M. Andrographis paniculata (Burm. F) Wall Ex Nees: Antiviral Properties. Phyther. Res. 2021, 35, 5365–5373. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chiow, K.; Huang, D.; Wong, S. Andrographolide Regulates Epidermal Growth Factor Receptor and Transferrin Receptor Trafficking in Epidermoid Carcinoma (A-431) Cells: Research Paper. Br. J. Pharmacol. 2010, 159, 1497–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapil, A.; Koul, I.B.; Banerjee, S.K.; Gupta, B.D. Antihepatotoxic Effects of Major Diterpenoid Constituents of Andrographis paniculata. Biochem. Pharmacol. 1993, 46, 182–185. [Google Scholar] [CrossRef]
- Handa, S.S.; Sharma, A. Hepatoprotective Activity of Andrographolide from Andrographis paniculata against Carbontetrachloride. Indian J. Med. Res. 1990, 92, 276–283. [Google Scholar]
- Handa, S.S.; Sharma, A. Hepatoprotective Activity of Andrographolide against Galactosamine & Paracetamol Intoxication in Rats. Indian J. Med. Res. 1990, 92, 284–292. [Google Scholar] [PubMed]
- Batkhuu, J.; Hattori, K.; Takano, F.; Fushiya, S.; Oshiman, K.; Fujimiya, Y. Suppression of NO Production in Activated Macrophages In Vitro and Ex Vivo by Neoandrographolide Isolated from Andrographis paniculata. Biol. Pharm. Bull. 2002, 25, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ma, Y.B.; Huang, X.Y.; Geng, C.A.; Zhao, Y.; Wang, L.J.; Guo, R.H.; Liang, W.J.; Zhang, X.M.; Chen, J.J. Synthesis, structure–activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg. Med. Chem. Lett. 2014, 24, 2353–2359. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.-T.; Ji, L.-L. Inhibitory Effects of Neoandrographolide on Nitric Oxide and Prostaglandin E 2 Production in LPS-Stimulated Murine Macrophage. Mol. Cell Biochem. 2007, 2, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, P.; Subramoniam, A. Short Communication Hepatoprotective Property of Thespesia populnea against Carbon Tetrachloride Induced Liver Damage in Rats. J. Basic Clin. Physiol. Pharmacol. 2009, 20, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, S.; Shin, D.H.; Kim, M.; Kim, M. Inhibition of SARS-CoV 3CL Protease by Flavonoids Inhibition of SARS-CoV 3CL Protease by Flavonoids. J. Enzyme Inhib. Med. Chem. 2020, 35, 145–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M. In Vitro Anti-HIV-1 Activities of Kaempferol and Kaempferol-7-Oglucoside Isolated from Securigera securidaca. Res. Pharm. Sci. 2014, 9, 463–469. [Google Scholar] [PubMed]
- Arthanari, S.; Renukadevi, P.; Vanitha, J. Evaluation of Antiviral and Cytotoxic Activities of Methanolic Extract of Thespesia populnea (Malvaceae) Flowers. J. Herbs Spices Med. Plants 2011, 17, 34–37. [Google Scholar] [CrossRef]
Plant Name | Phytocompounds | PubChem CID | MF | MW (g/mol) | HBA | HBD | LogP | DLS | Pa (≤0.5) | Pi | Side Effect | Structure |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aloe vera | 2-Methyl-2-Phytyl-6-Chromanol | 9865117 | C26H44O2 | 388.33 | 2 | 1 | 10.24 | 0.83 | 0.421 | 0.244 | Hepatotoxicity | |
Centella asiatica | 3-Glucosylkaempferol | 5282102 | C21H20O11 | 488.1 | 11 | 7 | −0.26 | 0.8 | 0.35 | 0.3 | Hepatotoxicity | |
0.332 | 0.127 | Nephrotoxicity | ||||||||||
Centella asiatica | 3-Glucosylquercetin | 5280804 | C21H20O12 | 464.1 | 12 | 8 | −0.64 | 0.89 | 0.369 | 0.282 | Hepatotoxicity | |
0.302 | 0.155 | Nephrotoxicity | ||||||||||
Andrographis paniculata | 5-Hydroxy-7,8,2′,3′-Tetramethoxyflavone | 5319878 | C19H18O7 | 358.11 | 7 | 1 | 3.46 | 0.5 | Nil | |||
Andrographis paniculata | 5-Hydroxy-7,8,2′-Trimethoxyflavone | 5318506 | C18H16O6 | 328.09 | 6 | 1 | 3.49 | 0.61 | Nil | |||
Aloe vera | Aloe-Emodin | 10207 | C15H10O5 | 270.05 | 5 | 3 | 1.91 | 0.25 | 0.5 | 0.05 | Cardiac failure | |
0.426 | 0.24 | Hepatotoxicity | ||||||||||
0.263 | 0.198 | Nephrotoxicity | ||||||||||
Aloe vera | Aloenin | 162305 | C19H22O10 | 410.12 | 10 | 5 | −1.36 | 0.73 | 0.36 | 0.108 | Nephrotoxicity | |
Mangifera indica | Cyanidin 3-arabinoside | 74079809 | C20H19O10 | 419.1 | 10 | 7 | −0.07 | 0.38 | Nil | |||
Aloe vera | Feralolide | 5317333 | C18H16O7 | 344.09 | 7 | 4 | 1.58 | 0.82 | 0.281 | 0.178 | Nephrotoxicity | |
0.242 | 0.229 | Cardiac failure | ||||||||||
Thespesia populnea | Gossypetin | 5280647 | C15H10O8 | 318 | 8 | 6 | 1.61 | 0.62 | 0.392 | 0.265 | Hepatotoxicity | |
Thespesia populnea | Herbacetinz | 5280544 | C15H10O7 | 302.04 | 7 | 5 | 1.99 | 0.63 | 0.411 | 0.25 | Hepatotoxicity | |
Aerva lanata | Isorhamnetin | 5281654 | C16H12O7 | 316.06 | 7 | 4 | 2.46 | 0.67 | 0.245 | 0.231 | Nephrotoxicity | |
Phyllanthus virgatus | Kaempferol 8-C-sulfate | 10500456 | C15 H10O9S | 366 | 9 | 5 | 0.41 | 0.27 | Nil | |||
Thespesia populnea | Kaempferol-7-Glucoside | 10095180 | C21H20O11 | 448.1 | 11 | 7 | −0.26 | 0.81 | 0.363 | 0.288 | Hepatotoxicity | |
0.329 | 0.129 | Nephrotoxicity | ||||||||||
Vernonia cinerea | Luteolin-7-Mono-Beta-D-Glucoside | 5280637 | C21H20O11 | 448.1 | 11 | 7 | −0.07 | 0.86 | 0.395 | 0.262 | Hepatotoxicity | |
0.373 | 0.1 | Nephrotoxicity | ||||||||||
Mangifera indica | Myrtillin | 165558 | C21H21 O12.Cl | 500.07 | 12 | 9 | −0.76 | 0.29 | Nil | |||
Andrographis paniculata | Neoandrographolide | 9848024 | C26H40O8 | 480.27 | 8 | 4 | 2.17 | 0.17 | 0.424 | 0.075 | Nephrotoxicity | |
Andrographis paniculata | Paniculide-B | 101289823 | C15H20O5 | 280.13 | 5 | 2 | 0.72 | 0.09 | Nil | |||
Cassia auriculata | Pelargonidin 5-galactoside | 44256698 | C21H21O10 | 433.11 | 10 | 7 | −0.26 | 0.32 | Nil | |||
Mangifera indica | Peonidin galactoside | 91810512 | C22H23 O11.Cl | 498.09 | 11 | 7 | −0.04 | 0.08 | Nil | |||
Mangifera indica | Petunidin 3-glucoside | 176449 | C22 H23 O12.Cl | 514.09 | 12 | 8 | −0.41 | 0.42 | Nil | |||
Pongamia pinnata | Pinnatin | 5320607 | C18H12O4 | 292.07 | 4 | 0 | 4.42 | 0.24 | Nil | |||
Pongamia pinnata | Pongamone A | 11588678 | C22H22O5 | 366.15 | 5 | 0 | 5.32 | 0.47 | 0.397 | 0.106 | Cardiac failure | |
Aerva lanata | Tiliroside | 5320686 | C30H26O13 | 594.14 | 13 | 7 | 2.49 | 0.85 | 0.263 | 0.198 | Nephrotoxicity | |
Andrographis paniculata | Andrographiside | 44593583 | C26H40O10 | 512.26 | 10 | 6 | 0.55 | 0.08 | 0.333 | 0.126 | Nephrotoxicity | |
Andrographis paniculata | Altisin | 15100719 | C19H18O7 | 358.11 | 7 | 1 | 2.81 | 0.03 | 0.306 | 0.296 | Arrhythmia | |
Andrographis paniculata | 2′-hydroxy-5,7,8-trimethoxyflavone | 21668878 | C18H16O6 | 328.09 | 6 | 1 | 3.9 | 0.2 | Nil | |||
Andrographis paniculata | 5-hydroxy-7,8,2′,3′,4′-pentamethoxyflavone | 12315479 | C20H20O8 | 388.12 | 8 | 1 | 3.4 | 0.36 | Nil | |||
Andrographis paniculata | Wightin | 12444943 | C18H16O7 | 344.09 | 7 | 2 | 3.08 | 0.19 | 0.342 | 0.308 | Hepatotoxicity | |
Andrographis paniculata | 5-hydroxy-7,8-dimethoxyflavanone | 13963770 | C17H16O5 | 300.1 | 5 | 1 | 3.02 | 0.48 | 0.322 | 0.269 | Arrhythmia | |
Andrographis paniculata | 5-hydroxy-7,8-dimethoxyflavone | 188316 | C17H14O5 | 298.08 | 5 | 1 | 3.74 | 0.17 | 0.309 | 0.291 | Arrhythmia | |
Andrographis paniculata | Skullcapflavone I | 5320399 | C17H14O6 | 314.08 | 6 | 2 | 3.71 | 0.33 | Nil | |||
Andrographis paniculata | 5-hydroxy-7,8,2′,5′-tetramethoxyflavone | 10948318 | C19H18O7 | 358.11 | 7 | 1 | 3.41 | 0.11 | Nil | |||
Andrographis paniculata | 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone | 13963777 | C19H18O8 | 374.1 | 8 | 2 | 3.02 | 0.31 | Nil | |||
Andrographis paniculata | Andrographidine A | 13963762 | C23H26O10 | 462.15 | 10 | 4 | 0.91 | 0.38 | 0.43 | 0.072 | Nephrotoxicity | |
Andrographis paniculata | Andrographidine C | 5318484 | C23H24O10 | 460.14 | 1 | 4 | 1.67 | 0.24 | 0.348 | 0.116 | Nephrotoxicity |
Plant Name | Phytocompounds | Plant Part | Compound Type | Gene Count | Protein Targets Involved in Hepatitis B Infection and HCC Pathways |
---|---|---|---|---|---|
Aerva lanata | Isorhamnetin | Aerial | Flavonoid | 7 | CDK1, CDK2, CDK6, EGFR, HGF, IGF1R, TERT |
Tiliroside | Aerial | Flavonoid | 1 | TNF | |
Aloe vera | 2-Methyl-2-Phytyl-6-Chromanol | Whole plant | Phylloquinone | 1 | AKT1 |
Aloe-Emodin | Leaf, Juice | Anthraquinone | 1 | BCL2 | |
Aloenin | Whole plant | Glucoside | 1 | TNF | |
Feralolide | Leaf | Coumarin | 2 | MAP2K1, MAPK1 | |
Andrographis paniculata | 5-Hydroxy-7,8,2′,3′-Tetramethoxyflavone | Whole plant, Root | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT |
5-Hydroxy-7,8,2′-Trimethoxyflavone | Whole plant, Root | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
Neoandrographolide | Whole plant, Root | Diterpenoid | 1 | STAT3 | |
Paniculide-B | Whole plant, Stem | Diterpenoid | 3 | PRKCA, PRKCB, PRKCG | |
Andrographiside | Whole plant, Stem | Flavonoid | 4 | PRKCB, PRKCA, PRKCG, STAT3 | |
Altisin | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
2′-hydroxy-5,7,8-trimethoxyflavone | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
5-hydroxy-7,8,2′,3′,4′-pentamethoxyflavone | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
Wightin | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
5-hydroxy-7,8-dimethoxyflavanone | Whole plant, Stem | Flavonoid | 3 | AKT1, HGF, TERT | |
5-hydroxy-7,8-dimethoxyflavone | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
Skullcapflavone I | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
5-hydroxy-7,8,2′,5′-tetramethoxyflavone | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone | Whole plant, Stem | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT | |
Andrographidine C | Whole plant, Stem | Flavonoid | 2 | EGFR, TNF | |
Cassia auriculata | Pelargonidin 5-galactoside | Leaves | Anthocyanidin | 2 | EGFR, TNF |
Centella asiatica | 3-Glucosylkaempferol | Leaves | Flavonoid | 2 | EGFR, TNF |
3-Glucosylquercetin | Leaves | Flavonoid | 2 | EGFR, TNF | |
Mangifera indica | Cyanidin 3-arabinoside | Peel | Anthocyanin | 1 | TNF |
Myrtillin | - | Phenolic compound | 1 | TNF | |
Peonidin galactoside | Peel | Anthocyanin | 1 | TNF | |
Petunidin 3-glucoside | Peel | Anthocyanin | 1 | TNF | |
Phyllanthus virgatus | Kaempferol 8-C-sulfate | Whole plant | Flavonoid | 1 | EGFR |
Pongamia pinnata | Pinnatin | Seed | Flavonoid | 6 | CDK1, CDK6, EGFR, HGF, IGF1R, TERT |
Pongamone A | Stem | Flavonoid | 1 | EGFR | |
Thespesia populnea | Gossypetin | Flower, Stem, Root | Flavonoid | 7 | CDK1, CDK2, CDK6, EGFR, HGF, IGF1R, TERT |
Herbacetin | Flower | Flavonoid | 7 | CDK1, CDK2, CDK6, EGFR, HGF, IGF1R, TERT | |
Kaempferol-7-Glucoside | Flowers | Flavonoid | 2 | EGFR, TNF | |
Vernonia cinerea | Luteolin-7-Mono-Beta-D-Glucoside | Seed | Flavonoid | 2 | EGFR, TNF |
KEGG ID | Pathway Name | Gene Count | False Discovery Rate | Modulated Gene within a Pathway |
---|---|---|---|---|
hsa05161 | Hepatitis B | 11 | 1.07E-18 | AKT1, BCL2, CDK2, CDK6, MAP2K1, MAPK1, PRKCA, PRKCB, PRKCG, STAT3, TNF |
hsa05225 | Hepatocellular carcinoma | 11 | 3.43E-18 | AKT1, CDK6, EGFR, HGF, IGF1R, MAP2K1, MAPK1, PRKCA, PRKCB, PRKCG, TERT |
hsa01521 | EGFR tyrosine kinase inhibitor resistance | 11 | 6.37E-21 | AKT1, BCL2, EGFR, HGF, IGF1R, MAP2K1, MAPK1, PRKCA, PRKCB, PRKCG, STAT3 |
hsa05206 | MicroRNAs in cancer | 9 | 2.07E-14 | BCL2, CDK6, EGFR, MAP2K1, MAPK1, PRKCA, PRKCB, PRKCG, STAT3 |
hsa04010 | MAPK signaling pathway | 10 | 7.51E-14 | AKT1, EGFR, HGF, IGF1R, MAP2K1, MAPK1, PRKCA, PRKCB, PRKCG, TNF |
hsa04151 | PI3K-Akt signaling pathway | 10 | 3.22E-13 | AKT1, BCL2, CDK2, CDK6, EGFR, HGF, IGF1R, MAP2K1, MAPK1, PRKCA |
hsa04014 | Ras signaling pathway | 9 | 5.60E-13 | AKT1, EGFR, HGF, IGF1R, MAP2K1, MAPK1, PRKCA, PRKCB, PRKCG |
hsa04150 | mTOR signaling pathway | 8 | 1.52E-12 | AKT1, IGF1R, MAP2K1, MAPK1, PRKCA, PRKCB, PRKCG, TNF |
hsa04210 | Apoptosis | 5 | 2.18E-07 | AKT1, BCL2, MAP2K1, MAPK1, TNF |
hsa05203 | Viral carcinogenesis | 5 | 8.12E-07 | CDK1, CDK2, CDK6, MAPK1, STAT3 |
hsa04668 | TNF signaling pathway | 4 | 3.85E-06 | AKT1, MAP2K1, MAPK1, TNF |
hsa04630 | Jak-STAT signaling pathway | 4 | 1.57E-05 | AKT1, BCL2, EGFR, STAT3 |
hsa04115 | p53 signaling pathway | 3 | 4.58E-05 | CDK1, CDK2, CDK6 |
hsa04110 | Cell cycle | 3 | 0.00021 | CDK1, CDK2, CDK6 |
Compound Name | BE (kcal/mol) | Hydrogen Bond Interactions (No. of Interactions) | Van der Waals, Pi-Alkyl, CH, Pi-Cation, Pi-Sigma, Pi-Pi Stacked, Pi-Pi T-Shaped Interactions (No. of Interactions) | Active Sites Residues within Interactions | No. of Interactions with Active Site Residues |
---|---|---|---|---|---|
Kaempferol-7-Glucoside | −8.8 | Asp105…OH, Thr95…OH, Gln96…OH | Val31, Leu149, Leu23 (3), Cys102 | Thr95, Gln96 | 5 |
Herbacetin | −8 | Thr95…OH, Met98…OH (2), Gly101…OH | Leu23 (2), Leu149 (2), Val31 (2), Ala48, Cys80, Thr159 | Thr95, Met98, Gly101, Leu23, Ala48 | 7 |
Gossypetin | −8.5 | Met98...OH, Thr95…OH (2) | Thr159, Ala48, Val31 (2), Leu149 (2), Leu23 (2) | Thr95, Met98, Leu23, Ala48 | 6 |
Andrographidine C | −8.3 | Thr95…OH (2), Gln96…OH, Gly26 | Arg146, Val31, Leu149, Leu23 (2), Cys102 (2), Asp105 | Thr95, Gln96, Leu23, Cys102 | 7 |
5-Hydroxy-7,8,2′-Trimethoxyflavone (Andrographin) | −8.3 | Met98…=O, Met98…OH | Thr159, Lys50, Val31 (2), Ala48 (2), Leu149 (2), Leu23 (2) | Met98, Lys50, Ala48, Leu23 | 7 |
Skullcapflavone I | −8.1 | Met98…=O, Met98…OH | Thr159, Val31 (2), Lys50, Ala48 (2), Leu23 (2), Leu149, Asp105 | Met98, Lys50, Ala48, Leu23 | 7 |
2′-hydroxy-5,7,8-trimethoxyflavone | −8.1 | Nil | Gly101, Leu23 (2), Leu149 (2), Val31 (2), Gly24 | Leu23 | 2 |
5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone | −7.7 | Nil | Gln96, Ala48, Thr159, Lys50, Val31 (2), Leu149, Leu23 (2), Cys102 (2), Asp105 | Gln96, Ala48, Lys50, Leu23, Cys102 | 7 |
5-hydroxy-7,8-dimethoxyflavone | −8.2 | Met98…=O | Leu23 (2), Thr159, Val31 (2), Lys50, Ala48 (2), Lue149 (2), Asp105 | Met98, Lys50, Ala48, Leu23 | 5 |
5-hydroxy-7,8,2′,5′-tetramethoxyflavone | −8.4 | Met98…=O | Val31 (2), Lys50, Thr159, Ala48, Leu23 (2), Leu149 (2), Asp105 | Met98, Lys50, Ala48, Leu23 | 5 |
5-hydroxy-7,8,2′,3′,4′-pentamethoxyflavone | −8 | Nil | Lys50, Thr159 (2), Val31 (2), Gln96, Ala48, Leu149, Leu23 (2), Cys102 (2) | Lys50, Gln96, Ala48, Leu23 | 5 |
Wightin | −8.3 | Met98…=O, Met98…OH | Val31 (2), Lys50, Thr159, Ala48 (2), Leu23 (2), Leu149 (2), Asp105 | Met98, Lys50, Leu23, Ala48, | 7 |
5-Hydroxy-7,8,2′,3′-Tetramethoxyflavone | −8.6 | Met98…=O | Asp105, Val31 (2), Thr159, Lys50, Leu23 (2), Leu149 (2), Ala48, Gln96 | Met98, Lys50, Leu23, Ala48, Gln96 | 6 |
Altisin | −7.8 | Met98…O- | Val31 (2), Ala48, Leu149 (2), Leu23 (2) | Met98, Ala48, Leu23 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, V.S.; Harish, D.R.; Vetrivel, U.; Deshpande, S.H.; Khanal, P.; Hegde, H.V.; Roy, S.; Jalalpure, S.S. Pharmacoinformatics Analysis Reveals Flavonoids and Diterpenoids from Andrographis paniculata and Thespesia populnea to Target Hepatocellular Carcinoma Induced by Hepatitis B Virus. Appl. Sci. 2022, 12, 10691. https://doi.org/10.3390/app122110691
Patil VS, Harish DR, Vetrivel U, Deshpande SH, Khanal P, Hegde HV, Roy S, Jalalpure SS. Pharmacoinformatics Analysis Reveals Flavonoids and Diterpenoids from Andrographis paniculata and Thespesia populnea to Target Hepatocellular Carcinoma Induced by Hepatitis B Virus. Applied Sciences. 2022; 12(21):10691. https://doi.org/10.3390/app122110691
Chicago/Turabian StylePatil, Vishal S., Darasaguppe R. Harish, Umashankar Vetrivel, Sanjay H. Deshpande, Pukar Khanal, Harsha V. Hegde, Subarna Roy, and Sunil S. Jalalpure. 2022. "Pharmacoinformatics Analysis Reveals Flavonoids and Diterpenoids from Andrographis paniculata and Thespesia populnea to Target Hepatocellular Carcinoma Induced by Hepatitis B Virus" Applied Sciences 12, no. 21: 10691. https://doi.org/10.3390/app122110691
APA StylePatil, V. S., Harish, D. R., Vetrivel, U., Deshpande, S. H., Khanal, P., Hegde, H. V., Roy, S., & Jalalpure, S. S. (2022). Pharmacoinformatics Analysis Reveals Flavonoids and Diterpenoids from Andrographis paniculata and Thespesia populnea to Target Hepatocellular Carcinoma Induced by Hepatitis B Virus. Applied Sciences, 12(21), 10691. https://doi.org/10.3390/app122110691