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Abstract: Version Control and Source Code Management Systems, such as GitHub, contain a large
amount of unstructured historical information of software projects. Recent studies have introduced
Natural Language Processing (NLP) to help software engineers retrieve information from a very large
collection of unstructured data. In this study, we have extended our previous study by increasing our
datasets and machine learning and clustering techniques. We have followed a complex methodology
made up of various steps. Starting from the raw commit messages we have employed NLP techniques
to build a structured database. We have extracted their main features and used them as input of
different clustering algorithms. Once each entry was labelled, we applied supervised machine
learning techniques to build a prediction and classification model. We have developed a machine
learning-based model to automatically classify commit messages of a software project. Our model
exploits a ground-truth dataset that includes commit messages obtained from various GitHub projects
belonging to the High Energy Physics context. The contribution of this paper is two-fold: it proposes
a ground-truth database and it provides a machine learning prediction model that automatically
identifies the more change-prone areas of code. Our model has obtained a very high average accuracy
(0.9590), precision (0.9448), recall (0.9382), and F1-score (0.9360).

Keywords: machine learning; natural language processing; commit messages; change prediction model

1. Introduction

In the last decade, software development from a collaborative activity has turned into
a social phenomenon that relies on social coding platforms, such as GitHub, Bitbucket, and
Gitlab [1,2]. These platforms provide users with integrating mechanisms related to, e.g.,
issue reporting, pull requests, commenting, and reviewing support that produce data.

During software development, all the generated data are stored in Version Control
and Source Management System (SCMS) repositories. GitHub is the largest SCMS in the
word [3] and contains a wealth of data for each open source project. SCMS supports the
commit operation and keeps trace of all changes produced by developers to a file or a set
of files (containing either code or text).

Each commit is linked to various types of other data, such as the changed files, a
description of changes (i.e., commit message), and the author of the operation. A commit
message is an unstructured text [4] that is generated when a programmer applies a change
to the project on SCMS, and includes a short description of what has been done. Commit
messages are widely recommended, because they help developers to trace the rationale
behind a change and software evolution. The changes can be considered as a record of
functionality additions and bug repairs [5].

Unstructured data in software repositories have grown exponentially, as a consequence
the mining of unstructured data (MUD) [4] has become a popular research area in the
software engineering community. Some applications of MUD techniques are the automatic
generation of documentation, code change analysis, and bug proneness prediction.
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The SCMS service provides a log operation that retrieves all the information linked to
commits. Through log documentation one can monitor the evaluation of software projects
and understand the development and maintenance activities. However, code change
analysis through commit messages is a challenging task because the text is usually incon-
sistent (e.g., it can contain change for problem fix and new development) and composed
of informal language (e.g., the name of a package). These are the main barriers when it
is necessary to label the commit messages. To simplify this activity, Natural Language
Processing (NLP) [6,7] can be considered a possible solution to categorize code changes.

Since all the artifacts produced are plain text, NLP has been exploited to conduct a
variety of activities that range from the detection of developers’ emotion [8] and opinions
of a software product [8] to the improvement of test case selection [9], code review [10],
requirements engineering [11], and the detection of error-prone software components [12].

Over time, NLP has been applied on code changes and their consequences in terms of
code review and mapping of bug reports to relevant files [3,13]. Changes in code can be
caused by several factors, such as some modifications in requirements, the introduction of
new features, the resolution of bugs, or code refactoring; they may occur both during the
development and maintenance of a software system; they may increase the complexity of a
software system and can be the cause of the introduction of new defects [14].

The identification of change-prone software modules is the subject of code change pre-
diction activity. In the software engineering context, change prediction contributes to help
in maintenance operations and in monitoring code source complexity [15]. Change-prone
software modules are identified through the application of change prediction models [16]
that are usually machine learning-based. Many machine learning (ML) techniques have
been exploited to relate code features to change proneness of a software module [17] and
they have generally proven their effectiveness; nevertheless, their results seem to be affected
by the used ML technique [15].

In this study, we have extended the building of the historical code change dataset [18,19],
composed of commit messages and classified according to their types of changes and
corrections. This dataset can represent a ground-truth dataset for further studies in the
context of code change proneness prediction. We have executed systematic queries to
monitor the evolution of a software project and designed a multi-label classification model
to associate a commit message with more than one class label. With respect to our previous
studies [18,19], we have added other ML techniques, extended commit messages datasets
and better described the use of clustering techniques.

In order to highlight the main parts of our research we would like to answer the
following research questions:

RQ1: What has been the impact of NLP techniques on the data preparation step?

RQ2: Which ML classification techniques have the best performance of new commits
classification?

RQ3: Do the models behave differently for different projects?

In the following part of the paper, Section 2 describes previous work in existing
literature on similar studies. We detail our approach from Section 3 to Section 8. In
Section 9, we display our results followed by our validity analysis and, finally, in Section 10
we draw our conclusions.

2. Related Work

This section describes some previous work related to the different topics of interest for
our study.

2.1. NLP Techniques on Commit Messages

NLP is composed of several steps, such as tokenization [20], part-of-speech (POS)
tagging [9], lemmatization [21], stemming [22], and stop-words removal [20,22]. They have
been applied on commit messages to simplify the text parsing and obtain information on
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software development process. In the following, we summarize the exploitation of NLP in
some studies.

Dos Santos et al. [23] built a labelled dataset composed of commit entries found
in previous works. They demonstrate the usefulness of NLP techniques by comparing
performance metrics of only ML-based models to those of ML and NLP-based models.
Their findings show that an NLP-based model outperformed the first model, achieving
91% of F-measure for the commit classification task.

Nyamawe [24] applies NLP to commit messages with the aim of building a ML-based
refactoring recommender, afterwards this new methodology is compared with traditional
refactoring detectors over 65 open source projects. The results are encouraging since the
commit message-based method shows better performance then others.

Sagar et al. [25] focus on detecting the type of code refactoring performed. The
proposed model takes in input both structural information of the code, such as coupling
and complexity, and commit messages. After testing 800 Java projects and dataset of
5004 commits, their best findings show that the random forest-based model achieves an
average accuracy of 75%.

Rebai et al. [26] propose a framework that performs an NLP-based analysis of commit
messages and checks the software quality in the context of software refactorings. The
outcome is composed of context-driven refactoring recommendations. The evaluation
shows promising results and is carried out on six open-source projects and compares to the
state-of-art approaches based on static and dynamic analysis.

Rantala et al. [27] present a study in the context of technical debt. They work on
detecting commits that introduce self-admitted technical debt. Their approach exploits
NLP methods and is applied to five open-source projects. The authors compare their
research with a manually labelled dataset from prior work and show that their approach
achieved a +0.15 better area under the ROC curve.

Jiang et al. [5] train a neural machine translation algorithm using pairs of diffs and
commit messages from 1k popular projects on GitHub with the aim of creating a framework
that builds commit messages starting from diffs. NLP is used to find similar patterns in the
commit messages of their datasets.

Jung [28] presents a NLP-based framework that summarizes code modifications to
solve the difficulty of humans manually writing commit messages. The author shows that
the framework achieves good results in generating commit-messages.

The above-mentioned works employ and describe the NLP techniques we have applied
in the second step of our methodology, called data preprocessing. Our purpose is to clean
commit messages texts and to remove non-significant terms, to reach our achievements we
apply tokenization, POS tagging, lemmatization, and stop-words removal.

2.2. Classification of Commits

Commit messages help to keep track of the changes of software on SCMS (e.g., GitHub)
during the development and maintenance process. The true labels of these messages are the
foundation of ML classification techniques. Accurate classification of commits can help to
acquire knowledge about the software evolution process and detect software defect prone-
ness. In literature, there are few studies about classification of commit messages [3,29–31].
Research on the classification of commit messages is still ongoing.

Barnett et al. [32] consider the length of commit messages and the probability of a
defective commit as additional explanatory variables in (just-in-time) JIT models, which
aim at predicting the commits that have the probability to introduce defects in the future.
Traditionally, JIT defect prediction models only consider metrics of code-change itself,
including the size of change and the authors’ prior experience. This study uses Naive
Bayes classifiers to predict the probability of becoming a defective commit. The explanatory
power of the JIT models demonstrates a significant improvement for 43–80% of the studied
project, and it reaches 72%.
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Levin et al. [33] introduce developers’ information and add novel metrics that capture
temporal and semantic developer-level information. They use a generalized regression
modeling (GLM) in the R statistical environment to explore their dataset and build predic-
tive models. They define predictive models by combining traditional project-level metrics
with temporal and semantic information about developer to predict code-change types
(i.e., adaptive, corrective and perfective) in maintenance activity. Their study reaches a
promising predictive power with R2 values of 0.75, 0.83, and 0.64.

Levin et al. [30] extend their research, and utilize source code changes to classify
commit messages to understand maintenance activities. They created a manually labelled
commit dataset and assigned each entry into three categories (i.e., adaptive, corrective
and perfective) according to keywords. They used three types of datasets: keywords data,
source code-change types of data, and combined data (keywords and source code-change
types), and then applied classification algorithms (i.e., Random Forest, J48, and Gradient
Boosting Machine). Their study finally reaches a promising accuracy of 76% and Cohen’s
kappa of 63%.

Gharbi et al. [31] use the term frequency-inverse document frequency (TF-IDF) method
to extract useful features (i.e., keywords) from commit message text, and apply active
learning to reduce the workload of labelling commit messages. They use multi-label active
learning with an auxiliary learner strategy and logistic regression model classifier to set
up an iteration mechanism, and the classifier model is trained on the updated training
set and tested on a separate testing set. They achieve the best performance concerning
hamming loss with an average of 0.05 and a good performance for F1-score with an average
of 45.79%.

Sarwar et al. [3] propose an off-the-shelf neural network, called DistilBERT, and
fine-tune it for the commit message classification problem. They consider code-change
classifications, e.g., bug fix, feature addition, and performance improvement. These modifi-
cations contribute to increasing the complexity of a software system, causing the risk of
new defects. They utilize an NLTK package to preprocessing data and mutually labelled
commit messages with multi-label. Their model reaches an F1-score of 87%.

Leveraging previous works on commit classification we employ the same techniques
in the step of our methodology called extraction of features. In more detail, we use bag
of words and TF-IDF techniques with the aim of transforming each commit text into a
numeric feature.

2.3. Clustering Analysis of Commits

The above studies consider labelled commits for classification. In reality, labelling
commits have many problems: commit submissions are usually huge, so manual labelling
involves a lot of work; manual labelling can easily produce bias (e.g., different annotators
may assign different labels for the same commit message, influenced by their subjective
judgment or individuals’ experience); without uniform text structure and formal language
for commit messages, the classification of commit messages is a challenging task. Some
researchers have explored commits information with unsupervised machine learning tech-
niques.

Zhong et al. [34] use unsupervised learning for expert-based software quality esti-
mation. They firstly cluster a great number of software modules into some groups and
invite qualified experts to label each cluster as fault-prone or not fault-prone. Clustering
techniques performed in this study are k-means and neutral gas, and results demonstrate
that the neutral-gas algorithm outperforms k-means.

P. Hattori et al. [35] classify commits into four categories. Unlike categories proposed
by Swanson’s classification of maintenance activities, they propose classifications with four
activities in development and maintenance phases, i.e., forward engineering as a devel-
opment activity, re-engineering, corrective engineering, and management as maintenance
activities. They define some keywords for each classification: keywords are searched and a
commit is classified as soon as any keyword has been found in that commit message.
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Yamauchi et al. [36] propose a new method to cluster commits. Their approach detects
identifier names related to changes in each commit and classifies each commit via the bag-
of-words model with the identifier names. Identifiers names for each commit are extracted
from syntax differences. Their pilot study confirms the usefulness of their approach.

In our work, after analysing the methods used in previous literature, we selected the
k-means clustering technique thanks to its simplicity and efficiency.

2.4. Sentiment Analysis and Clustering Models

Zhang et al. [37] introduce a product ranking model based on sentiment analysis
combined with an intuitionistic fuzzy TODIM method. By leveraging a case study on a
mobile phone selection, this work illustrates all the steps followed for the product selection.
The first step regards product feature extraction by the Apriori algorithm based on online
reviews. The second step relies on sentiment analysis to detect the sentiment orientation
and intensity. The third step represents the sentiment orientation of the product features
by an intuitionistic fuzzy value. Finally, the intuitionistic fuzzy TODIM method is used to
determine the ranking results of the alternative products.

Zhou et al. [38] propose a novel approach in the context of online reviews. In their
study they describe a feature ranking algorithm that is capable of handling feature extrac-
tion and rank problem with diverse impact factors and high uncertainty.

Zhou et al. [39] focus on the relationship between emoji and personality recognition.
The authors propose two novel attention-based Bi-LSTM architectures to incorporate
emoji and textual information at different semantic levels. Their findings show that the
proposed methods are comparable to the state-of-the-art methods in performance over the
baseline models on the real dataset, demonstrating the usefulness and contribution of emoji
information in personality recognition tasks.

Zhang et al. [40] develop a new clustering method to cluster judgment debtors and
analyse their main characteristics. They employed the hesitant fuzzy linguistic term sets
(HFLTSs) representing the judgment debtors’ attributes. Furthermore, they propose new
distance measures of HFLTSs to effectively determine the judgment debtors and discuss
their properties. Finally, a new HFL-AHC method for clustering judgment debtors is
developed based on new distance measures and compared to previous methods.

The aforementioned works give an insight of some novel approaches of NLP, clustering
and feature extraction techniques employed in the context of sentiment analysis.

3. Methodology

In this section, we introduce in detail the methodology we have followed in our
research. The overall procedure consists of 7 steps as shown in Figure 1.

The first one comprises all the operations to construct the dataset made up of commit
messages from GitHub. The considered software projects are all belonging to the High
Energy Physics (HEP) domain and have been mostly developed in the C++ language.
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Figure 1. Methodology overview.
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The second step, called data preprocessing, includes all the necessary operations to
clean the commit messages and remove non-significant terms. This step has involved the
use of NLP techniques to clean the commit messages and to identify their key terms:

• Tokenization splits text into single words. Usually, word tokens are separated by
spaces and sentence tokens are separated by stop characters. In this study, we have
applied word tokenization removing punctuation and capital letters.

• POS tagging involves adding a part-of-speech category to each token in the text.
Categories include nouns, verbs, adverbs, adjectives, pronouns, conjunctions, and
their subcategories. POS tagging helps to identify the syntactic relationships between
words to understand the meaning of sentences.

• Lemmatization takes into consideration the morphological analysis of the words,
converting the given word to its base form in a dictionary. This approach recognizes
the inflectional form of the word and returns its basic form (for example, “are” is
reduced to “be”).

• Stop-words removal exploits words, such as articles, pronouns, and prepositions,
that bring little contextual information, but their occurrence frequency is high. This
activity reduces the number of features and the noise in text, and helps to obtain key
information.

The third step comprehends the extraction of features that have been filtered in the
fourth step. This step includes the text vectorization of the key terms found in the second
step, named data preprocessing. We have used bag of words (BoW) technique that assigns
1 when a certain word is included in a message and 0 otherwise. Afterwards, we have
applied the term frequency-inverse document frequency (TF-IDF) technique [22,41] on the
BoW terms to transform each text into a numeric feature. TF-IDF is an information retrieval
technique that tries to assess how relevant a word (i.e., term) is to a document (commit
message) in a collection of documents (log messages): the document concept is represented
in our context by a commit message, while the terms “collection of documents” refers to
the collection of log messages.

In the fifth step we have applied k-means clustering technique on the features extracted.
k-means [42–44] is a clustering method that divides n observations into groups so that
in each group every observation is closely related. This kind of clustering is the most
used because of its less complexity and efficiency. The number of clusters is required in
input before execution: to estimate k, the elbow method [45,46] and silhouette coefficient
score [47,48] can be used.

Then, in the sixth step, once obtained the labels through clustering, we have applied
several ML-based classification techniques; and produced our results in the seventh step. In
this step, we have applied a set of ML techniques to classify commit messages, as detailed
in the following:

• Naive Bayes and Multinomial Naive Bayes techniques that belong to the same model
family. The various Naive Bayes classifiers have a different assumption about the
likelihood of the features [49]. For example, in the Multinomial Naive Bayes classifier
(that is usually used when data contains discrete features), the assumption is that
features are generated from a multinomial distribution.

• Logistic Regression that is a special generalized linear model that is used to explain
the relationship between a dependent variable and one or more independent vari-
ables. Logistic regression can be binomial or multinomial: binary logistical regression
is used for a dependent variable that has two types of outcome, and multinomial
logistic regression is used for a dependent variable that has more than two types of
outcome [50].

• Decision Tree that is widely used in data mining, and there are two types of tree
models, i.e., classification trees and regression trees. They aim at predicting the value
of a target variable based on input variables [50].

• Random Forest that is a type of Bagging method, and its base classifier is a decision
tree. It is an ensemble learning method mainly for classification and regression tasks.
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It constructs a great number of decision trees at the training phase, and its final result
is the mode of the classes or the mean value of individual trees. During the training
phase, it also introduces randomness for feature selection. Only a subset of features
and samples are considered for each decision tree. Random Forest reduces the risk of
over-fitting.

• Bagging, also called bootstrap aggregating, that is an ensemble meta-algorithm that
aims at improving the model stability. Bagging trains each model using a subset that
is chosen randomly from the training set. It takes the majority vote class or takes the
mean value of the individual model as the final prediction result. It can be applied to
some base classifiers (e.g, decision trees, K-nearest neighbour, and logistic regression).

• AdaBoost is an adaptive boosting algorithm. The method increases the weight of the
misclassified samples of the previous classifiers so that the new classifier can focus on
the training samples that are prone to misclassification. As for the Bagging method, it
relies on Decision Tree models as base classifier thus its results can be compared with
tree-based methods [51] (e.g., Decision Tree and Random Forest).

This study has adopted the K-fold cross validation method in the model evaluation
phase. Cross validation is used to evaluate the performance of machine learning models [52].
This method ensures that the score of the model is not affected by the way researchers
choose the training and test sets. Cross validation split dataset D into K disjoint subsets:
D = D1∪ D2 ∪ ...∪ DK = (i 6= j). It makes the data distribution of each subset Di be the
same as possible. It takes K− 1 subsets as a training dataset and the remaining subset as
a test dataset, and repeats the procedure K times, eventually return the mean values of K
testing results. A key parameter of the K-fold cross validation is K (i.e., the number of fold
of a given dataset). Some choices are K = 3, K = 5, and K = 10, and the most widely used
value in model evaluation is 10. K = 10 is better for large data size [53] and it provides a
good trade-off between computational cost and bias. Therefore, 10-fold cross validation
has been used in this study.

Our model evaluation is based on different performance metrics, such as accuracy,
precision, recall, and F1-score. For binary classification problems see Equations (2)–(5):

accuracy =
tp + tn

tp + tn + f p + f n
(1)

precision =
tp

tp + f p
(2)

recall =
tp

tp + f n
(3)

F1-score = 2× precision× recall
precision + recall

(4)

where tp is the number of true positive, tn is the number of true negative, f n is the number
of false negative and f p is the number of false positive.

4. Database Construction

We have extracted commit messages from 167 projects belonging to HEP experiment
repositories: ALISW [54] contributed with 102 projects, LHCB [55] with 107 projects, CMS-
SW [56] provided 41 projects, and, finally, ROOT [57] provided 1 project. At the end, we
have kept 65 software projects (detailed in Table 1) with a number of commit entries higher
than 100.
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Table 1. Projects in HEP experiments, i.e., ALISW, LHCb, CMS-SW, and ROOT.

Experiment Name Project Names

ROOT root

Condorcet DevelopKit analysis-essentials
LHCb bender-tutorials developkit-lessons first-analysis-steps

opendata-project second-analysis-steps starterkit-lessons

cmssw cms-sw.github.io cmssw-config
cms-bot cms-docker genproductions
SCRAM root cmssdt-web

CMS-SW cmssdt-ib pkgtools hlt-confdb
cms-git-tools jenkins-backup Stitched
web-confdb cmssw-framework apt-rpm
apt-rpm int-build RecoLuminosity-LumiDB
DQM-Integration cmspkg

AliDPG AliPhysics AliRoot
CMake FairRoot KFParticle
RootUnfold Vc ali-bot
alibuild alidist arrow
aurora cctools clhep

ALISW cpython create-pull-request delphes
docks gcc geant3
geant3-oldfork geant4_vmc grpc
gsl liblzma libpng
libpng-old mesos-plugin rapidjson
release-validation root vault-gatekeeper-mesos

The commit message collection was conducted till March 2021 and have been ob-
tained by the git log command. Figure 2 shows examples of original unstructured commit
information.

Figure 2. Original commit data.

Each unstructured commit has been processed by extracting its meaningful features,
such as the name of author, date, the body of the message, the number of changed files,
the number of inserted lines, and the number of deleted lines. Table 2 shows how the
unstructured commit data are turned into structured data for each commit.

Table 2. Structured dataset example.

Commit ID Author Date Commit Message N. Files
Changed

N. Lines
Inserted

N. Lines
Deleted

1 XXX 2 March 2021 Whitelist-O2-GSI-specific-test-builds-785 1 1 0
2 AAA 3 March 2021 publisher-more-build-requires-784 1 2 0

3 MMM 4 March 2021 publisher-more-build-time-packages-
to-be-installed-on-CVMFS-782 1 2 0
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Furthermore, once obtained the structured data, we have gathered some statistics
concerning the commit messages, their projects, and project groups, such as the total num-
ber of days in which the commit messages have been pushed, the numbers of developers
involved, the total number of commits, the names and the total number of the modified
files, the number of authors per commit, and the range of project time period [start date,
end date]. Figure 3 shows the number of commits per project: 13 projects have more than
10,000 commits, 12 projects have commits between 2000 to 10,000, 40 projects have commits
between 100 to 2000. The sample size of these projects is adequate for training clustering
and classification models.

Figure 3. Number of commits per project.

Based on previous studies [31,41,58–60] and the knowledge of experts in software
engineering, we have identified categories of types of the commit. As regards the available
categories, we have used a previous taxonomy to which we have added other group types
by extracting key terms from the commit messages analysed: we have especially widened
the vocabulary to define better the type of corrective activity. The type of changes and type
of corrections in the commits (see Table 3) have been identified according to keywords in
the commit messages. We have first looked for keywords, and, after, if any keyword is
found in the commit message, we have labelled a commit accordingly. The type of changes is
used to keep track of general code change activities, while the type of corrections is mainly
related to software problems.
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Table 3. Types of changes and corrections.

Category Values

Development Improvement Performance
Optimization Cancellation Documentation [31]
Installation Deployment Debugging [31]
Build [31] Upgrade Versioning [31]

Type of changes Refactoring [31] Testing [31] Feature Addition
Update Configuration Dependency
Indentation [31] Initialization [31] Platform [31]
Corrective [31] Branch [31] Legal [31]
Merge [31] Revert New Functionality

Bug [31,60] Issue Solve
Patch [59,60] Abort [59,60] Error [59,60]
Bad [59,60] Conflict [59,60] Problem [59,60]

Type of corrections Wrong [59,60] Mistake Avoid [59,60]
Warning [59,60] Fix Anomaly
Failure Exception Crash Incident
Side Effect Fail Defect
Glitch

Table 4 shows an example of commits with two categories of types of commits. For
each commit, the values of type of change or type of correction can vary according to the
keywords of types that are in the corresponding commit message. The type of change
values of the first commit are test and build (types are connected with the symbol ‘-’): test
matches with the testing type; builds matches with the build type. Some commits have
other values for type of change or type of correction, when their commit messages do not
match any keywords in the dictionary. In this case, the characteristics of commits cannot be
recognized through the dictionary.

Table 4. Data with examples of types.

Commit Commit Message Type of
Change

Type of
Correction

1 “Whitelist-O2-GSI-specific-test-builds-785” test-build other
2 “report-pr-errors-fix-bad-formatting” improvement-corrective error-fix

3 “publisher-more-build-time-packages
-to-be-installed-on-CVMFS-782” build-install other

In this research, we have implemented an automatized labelling procedure based on
the two variable type of change and type of correction with the aim of checking the categories
obtained as a result of the ML classification techniques and using the resulting dataset for
the ground-truth activity [61].

5. Data Preprocessing

Figure 4 shows in more detail the steps we have followed.
Firstly, during the tokenization phase, we have split messages into words correctly

spelled; the filtering procedure has included the removal of stop words, punctuation, num-
bers, and non-English words. Furthermore, during the part-of-speech (POS) tagging phase,
we have identified nouns, verbs, and adjectives to put in input of the lemmatization [21,62]
process, which is the process of deriving the lemma, e.g., the base or dictionary form,
of a given word due to the existence of different inflected forms. An example of appli-
cation of the lemmatization process is the one that reduces the two forms “added” and
“adding” to the lemma “add” where the inflectional endings, such as “ed” and “ing” have
been removed.
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This step implied a manual cross check of the key terms found in every commit
message to avoid the removal of meaningful terms.

Figure 4. An example of step 2—Data preprocessing.

6. Feature Extraction

Figure 5 shows more in detail how the process of feature extraction works. We have
used BoW and TF-IDF techniques.

Figure 5. An example of step 3—Feature extraction.

Equation (5) introduces the value of TF-IDF

TF-IDF = t f (t, d)× id f (t) (5)

which is the combination of two metrics:

1. tf (t, d) is the term frequency (i.e., the number of times) of the term t in a document d;

2. idf (t) = log
(

N
1+|d∈D:t∈d|

)
is the inverse document frequency of the term t across a

set of documents D: the number 1 is used when the term t is not in the corpus;
|{d ∈ D : t ∈ d}| is the number of documents where the term t appears and tf (t, d) 6=
0; D is the set of documents d; N is the number of documents in the corpus |D|.
Higher values of TF-IDF entail a higher relevance of a term in a particular document.

Figure 6 highlights the TF-IDF outcome of the first commit in Figure 5: the terms merge
and pull have assigned low frequency values with respect to the whole collection of
log messages.
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Figure 6. TF-IDF outcome.

7. Clustering
7.1. Number of Clusters

Figure 7 shows the number of clusters for all studied projects. They range from 5 to 16:
19 projects have a number of clusters between 5 and 7; 14 projects have 10 to 12 clusters;
11 projects have a number of clusters between 13 to 14; and 3 projects have 15 to 16 clusters.

Figure 7. Number of clusters distribution of studied groups of projects (i.e., ALISW, LHCb, CMS-RW,
and ROOT).

Figure 8 shows the AliDPG project (in the ALISW group) cluster numbers (i.e., k
values) chosen by the elbow method on the left side and the silhouette coefficient score
on the right side. Plots report the maximum curvature as the k value: if the line chart
resembles an arm, the elbow implies that the underlined model fits best at the point. The k
value chosen by the two methods are usually different. In this study, the k value chosen
by the elbow method has been considered first: if the elbow method does not have the
maximum curvature point, the k value recommended by the silhouette coefficient would be
used. For the AliDPG project (see Figure 8), the Elbow method suggests k = 8 with the sum
of squared error within clusters equal to 824.589; the silhouette score also suggests k = 8
with an average silhouette coefficient of 0.228. Therefore, k = 8 has been set for AliDPG.

Figure 8. AliDPG—number of clusters. k values with the Elbow method on the left side and the
silhouette coefficient score on the right side.
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7.2. Clustering Evaluation

Only when there are patterns of clusters, the k-means clustering labels are valid and
can be used in classification models. Results show that for the majority of projects, patterns
appear in k-means clusters and each cluster is mainly dominated by one combination of the
type of change and type of correction. This is a promising result, which means k-means labels
can be considered as commits labels and applied to the following classification models.

In the following, considerations are given for the AliDPG project in the ALISW group.
The number of commits assigned to each cluster has been evaluated. Table 5 shows the
distribution of clusters for the AliDPG project: the cluster 0 has the most commits with
36.05% commits and cluster 7 has the least commits with 3.35% commits. There are 15.29%
commits in cluster 1, 6.24% commits in cluster 2, 8.25% commits in cluster 3, 11.10%
commits in cluster 4, 7.45% commits in cluster 5, and 12.02% commits in cluster 6.

Table 5. AliDPG—distribution of clusters.

Cluster Label Number of Commits Percentage of Commits

0 474 36.05
1 201 15.29
2 82 6.24
3 112 8.52
4 146 11.10
5 98 7.45
6 158 12.02
7 44 3.35

Before observing the patterns of clusters, the distribution of type of change and type
of correction variables of AliDPG have been analysed. Combing the two variables, Table 6
shows types with the percentage of commits above 1%. According to the identification of
types (detailed in Section 4), 23.35% of commits have other value for type of change and type
of correction, which means their types have not been identified by the defined dictionary.
K-means clustering can help assign these undefined commits into different clusters and
assign the label for each commit. The second most common type of change is merge without
any correction type, accounting for 14.9% of commits. The third most common type of
change is feature addition without any correction type, accounting for 14.1% of commits.
The following common type of change is corrective, which means type of correction has been
identified (fix), having 6.84% of commits. During this process, the idea that k-means
clustering can help to assign those undefined commits into different clusters and help to
explore more comprehensive patterns among commits, has been confirmed.

Table 6. AliDPG—examples of distribution of types.

Type of Change Type of Correction Number of Commits Percentage of Commits

other other 307 23.35
merge other 196 14.90

feature addition other 186 14.14
corrective fix 90 6.84

configuration other 63 4.79
update other 61 4.64

branch-merge other 45 3.42
cancellation other 37 2.81
corrective bug-fix 24 1.83

configuration - feature addition other 21 1.60
internal or ThirdParty dependency other 17 1.29

corrective fault 14 1.06
versioning other 14 1.06

For the majority of projects, each cluster is usually dominated by one combination
of type of change and type of correction. As shown in Table 7, the majority of undefined
commits have been assigned to cluster 0 where 227 commits have other type. Cluster 1 is
dominated by merge without some specific correction, having 186 commits in it. Cluster
2 is dominated by update and update with configuration. Cluster 3 is dominated by
the undefined type of change and type of correction but some commits also involve in
feature addition (with 16 commits) or fix (with 9 commits). Cluster 4 is dominated by fix,
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bug, and fix, and this cluster is mainly related to correction. Cluster 5 is dominated by
feature addition (with 36 commits) and undefined commits (with 35 commits). Cluster 6 is
dominated by feature addition and some commits are also related to configuration, revert,
and merge. Cluster 7 only contains commits that have the change combination of branch
and merge without any correction.

Table 7. Type of commits per cluster.

Cluster Number Type of Change Type of Correction Number of
Commits

Cluster 0

other other 227
configuration other 52
cancellation other 31
feature addition other 22
Internal or Third Party dependency other 14
corrective fault 13
corrective bug-fix 10

Cluster 1

merge other 186
corrective-merge patch 5
corrective-merge fix 3

Cluster 2

update other 56
configuration-update other 10
cancellation-corrective-feature addition-update fault 2
cancellation-update other 2
configuration-corrective-update fault 2
merge-update other 2
update-versioning other 2

Cluster 3

other other 40
feature addition other 16
corrective fix 9
cancellation other 5

Cluster 4

other other 40
feature addition other 16
corrective fix 9
cancellation other 5
versioning other 4
update other 4
configuration other 4

Cluster 5

feature addition other 36
other other 35
configuration other 7
corrective fix 4

Cluster 6

feature addition other 111
configuration-feature addition other 19
feature addition-revert other 5
feature addition-merge other 4
cancellation-feature addition other 3

Cluster 7 branch-merge other 44

Overall, the clustering has been used to identify potential patterns among commit
entries and to evaluate how the type of change and type of correction are distributed in the
commit entries. K-means clustering labels are used to classify the commit entries in the
classification phase.

8. Classification

In this study, we have faced a multi-class classification problem. We have computed the
overall performance metrics as the average of the different binary problems that constitute
the multi-class problem [51,63]. To achieve this purpose both macro-average and micro-
average techniques have been used; the obtained results may differ according to the method
involved. Macro-averaged techniques are more suitable to emphasize the ability of a
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classifier to behave well also on categories with few examples. In addition, macro-averaged
methods give to all classes identical weights, whereas in micro-average equal weights
correspond to per-document classification decision [63]. In our context, few samples per
category is the most common scenario, as a consequence, macro average is more used. The
employed performance metrics to assess model are macro-precision (macro.P), macro-recall
(macro.R), and macro-F1 (macro.F1), as summarized in Equations (6)–(8):

Precision : macro.P =
1
n

N

∑
i=1

Pi (6)

Recall : macro.R =
1
n

N

∑
i=1

Ri (7)

F1-score : macro.F1 = 2× macro.P×macro.R
macro.P + macro.R

(8)

where n is the number of classes; Pi represents the precision of different classes, and Ri is
the recall of the different classes.

9. Results and Validity

In this work, we have addressed the following research questions.
RQ1: What has been the impact of NLP techniques on the data preparation step? By

applying NLP techniques in the data preparation phase (i.e., data preprocessing, feature
extraction, and feature selection), the size of the feature matrix has been reduced. The
average reduction percentage of all used projects is 83%. Figure 9 shows the feature
reduction percentage per project belonging to HEP experiments, i.e., ALISW, LHCb, CMS-
SW, and ROOT:

feature reduction percentage per project = (number of features before NLP −
number of features after NLP)/(number of features before NLP)

(9)

Figure 9. Feature reduction percentage for studied projects.

According to Figure 9, in AliDPG, for example, 93% features (all words in original
commit messages) have been removed, only 7% features have been used in clustering and
classification phases. NLP helps to remove unimportant and redundant words and only
considers important keywords as features.

RQ2: Which ML classification techniques have the best performance of classifying
new commits? As shown in Table 8, Random Forest (RF), Bagging (BG), and Decision Tree
(DT) have the highest average metric scores (i.e., accuracy, recall, precision, and F1-score).
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The best classifier of the considered methods is RF, which implies that it has outperformed
other models for studied projects.

Table 8. The average metric scores of studies projects.

ML Techniques Accuracy Recall Precision F1-Score

AdaBoost (AB) 0.6377 0.4846 0.4359 0.4482
Bagging (BG) 0.9519 0.9280 0.9337 0.9247

Decision Tree (DT) 0.9517 0.9295 0.9345 0.9262
Logistic Regression (LR) 0.9027 0.8268 0.8810 0.8401

Multinomial Naive Bayes (MNB) 0.8454 0.7487 0.8252 0.7695
Naive Bayes (NB) 0.4979 0.6066 0.5252 0.4964

Random Forest (RF) 0.9590 0.9382 0.9448 0.9360

In addition, NLP techniques have an important impact on our results, because the
F1-scores have improved. The average F1-score of all examined projects has reached 0.9360
(see Table 8 for RF) and the maximum F1-score has achieved 0.9496. In our previous
study [18], without NLP techniques, the maximum F1-score was 0.8210 achieved by MNB.

Furthermore, from the perspective of all single projects, cmssw-config and Jenkins-
backup in CMS-SW experiment group have reached the highest F1-score (i.e., 0.9496) by
Decision Tree algorithm, as shown in Figure 10.

Figure 10. F1-score per project.

RQ3: Do the models behave differently for different projects? Table 9 summarizes
the statistics of performance metrics of the ML methods adopted. AdaBoost (AB), Logistic
Regression (LR), Multinomial Naive Bayes (MNB), and Naive Bayes (NB) methods show
huge variations in performances over projects. On the contrary, Bagging, Decision Tree,
and Random Forest show stability.
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Table 9. The statistics of performance metrics.

Metric Score ML Techniques Mean Std CV

AB 0.6377 0.1712 26.85
BG 0.9519 0.0506 5.32
DT 0.9517 0.0497 5.22

Accuracy LR 0.9027 0.0959 10.63
MNB 0.8454 0.1103 13.05
NB 0.4979 0.1827 36.70
RF 0.9590 0.0461 4.81

AB 0.4846 0.2151 44.40
BG 0.9280 0.0760 8.19
DT 0.9295 0.0699 7.52

Recall LR 0.8268 0.1565 18.92
MNB 0.7487 0.1908 25.49
NB 0.6066 0.1527 25.18
RF 0.9382 0.0691 7.37

AB 0.436 0.232 53.27
BG 0.934 0.973 7.85
DT 0.935 0.068 7.27

Precision LR 0.881 0.149 16.86
MNB 0.825 0.204 24.74
NB 0.525 0.146 27.89
RF 0.945 0.063 6.63

AB 0.4482 0.2265 50.54
BG 0.9247 0.0792 8.56
DT 0.9262 0.0736 7.94

F1-score LR 0.8401 0.1584 18.85
MNB 0.7695 0.2027 26.34
NB 0.4964 0.1687 33.97
RF 0.9360 0.0706 7.54

In this study, the Coefficient of Variation (CV) of performance metrics per ML tech-
nique has been considered to measure the stability and variation of model performance.
CV is the ratio of the standard deviation (std) to the mean of a random variable and it
is independent of the unit of measurement used for the variable. As shown in Table 9,
CV values of Bagging, Decision Tree, and Random Forests for different metric scores are
smaller than 10%, which implies model stability for different projects. CV values of Ad-
aBoost, Logistic Regression, Multinomial Naive Bayes, and Naive Bayes are higher than
15%, which implies huge variations of the metric scores for different projects. In addition to
the CV values, the distribution of metric scores has been examined. Figures 11–14 show the
boxplots of metric scores for different ML techniques. For the studied projects, AdaBoost,
Logistic Regression, Multinomial Naive Bayes, and Naive Bayes show great variations for
accuracy, recall, precision, and F1-score. In their boxplots, the differences between the first
quartile and the third quartile (i.e., IQR) are large.

Figure 11. Accuracy boxplot.

There are some potential threats to validity. The first one is the diversity of language
habits may lead to different data distribution. Authors of commits may have different
language habits, so the style of commit messages may be different. They may use different
languages to express the same meaning. On average, there were 68 authors per project. So
there may be some uncertainty in the original data.

The second one is that only HEP projects stored on GitHub have been studied, and
this may have led to a project bias. To overcome this problem, it could be useful to apply
the model to software projects in other fields.
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Figure 12. Recall boxplot.

The last threat is due to the different sample sizes per project. This may result in
projects with huge sample sizes having some advantages to reach better results. To over-
come this limitation, the sample size has been taken into account during the result analy-
sis phase.

Figure 13. Precision boxplot.

Figure 14. F1 score boxplot.

10. Conclusions

The study is motivated by the demand for analysing commit messages of open source
software on source code management system to monitor the evolution of software and
identify code change activities related to software problems.

This study has achieved a promising result. Firstly, the unstructured data have been
well manipulated by NLP prepossessing tools and the TF-IDF method. Key information in
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commit messages has been extracted and contributed to clustering and classifying commits.
The average feature reduction percentage is 0.83%, and the maximum value of F1-score
compared to the previous research [18] has improved. Secondly, code change patterns have
been identified by k-means clustering, which allows a better understanding of software
evolution activities. Finally, ML Classification models used in this study provide a useful
tool to classify new commits into different categories which connect to different types of
code change and correction activities.

Concerning the performance of different classification models, this study has vali-
dated the robustness of tree-based models on text classification analysis. Metric scores
(i.e., accuracy, recall, precision, F1-score) show that models based on trees (Decision Tree,
Random Forest, Bagging) have outperformed other models: Random Forest has the highest
average score of accuracy (0.9590), recall (0.9382), precision (0.9448) and F1-score (0.9360);
Decision Tree has reached the maximum F1-score of 0.9497.

For future work, more clustering methods will be utilized to explore patterns of code
changes. In addition, more information of commit activities (e.g., changed files, lines of
changed code, inserted code, deleted code) will be considered. This may help to obtain
more satisfying results of clustering and classification for code change activities.
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