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Abstract: In the calculus of functionally graded plates, the concept of multilayer plate is often used.
For the use of this concept in this calculus, the continuous variation of the respective properties
is replaced with a step variation. The first problem that arises in front of the user is related to the
number of layers, which must be a finite and reasonably large number, to be accessible to the current
calculus and to ensure the necessary accuracy of the results (under 5%). Another problem, generally
poorly substantiated, is the one related to the assumption of a constant value of the Poisson’s ratio
(usually 0.30 for the considered materials) over the entire plate thickness. The paper also contains a
quantitative study of the influence of the Poisson ratio (4, . . . ,10%), whose variation can be neglected,
but only in certain circumstances. The presentation and substantiation of how to use the multilayer
plate concept through models, methods and methodologies, along with the substantiation of the
choice of the number of layers and the influence of the Poisson’s ratio, represent the main evidence of
the originality of this work. The proposed numerical models are based on the use of common 3D
finite elements. The software Ansys is used, which offers a multilayer finite element, which is taken
into account in the comparative analysis of the results. The validation of the results is carried out by
comparison with the analytical solution. The objective and purpose of this paper, that of completing
the palette of achievements regarding the calculus of functionally graded plates, without modification
of the stiffness matrices of the finite elements and using existing software products, are fulfilled.
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1. Introduction

Functionally graded materials (FGMs) represent a special category of composite
materials, usually made of two materials, with very different properties (Figure 1).
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1. Introduction 
Functionally graded materials (FGMs) represent a special category of composite ma-

terials, usually made of two materials, with very different properties (Figure 1). 

 
Figure 1. The adopted coordinate system. 

The material properties vary continuously (Figure 2) between the extreme surfaces 
of the material, where the properties are those of the respective materials in their pure 
state [1–3]. Today, the most used materials used in the construction of FGMs are ceramic 
materials and metals. Their volume fractions, in the thickness direction, varies continu-
ously, according to a material law F(z), as Figure 2 shows. 
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Figure 1. The adopted coordinate system.

The material properties vary continuously (Figure 2) between the extreme surfaces
of the material, where the properties are those of the respective materials in their pure
state [1–3]. Today, the most used materials used in the construction of FGMs are ceramic
materials and metals. Their volume fractions, in the thickness direction, varies continuously,
according to a material law F(z), as Figure 2 shows.
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Figure 2. The variation of the properties on the thickness of the material. 

The material law function F(z) defines the variation of the elastic, physical and me-
chanical properties of the material (Young’s Modulus, Poisson’s ratio, density, thermal 
coefficient, etc.). Several material laws are known [3,4], having the names: Power Law, 
Reuss Law, Voigt Law, Local Representative Volume Element (LRVE) Law, Tamura Law, 
Mori-Tanaka Law, Exponential Law, Sigmoid Law and others. The best-known and most 
used material law, in practice and in the literature, is the Power Law (Sina et al., 2009), 
which for Young’s Modulus, F(z) ≡ E(z), has the expression [2], 
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where the indices “t” and “b” mean the top face or side of the material with higher prop-
erties, respectively the bottom face or side of the material with low properties and k is the 
power coefficient (values from ‘0′ to ‘∞’). In Figure 3, the variation of the material law 
function for E(z) is presented for different values of the power coefficient. 

 

 

Figure 3. Variation of material Power Law for different values of power coefficient k. 

Of course, there are many other material pairs such as: polymer-elastomer, organic-
inorganic glasses, etc. which can be used [4,5]. The name of such materials appeared in 
the mid-1980s, being introduced by scientific researchers from Japan, who were working 
on the creation of ultra-resistant materials at high temperatures for aerospace construc-
tions. 

Figure 2. The variation of the properties on the thickness of the material.

The material law function F(z) defines the variation of the elastic, physical and me-
chanical properties of the material (Young’s Modulus, Poisson’s ratio, density, thermal
coefficient, etc.). Several material laws are known [3,4], having the names: Power Law,
Reuss Law, Voigt Law, Local Representative Volume Element (LRVE) Law, Tamura Law,
Mori-Tanaka Law, Exponential Law, Sigmoid Law and others. The best-known and most
used material law, in practice and in the literature, is the Power Law (Sina et al., 2009),
which for Young’s Modulus, F(z) ≡ E(z), has the expression [2],

E(z) = Eb + (Et − Eb)
(

0.5 +
z
h

)k
(1)

where the indices “t” and “b” mean the top face or side of the material with higher proper-
ties, respectively the bottom face or side of the material with low properties and k is the
power coefficient (values from ‘0’ to ‘∞’). In Figure 3, the variation of the material law
function for E(z) is presented for different values of the power coefficient.
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Of course, there are many other material pairs such as: polymer-elastomer, organic-
inorganic glasses, etc. which can be used [4,5]. The name of such materials appeared in the
mid-1980s, being introduced by scientific researchers from Japan, who were working on
the creation of ultra-resistant materials at high temperatures for aerospace constructions.

The appearance of functionally graded materials attracted the attention of many
scientific researchers [6–11], whose efforts were channeled in two directions: the realization
(manufacturing) of these materials and the calculation of the structures from these materials.
The two directions interfere and stimulate each other, especially in the field of materials



Appl. Sci. 2022, 12, 10695 3 of 24

design. In both directions the results are remarkable, but not finished; both manufacturing
and calculation being in continuous development [12–15].

The field of use of FGMs [16,17] is very broad, such as biomedical equipment and
instruments, medical prostheses, solar panels, aerospace constructions, sensor construction,
optics, electronics and many others. The attention given to FGM is fully justified [18].

The present paper comes from the concern (purpose) to find models and calculation
methodologies as simple as possible, as efficient as possible, based on the current knowledge
of analytical and numerical analysis of structures [19], using widely accessible commercial
analysis programs with the finite element method. In the field of calculation of plates from
FGMs [20–22], the concept of multilayer plate is often used.

This concept is grounded in the calculus of functionally graded plates (FGPs), provid-
ing substantiated answers to a series of questions regarding the number of layers (their
thickness), the influence of Poisson’s ratio, the influence of the power coefficient from
the material law, etc. The calculation model and methodology, based on the concept of a
multilayer plate, are validated by the calculus compared to the analytical solution of the
plate bending rigidity, the maximum transverse displacement, the calculus of the stresses
and the calculus of free vibration frequencies.

The results of the numerical calculation take into comparative analysis the use of the
finite element dedicated to multilayer plates, from the library of the Ansys program [23].
The conclusions are based on quantitative determinations, on graphic representations, on
comparative analyzes and the creation of models and practical methodologies, immedi-
ately applicable.

The purpose of our study is to make available to those interested in models, methods
and methodologies for calculating of FGPs with existing and scientifically validated calculus
means and procedures, without interventions in the classical theory of plates, without
changes in the stiffness matrices of the finite elements, without building dedicated software
products, without anything special, but solving a special problem, namely: the calculus of
functional graded plates.

Nowadays, the literature on the calculus of functionally graded plates is rich one, but
despite this fact, the calculus is mainly based on the determination of the bending rigidity
of the plates by direct integration of the definition relation by neglecting the influence of
Poisson’s ratio. The use of the multilayer plate concept, the use of their classical calculus
relations [18], long validated theoretically and experimentally, allows us taking into account
the influence of all calculus parameters.

The novelties of this study also consist in the theoretical substantiation of the use of
the multilayer plate concept, in determining the influence of the adopted number of layers,
in choosing their thickness and in developing a methodology for this purpose.

2. Multilayer Plate Concept

The plate is considered to be built by a number of layers, without slipping between
them. Each layer is considered to be homogeneous and isotropic.

This concept of multilayer plate and its parameters are illustrated in Figure 4. For a
plate, made up of a finite number of layers, each layer being considered homogeneous and
isotropic, the bending rigidity D = D* is [24]:

D* =
A · C− B2

A
(2)

where

A = ∑
j

Ej

1− υ2
j
·
(
zj − zj−1

)
(3)

B = ∑
j

Ej

1− υ2
j

z2
j − z2

j−1

2
(4)
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C = ∑
j

Ej

1− υ2
j
·

z3
j − z3

j−1

3
(5)
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The index j, in the relations (3) to (5) refers to the jth layer, like in Figure 4. So, the
governing differential equation (Sophie-Germain) of the multilayered plates is [24,25]:

∇2∇2w(x, y) = pz(x, y)/D* (6)

For a circular plane plate, with a constant distributed load pz the relation (3) be-
comes [24,25]:

∇2∇2w(r) = pz/D* (7)

The methodology for solving FGPs, based on the multilayer plate concept, involves
replacing the continuous variation of the material properties (Figure 3), with a step variation
(Figure 5), which would correspond to a set of 20 homogeneous and isotropic layers, each
of them having different properties.
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Figure 5. The step variation, compared to the continuous variation at the layer level, for two values
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Looking at the curves in Figure 5, we find that the step variation is not a constant one.
This is higher or lower depending on the power coefficient value, which also influences the
sign and value of the curvature.
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3. Calculus of the FGPs Bending Rigidity

In the plate calculus, the determination of the bending rigidity (D) is of maximum
importance, because the development of the calculation for the determination of any other
parameters implies the knowledge of the bending rigidity.

3.1. The Multilayer Plate Method

The bending rigidity of the FGPs can be calculated using relations (2) to (5). This is an
analytical solution, based on the concept of a multilayer plate.

3.2. Direct Integration Method

Another way of bending rigidity calculus is the direct integration [24,25] of the rigidity
definition relation (8), with constant Poisson’s ratio:

D = Da =

h/2∫
−h/2

E(z) · z2

1− ν2 dz =
1

1− ν2

h/2∫
−h/2

E(z) · z2 · dz (8)

When E(z) is replaced with relation (1), the solution of the relation (8) is:

D = Da =
Ebh3

12(1− ν2)
+

(Et − Eb)h3

1− ν2 ·
[

1
3 + k

− 1
2 + k

+
1

4(k + 1)

]
(9)

4. Calcuus of the Material Density of FGPs
4.1. Analytical Calculus by Direct Integration

The plate equation of motion, [24,25], expressed in terms of bending and twisting
efforts Mx, My, Mxy and displacement w(x,y,t) is written [26]:

∂2Mx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2My

∂y2 = I0
∂2w
∂t2 (10)

where I0 is the inertial coefficient, having the following calculus relation:

I0 =

h/2∫
−h/2

ρ(z)dz (11)

Using the material Power Law also for density, the relation (11) is written:

I0 =

h/2∫
−h/2

[
ρb + (ρt − ρb) ·

(
0.5 +

z
h

)k
]

dz (12)

Analytical solution of the integral (12) is:

I0 = ρbh +
h

k + 1
(ρt − ρb) (13)

The inertial coefficient I0 is the basis of the material density calculus, which for the
case of a circular plane plate, takes place as follows:

dMplate = ρ(z) · dV = ρ(z) · A · dz = r2 · ρ(z) · dz (14)

Mplate = πr2
h/2∫
−h/2

ρ(z)dz = A · I0 (15)

Mplate = πr2 · I0 (16)
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ρ =
Mplate

Vplate
=

π · r2 · I0

π · r2 · h =
I0

h
(17)

4.2. Analytical Calculus by Multilayer Plate Concept

The methodology is similar to the one for calculating the Young’s modulus at the level
of each layer (a constant value on the layer thickness), using the same material law:

ρ(z) = ρb + (ρt − ρb)
(

0.5 +
z
h

)k
(18)

The variation of the material density on the plate thickness, for the different values
of the power coefficient k, takes place according to curves similar to those shown in
Figures 3 and 5.

5. Case Study

It is considered a plane circular plate, loaded with an uniformly distributed load,
as Figure 6 shows, having the radius R of 50 [mm], the thickness h of 4 [mm] and the
distributed load p of 5 [MPa].
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Figure 6. Functionally graded circular plane plate.

The material properties are presented in Table 1.

Table 1. Material properties.

Materials: Ceramic Al2O3 Aluminum

Positions: Top Bottom

E [MPa] 380,000 70,000
ρ [kg/m3] 3960 2700

ν [-] 0.22 0.33

5.1. Calculus of the Layer Material Properties

For a number of 20 layers, using for each layer, the z coordinate of its middle, using
the relation (1) for Young’s modulus, relation (20) for Poisson ratio and relation (19) for
material density, the values from Table 2 were determined.

ν(z) = νb + (νt − νb)
(

0.5 +
z
h

)k
(19)

The same material law—Power Law—was used for all material parameters. The
values presented in Table 2 are calculated for the value 0.05 of the power coefficient k.

The variation of these parameters on the FGP thickness is in steps; the variation curves
are presented in Figure 7, for Young’s modulus and material density, respectively, for the
same power coefficient k = 0.05. Poisson’s ratio has also the same variation, but often it is
considered to have a constant value on the entire thickness.
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Table 2. Layer material properties for k = 0.05.

Lines of the Plate Thickness Layers of the Plate Thickness

Line No. zline.
[m]

E(zline)
[MPa]

ν(zline)
[-]

ρ(zline)
[kg/m3] Layer No.

zav.
layer
[m]

E(zav.
layer)

[MPa]
ν(zav.

layer)

[-]
ρ(zav.

layer)

[kg/m3]

1 −0.0020 70,000.00 0.33000 2700.000 - - - - -
2 −0.0018 336,876.41 0.23500 3784.723 1 −0.0019 327,785.62 0.23853 3747.774
3 −0.0016 346,287.79 0.23200 3822.976 2 −0.0017 342,342.08 0.23336 3806.939
4 −0.0014 351,946.21 0.23000 3845.975 3 −0.0015 349,387.64 0.23086 3835.576
5 −0.0012 356,031.06 0.22900 3862.578 4 −0.0013 354,127.71 0.22918 3854.842
6 −0.0010 359,240.23 0.22700 3875.622 5 −0.0011 357,720.51 0.22791 3869.445
7 −0.0008 361,889.02 0.22600 3886.388 6 −0.0009 360,621.89 0.22688 3881.237
8 −0.0006 364,147.46 0.22600 3895.567 7 −0.0007 363,059.54 0.22601 3891.145
9 −0.0004 366,117.92 0.22500 3903.576 8 −0.0005 365,163.91 0.22526 3899.698

10 −0.0002 367,866.95 0.22400 3910.685 9 −0.0003 367,016.89 0.22461 3907.230
11 0.0000 369,440.26 0.22400 3917.080 10 −0.0001 368,673.28 0.22402 3913.962
12 0.0002 370,870.65 0.22300 3922.894 11 0.0001 370,171.64 0.22349 3920.052
13 0.0004 372,182.46 0.22300 3928.225 12 0.0003 371,540.11 0.22300 3925.615
14 0.0006 373,394.26 0.22200 3933.151 13 0.0005 372,799.88 0.22256 3930.735
15 0.0008 374,520.54 0.22200 3937.729 14 0.0007 373,967.31 0.22214 3935.480
16 0.0010 375,572.84 0.22200 3942.006 15 0.0009 375,055.31 0.22176 3939.902
17 0.0012 376,560.50 0.22100 3946.020 16 0.0011 376,074.24 0.22139 3944.044
18 0.0014 377,491.16 0.22100 3949.803 17 0.0013 377,032.53 0.22105 3947.939
19 0.0016 378,371.21 0.22100 3953.380 18 0.0015 377,937.16 0.22073 3951.616
20 0.0018 379,205.97 0.22000 3956.773 19 0.0017 378,793.95 0.22043 3955.098
21 0.0020 380,000.00 0.22000 3960.000 20 0.0019 379,607.82 0.22014 3958.406

Average values 366,900.65 0.22967 3849.293 - - 365,443.95 0.22517 3900.837
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Figure 7. Variation curves of some material properties, (a) Young’s modulus, (b) density.

From the analysis of Figures 5 and 7, we find that for values of the power coefficient
lower than one, the variation in steps is stronger in the part of the material with lower
properties and vice versa.

In Table 3, the values of Young’s modulus are presented, for the FGP model, with
20 layers and different values of the power coefficient k, according to the methodology
presented above, using the Power Law of the material properties variation.

The values of the material properties, for any value of the power coefficient k and for
any number of layers, can be known according to the presented methodology and used
in the calculus of bending rigidity, displacements, stresses, free vibration frequencies, etc.
regarding plates made of functionally graded materials.
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Table 3. The values of Young’s modulus E(zj) for different k values for 20 layers.

Layer No.

k Values

0.05 0.10 0.25 0.50 1.00 2.00 4.00 6.00 8.00

E(zj) [MPa]

1 327,785.62 284,365.90 193,266.96 119,015.30 77,750.00 70,193.75 70,000.12 70,000.00 70,000.00
2 342,342.08 309,258.74 232,228.45 154,897.00 93,250.00 71,743.75 70,009.81 70,000.06 70,000.00
3 349,387.64 321,798.24 254,327.10 179,601.55 108,750.00 74,843.75 70,075.68 70,001.18 70,000.02
4 354,127.71 330,414.70 270,503.15 199,682.30 124,250.00 79,493.75 70,290.75 70,008.90 70,000.27
5 357,720.51 337,042.23 283,504.64 217,045.91 139,750.00 85,693.75 70,794.50 70,040.22 70,002.04
6 360,621.89 342,455.11 294,488.90 232,565.37 155,250.00 93,443.75 71,772.93 70,134.08 70,010.14
7 363,059.54 347,044.82 304,062.87 246,727.19 170,750.00 102,743.75 73,458.56 70,365.31 70,038.59
8 365,163.91 351,037.85 312,588.11 259,835.46 186,250.00 113,593.75 76,130.37 70,862.08 70,121.23
9 367,016.89 354,577.52 320,298.89 272,095.27 201,750.00 125,993.75 80,113.87 71,826.82 70,329.97

10 368,673.28 357,760.42 327,356.47 283,652.76 217,250.00 139,943.75 85,781.06 73,560.60 70,803.36
11 370,171.64 360,654.88 333,876.99 294,616.34 232,750.00 155,443.75 93,550.43 76,491.09 71,789.11
12 371,540.11 363,311.09 339,947.09 305,069.14 248,250.00 172,493.75 103,887.00 81,203.89 73,704.29
13 372,799.88 365,766.99 345,633.31 315,076.52 263,750.00 191,093.75 117,302.25 88,477.44 77,217.75
14 373,967.31 368,052.02 350,987.91 324,690.99 279,250.00 211,243.75 134,354.18 99,321.37 83,359.55
15 375,055.31 370,189.50 356,052.79 333,955.49 294,750.00 232,943.75 155,647.31 115,018.37 93,662.78
16 376,074.24 372,198.19 360,862.09 342,905.66 310,250.00 256,193.75 181,832.62 137,169.47 110,343.66
17 377,032.53 374,093.47 365,444.00 351,571.48 325,750.00 280,993.75 213,607.62 167,742.94 136,526.29
18 377,937.16 375,888.04 369,822.15 359,978.45 341,250.00 307,343.75 251,716.31 209,126.55 176,518.76
19 378,793.95 377,592.59 374,016.48 368,148.45 356,750.00 335,243.75 296,949.18 264,183.40 236,148.17
20 379,607.82 379,216.14 378,044.07 376,100.47 372,250.00 364,693.75 350,143.25 336,311.17 323,162.06

5.2. Calculus of the Bending Rigidity of the Plate

The analytical calculation of the global stiffness of the FGP with relation (10) has the
advantage that it does not use the concept of a multilayer plate but has the disadvantage
that the Poisson coefficient value is considered constant.

The analytical calculation of the global stiffness of the FGP with relations (2) to (5) has
the advantage that it can take into account the variation of Poisson’s ratio (in steps, as for
all parameters of the FGP), but has the disadvantage that it has no connection with the
number of layers.

Table 4 presents the values of bending rigidity for different values of Poisson’s ratio, as
follows (in Table 4): ceramic material (νceram), average value of those two materials (νmed),
average values depending on power coefficient k of the layer values (ν), constant value of
0.30 (νconst) and aluminum material (νalum).

Table 4. The analytical values of bending rigidity by direct integration.

k

0.05 0.10 0.25 0.50 1.00 2.00 4.00 6.00 8.00

νceram [-] 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220
D [Nm] 2021.87 1928.13 1710.98 1484.42 1261.03 1087.29 938.37 847.36 781.93

νmed [-] 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275
D [Nm] 2081.42 1984.91 1761.37 1528.14 1298.17 1119.31 966.01 872.32 804.96

ν [-] 0.286 0.285 0.284 0.283 0.282 0.281 0.280 0.279 0.279
D [Nm] 2095.33 1997.09 1771.15 1535.68 1303.74 1123.34 968.78 874.15 806.65

νconst [-] 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300
D [Nm] 2114.30 2016.27 1789.20 1552.28 1318.68 1137.00 981.27 886.10 817.67

νalum [-] 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330
D [Nm] 2159.14 2059.03 1827.15 1585.2 1346.65 1161.11 1002.1 904.89 835.01
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For the constant value of Poisson’s ratio, ν = 0.30, the following results presented in
Table 5 were obtained, for the analytical calculus under concept of multilayered plate.

Table 5. Layer number influence on bending rigidity.

Power
Coeff.

Multilayer Concept, D* [Nm]

Number of Layers

5 10 20 30 40 80

k = 0.05 2129.23 2120.22 2115.80 2114.21 2113.70 2112.71
k = 0.50 1489.11 1459.76 1449.26 1446.45 1445.62 1444.36
k = 1.00 1126.43 1114.23 1111.12 1110.30 1110.34 1110.15
k = 2.00 856.44 863.69 865.58 865.69 866.06 866.18
k = 4.00 727.03 746.87 751.98 752.66 753.27 753.59
k = 6.00 676.06 705.83 713.71 714.83 715.71 716.21
k = 8.00 637.03 675.67 686.24 687.80 688.94 689.62

Analyzing the results from Tables 4 and 5, it is found that the bending rigidity of FGPs
varies with the power coefficient k of the material law, with the number of layers (when
using the concept of myltistrate plate) and with the Poisson’s ratio ν.

The graphic representations in Figure 8, in addition to the fact that they suggestively
and correctly present the way of bending rigidity variation, allow us to find analytical
variation curves, which can provide accurate data for any values of the parameters in the
respective range.
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ers is found. Such methodology is graphically presented in Figure 10a–f. The results com-
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The curves in Figure 8 also show us that the bending rigidity value is slightly influ-
enced by the Poisson’s ratio, Figure 8a and especially by the number of layers, Figure 8b.
Moreover, in many works the influence of the Poisson’s ratio variation is neglected and a
constant value of 0.30 is used. The mode of variation of the FGP bending rigidity versus
the power coefficient k, calculated based on the concept of multilayer plate and on the
analytical calculus by direct integration, is presented in Figure 9a. In Figure 9b, the errors
between those curves are graphically presented.

The use of the multilayer plate concept requires the adoption of a number of layers that
ensure the necessary accuracy of all results. For this purpose, by comparing the bending
rigidity variation curves depending on the number of layers with the analytical value, for
different values of the power coefficient, the most suitable value of the number of layers
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is found. Such methodology is graphically presented in Figure 10a–f. The results coming
from this methodology are comparatively presented in Table 6.
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Table 6. Analytical relations and their results.

k Analytical Relations Layer
Number

D* (LN)
[Nm]

D
[Nm]

Err.
[%]

0.05
D*(LN) = 2114.00613 + 35.13757 · e

−(
LN

5.93546
)

5 2129.13

2114.30

0.70
10 2120.52 0.29
20 2115.21 0.04
30 2114.22 0.00
40 2113.04 −0.01

0.50
D(LN) = 1443.657 +

626.80012

1 +
(

LN
0.98338

)1.56726

5 1489.11

1449.26

2.75
10 1459.77 0.73
20 1449.19 0.00
30 1446.60 −0.18
40 1445.53 −0.26

1.00
D*(LN) = 1109.97757 +

349.3275

1 +
(

LN
1.11269

)2.00133

5 1126.43

1111.12

1.38
10 1114.24 0.28
20 1111.05 −0.01
30 1110.46 −0.06
40 1110.25 −0.08

2.00
D*(LN) = e

[
6.76455 −

0.02282
(LN − 3.06099)

] 5 856.44

865.58

−1.06
10 863.73 −0.21
20 865.41 −0.02
30 865.84 0.03
40 866.04 0.05

4.00
D*(LN) = e

[
6.62653−

0.07287
(LN − 3.0604)

] 5 727.03

751.98

−3.32
10 746.97 −0.67
20 751.62 −0.05
30 752.82 0.11
40 753.37 0.19

6.00
D*(LN) = e

[
6.57677 −

0.11985
(LN − 3.01905)

] 5 676.05

713.71

−5.28
10 705.99 −1.08
20 713.16 −0.08
30 715.03 0.19
40 715.89 0.13

8.00
D*(LN) = e

[
6.54012−

0.16938
(LN − 2.96702)

] 5 637.02

686.24

−7.17
10 675.89 −1.51
20 685.52 −0.11
30 688.05 0.26
40 689.21 0.43
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Considering that the variation of the bending rigidity of the plate with the number of
layers is represented on the basis of a small number of points (only 5), between which the
variation is linear (a less credible case), we proceeded to find a mathematical relationship
with non-linear variation, which will pass as close as possible, through the respective points.

The respective relationship allows us to find out the stiffness of the respective plate for
any number of layers in the abscissa values range of the graph. This methodology applied
to those 5 points where the plate rigidity was known, led to very close results, for which
the calculus errors for 10 or more layers is below 1%, as seen in Table 6.

Looking at Figure 10, it can be seen that a number of 20 layers is the most suitable for
using the multilayer plate concept, except for the case when for k = 0.05, the most suitable
number is 30.

6. The Multilayer Plate Concept in the Numerical Calculus by FEM of FGPs

The multilayer plate concept can be used successfully, without changes in the theoreti-
cal foundations of the finite element method [27], with ordinary finite elements and with
validated and widely accessible calculation programs.

In what follows, the Ansys program and the 3D finite element was used [28,29] in the
available variants: ordinary structural finite element and multilayer finite element.

6.1. Finite Element Models

The numerical calculation by the finite element method was carried out using the 3D
finite element Solid185 from the Ansys program library [28–31].

This finite element was used with two options: structural element (Figure 11a), which
is a common finite element [31], implemented in many programs and multilayered finite
element (Figure 11b), which is a special finite element, dedicated to multilayer structures
(plates, beams, etc.).
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Figure 11. Finite element 3D, Solid185 with its options (structural and layered).

Finite element model is presented in Figure 12. Because the structure—Figure 3—
has two axes of symmetry [30,31] the finite element model is simplified one (quarter of
structure), as it is presented in Figure 12a,b. In Figure 13, two details of the discretization
are presented, referring to the finite element Solid185 with its options: structural element,
respectively multilayer element (Figure 13b).

As we can see looking at Figure 13b, when the multilayer finite element is used, the
functionally graded plate is modeled with a single layer of finite elements.

In all the numerical calculus presented here, the multilayer plate concept was applied
for a number of 20 layers. For each of the variants presented in Figure 13a,b, the material
properties for each layer are entered—by different methodologies, according to the user
manual [32].

In the analysis with FEM, we used a 3D model, with 3 dimensions of the finite
elements: 1, 2 and 3 mm; the calculation model was a quarter of the structure, the plate
having two axes of symmetry. The finite element models, for free vibration analysis is a
complete model, as Figure 14 shows.
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6.2. Calculus of the Maximum Transverse Displacement

The calculus of the maximum transverse displacement (it occurs in the center of the
plate) is calculated with the relation,

wmax =
pR4

64D
(20)

which leads to the following result:
wa

max =
5 · 106 · 0.054

64 · 2114.30
= 0.000230942 [m]

w∗max =
5 · 106 · 0.054

64 · 2115.80
= 0.000230778 [m]

(21)

The error between the values of wm
max and wa

max is only 0.07 percent. Practically, we
can consider only one value of the analytical calculus, namely:

wmax = 0.000231 [m] (22)

The results of the numerical calculus with finite elements, compared to the result of
the analytical calculation, are presented in Table 7.

Table 7. The values of the maximum transverse displacements.

ANALYTICAL
RESULT FINITE ELEMENT RESULTS

wmax [m] Finite
element size

Multilayered plate
(Each layer is isotropic and homogeneous,

common finite element)
Model I

Multilayered plate
(Each layer is isotropic and homogeneous,

multilayered finite element)
Model II

wmax [m] Er. [%] wmax [m] Er. [%]

0.000231
1.0 mm 0.000234 1.30 0.000236 2.16
2.0 mm 0.000228 −1.30 0.000236 2.16
3.0 mm 0.000220 −4.76 0.000236 2.16

The errors highlighted in the table validate both the application of the multilayer board
concept and the methodology used. Using the common finite element (Model I) leads
to even better results. than using the multilayer finite element (Model II), but it is more
sensitive to the size of the finite element. The multilayer finite element is less sensitive [32]
to the size of the finite elements. Figure 15 shows the field of transverse displacements of
the functionally graded plate. Figure 15a refers to common finite element modeling, and
Figure 15b refers to multilayer finite element modeling.

The above results and errors show us the validity of the concepts, methods and
methodologies used for problem solving. In all the details of the numerical calculation: the
type of the finite element, its size, the choice of the number of layers, the correctness of the
model, thus providing all useful information to any interested researcher, with access to the
usual calculation means and procedures (not dedicated to structures made of functionally
graded materials).

6.3. Calculus of the Stresses

Using the known relationships from plate theory, in clamped section, radial and
tangential stresses are calculated with de relations:

σr = −z
E

1− υ2 ·
pR2

8D
(23)
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σθ = −z · ν · E
1− υ2 ·

pR2

8D
(24)
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The maximum values of the stresses occur at the level of the extreme faces (z = ±h/2).
Since relations (23) and (24) are valid only for the homogeneous and isotropic plate, we
will apply them to a fictitious homogeneous and isotropic plate, with the same bending
stiffness, but with material characteristics available for entire plate thickness. This value of
Young’s modulus is considered to be the average value (Table 2, column 3). Therefore:

Using relation (23) we obtain:

σr =
h
2

Eav.

1− υ2 ·
pR2

8D
=

0.004
2
· 3.67 · 1011·

1− 0.302 ·
5 · 106 · 0.052

8 · 2114.3
= 595.922 [MPa] (25)

Table 8 presents in a comparative way, the results of the analytical calculus with the
numerical one, based on the concept of multilayer plate. The errors regarding the result of
the numerical calculation based on the multilayer board concept, compared to the result of
the analytical calculation, validate the presented and used model and methodology.

Table 8. The results of the stress calculus.

Maximum Stress Values on the Clamped Edges [MPa]

Analytical calculus 595.922

F. E. M.

Multilayered plate with common FE
(Model I) 599.000

Err. [%] 0.52

Multilayered plate with multilayered FE
(Model II) 594.000

Err. [%] −0.32

In Figures 16 and 17 the stress fields σx ≡ σr (on the plate contour) are presented, by
graphic post processing, on the deformed plate state.

In Figure 18, the variation of the radial stress on the thickness of the FGP is shown, in
the clamped edges is presented. The variation is approximately linear, as it is known from
general plate theory. As can be seen in Figure 18, in the middle of the plate, the stress is not
zero, so the neutral plane is not positioned at the half of plate thickness. Additionally, the
extreme stress values are not equal.
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The position of the neutral plane can also be defined with respect to the median plane
of the plate (the one that divides the thickness of the plate into two equal parts), by the
parameter d*, defined by the relation:

d* = d− h
2

(29)

The calculation of the two parameters, d and d* leads us to the results presented in the
table below (Table 9), for the different values of the power coefficient k.

Table 9. Neutral plane positioning parameters.

k d [m] d* [m]

0.05 0.00204 0.00004
0.50 0.00230 0.00030
1.00 0.00246 0.00046
2.00 0.00260 0.00060
4.00 0.00263 0.00063
6.00 0.00260 0.00060
8.00 0.00253 0.00053
10.00 0.00248 0.00048

The graphical representation of the variation of the positioning parameter d versus the
power coefficient k can be watched in Figure 20. We can notice that the shape of the curve
presented in Figure 20 is similar to the shape of the variation curve of Young’s modulus
versus power coefficient k (Figure 3).
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6.4. Calculus of the Free Vibration Frequencies

Analytically, we can determine the free vibration frequencies of thin circular plates [33,34]
of homogeneous and isotropic material, by the relations (30) and (31).

ωi =
αi
R2

√
D

ρ · h (30)

fi =
ω

2π
(31)

In the relations (30) and (31),ωi is the vibration angular velocity “i” [rad/s], fi is the
free vibration frequency “i” [Hz], R is the radius of the circular plate, h is the plate thickness
and αi is a constant which depends on the number of nodal circles (S) and the number
of nodal diameters (n), Figure 21, according to the data provided by the literature [33,34].
Some values of these parameters are presented in Table 10.
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Table 10. Some values of αi for some free vibration frequencies.

s n = 0 n = 1 n = 2

0 10.217 21.22 34.84
1 39.78 . . . . . . . . . . . . . . . . . .
2 88.90 . . . . . . . . . . . . . . . . . .

Using the concept of a multilayer plate, both for the analytical calculus and for the
numerical one by FEM, we will use the average value of the density for those 20 layers
(Table 2, column 10), denoted ρ* in bellow relation; the same observation is valid for the
bending rigidity of the FGP (D*). So, the relation (30) is written:

ωi =
αi
R2

√
D*

ρ* · h (32)

The values of the parameters D* and ρ* from relation (32) are those calculated based on
the concept of a multilayer plate (Table 5, column 4 and, respectively Table 2, column 10).

Table 11 shows the results of calculations based on the use of relations (30) and (31).
Based on these results, the curves in Figure 22 were constructed. It can be seen that the free
vibration frequency values decrease with increasing of the power coefficient values.

As Figure 22 shows, the rate of decrease in frequency with the coefficient k is the
smallest for the first frequency, and the rate of decrease grows up with the number of
frequencies (∆f3 > ∆f2 > ∆f1).
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Table 11. Some results of natural frequencies by analytical calculus.

Power
coef.

Freq.
No.

αi D* ρ* ω* f*

- [Nm] [kg/m3] [rad/s] [Hz]

k = 0.05
1 10.217

2115.80 3900.84
47,589.57 7574.12

2 21.22 98,840.24 15,730.93
3 34.84 162,280.58 25,827.78

k = 0.50
1 10.217

1449.26 3539.99
41,345.24 6580.30

2 21.22 85,871.20 13,666.84
3 34.84 140,987.39 22,438.86

k = 1.00
1 10.217

1111.12 3330.00
37,326.03 5940.63

2 21.22 77,523.57 12,338.27
3 34.84 127,281.86 20,257.55

k = 2.00
1 10.217

865.58 3120.00
34,035.31 5416.89

2 21.22 70,688.98 11,250.51
3 34.84 116,060.50 18,471.62

k = 4.00
1 10.217

751.98 2952.00
32,613.57 51,90.62

2 21.22 67,736.12 10,780.55
3 34.84 111,212.37 17,700.01

k = 6.00
1 10.217

713.71 2880.00
32,167.55 5119.63

2 21.22 66,809.78 10,633.12
3 34.84 109,691.45 17,457.95

k = 8.00
1 10.217

686.24 2839.99
31,763.84 5055.38

2 21.22 65,971.29 10,499.67
3 34.84 108,314.79 17,238.85
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Figure 22. Natural frequencies versus power coefficient k.

The numerical analysis with the finite element method of the free vibration frequencies
was carried out in the same model variants, as in the previous cases. The results of the
numerical analysis by FEM of the free vibrations for the considered FGP are presented
synthetically, tabularly and graphically, in Table 12, respectively, by Figure 22. The values
presented in Table 12 show that for first frequency, a very good concordance exists, regard-
less of calculus variants, compared to the analytical solution, based on the same concept of
multilayered plate.
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Table 12. Some results regarding natural frequencies [Hz], by FEM calculated.

k Freq. No.
Multilayer Plate Concept

Analytical
Solution

FGP
Model I Er. [%] FGP

Model II Er. [%]

0.05
1 7574.12 7588.80 0.19 7468.72 −1.39
2 15,730.93 15,501.50 −1.46 15,335.30 −2.51
3 25,827.78 25,014.80 −3.15 24,780.60 −4.05

0.50
1 6580.30 6613.50 0.50 6491.30 −1.35
2 13,666.84 13,523.00 −1.05 13,332.00 −2.45
3 22,438.86 21,854.00 −2.61 21,549.00 −3.97

1.00
1 5940.63 5980.30 0.67 5858.50 −1.38
2 12,338.27 12,230.00 −0.88 12,024.00 −2.55
3 20,257.55 19,772.00 −2.40 19,422.00 −4.12

2.00
1 5414.63 5445.40 0.57 5354.50 −1.11
2 11,250.51 11,123.00 −1.13 10,931.00 −2.84
3 18,471.62 17,960.00 −2.77 17,626.00 −4.58

4.00
1 5188.45 5186.70 −0.03 5101.60 −1.67
2 10,780.55 10,564.00 −2.01 10,436.00 −3.20
3 17,700.01 16,998.00 −3.97 16,796.00 −5.11

6.00
1 5117.49 5098.00 −0.38 5028.20 −1.74
2 10,633.12 10,368.00 −2.49 10,281.00 −3.31
3 17,457.95 16,651.00 −4.62 16,537.00 −5.28

8.00
1 5053.26 5026.10 −0.54 4964.40 −1.76
2 10,499.65 10,217.00 −2.69 10,150.00 −3.33
3 17,238.82 16,395.00 −4.89 16,327.00 −5.29

The analysis of the results in Table 12 and the graphs in Figure 23 shows that Model_I
(ordinary finite element) lead to the results closest to the analytical calculus regarding the
first three frequencies. The coincidence of the three curves is the best for the first frequency.
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The shapes of the free vibration frequencies for those two models used (Model_I,
Model_II) are presented in Figures 24–26.
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The errors, shown in Table 12, are graphically presented in Figure 27a for the first
frequency and in Figure 27b for the second frequency. It can be immediately seen that
Model_I lead to results closer to those calculated analytically.
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7. Conclusions

This work is the fruit of our endeavors to find ways, means, models and methodologies
for solving functionally graded plate calculation problems, with the currently available
means, without interventions in the fundamentals of analytical or numerical methods,
without the use of dedicated software products.

This being the objective of our research and of this paper, it meets our goal, that of
making available to a large number of researchers an accessible, efficient calculus way, that
complements the efforts and achievements of other researchers in this field.

The results of our research, some of which are presented in this paper, confirm the
fact that the multilayer plate concept, proposed and used by us for the functionally graded
plates calculus, proved not only valid, but very effective and suitable for solving of many
problems. Among these, in this paper are detailed subjects such as the calculation of the
bending rigidity, the calculus of the transversal displacements of the FGP, the calculus of
the stresses, the calculus for determining the position of the neutral plane and the calculus
of the frequencies of the free vibrations of the plate.

Certainly, other topics of the functionally graded plates calculus can be addressed,
because any other calculus subject is based on the main parameters involved in the calculus
of FGPs, illustrated in this paper. Regarding the rigidity calculus, an important choice
that the researcher must make is whether to use direct integration—relation (9)—or the
concept of a multilayer plate—relations (2)–(5). The results illustrated by Figure 9 show
significantly different results, especially for values of the power coefficient greater than 1.

On the other hand, all calculus based on the determination of the bending rigidity
with relations (2)–(5) lead to very close results, obtained both analytically and numerically.
The cause of the inconsistency, between the FGP bending rigidity calculus by those two
methods, is the hypothesis adopted according to which the Poisson’s ratio is constant
throughout the thickness of the plate, a fact that allowed a facility for the mathematical
calculus. In the multilayer plate concept, any parameter is considered constant, but only
on the thickness of the respective layer. In our opinion, the influence of the variation on
the plate thickness of the Poisson’s ratio is a weak one, but its complete neglect must be
adopted with caution. This conclusion is based on the study carried out and illustrated
in Figure 8. Therefore, for calculating the stiffness of FGPs, we recommend the multilayer
plate concept.
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Our research shows that the number of layers taken into account has a little influence,
but only on the calculus of the global bending rigidity of the FGP, Figure 8b. Taking into
account the variation of all the material characteristics on the plate thickness can be done
successfully and without mathematical difficulties, only on the basis of the multilayer plate
concept. The results can be significantly influenced, as can be seen from the analysis of
the results in Table 4. This paper gives an original and substantiated answer regarding
the choice of the number of layers, which leads to the desired accuracy. For the case study
presented in this paper, the minimum number of layers is 20.

Applying this relationship (statistically determined) for the case study in this paper
leads us to the number of layers used, namely 20 layers. We can recommend that the
number of layers to result from the condition that the layer thickness to be less than or
equal to the 20th part of the plate thickness expressed in meters.

The use, along with the usual finite element, of the multilayer finite element from the
Ansys program library, allowed us an additional validation of the models and methodolo-
gies used to approach the calculus of FGPs based on the multilayer plate concept.

These conclusions, together with the conclusions and observations stated in the previ-
ous subsections, highlight the value and originality of our study regarding the use of the
multilayer plate concept for the calculation of functionally graded plates.

The originality of this work is based on at least two strong points, namely: the use of
the multilayer plate concept based on the classical theory, well known and verified and
establishing a methodology for adopting a number of layers to ensure the desired accuracy.

Besides these, the use of the multilayer plate concept, which we recommend, allows
taking into account all the calculus parameters, including the Poisson’s ratio, which is
considered constant in the specialized literature. Regarding this aspect, the question arises
as to what that constant value should be.

As seen in this work, through the results in Tables 2 and 4 and Figure 8, the influence
of Poisson’s ratio exists, it varies both with the power coefficient k, it can be highlighted
both in analytical and numerical calculation and obviously, its influence depends on the
values corresponding to the materials on the extreme faces.

An acceptable and accessible calculation, in terms of precision and calculation effort,
taking into account any parameters that characterize the functionally graded plate, is
currently represented by the use of the multilayer plate concept as presented in this paper.

All the conclusions of this study are supported by key quantitative values such as: the
validity of the method, the model and the methodology through the error values from the
comparative analysis of the results regarding the maximum transverse displacement of the
plate (1.3%), the maximum radial stress in the plate (0.52%) and the calculation of the first
frequency of the free vibrations of the plate (0.19%).

Besides these, we demonstrated (with the power of quantitative determinations) that
the influence of the variation of the Poisson ratio is small, but not always negligible.

If the accuracy required for the calculation of a functionally graded plate also requires
taking into consideration the variation of the Poisson’s ratio, the model, method and
calculation methodology presented by us, based on the concept of a multilayer plate,
represents a valid and accessible solution.
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