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Abstract: Event Detection (ED), which aims to identify trigger words from the given text and classify
them into corresponding event types, is an important task in Natural Language Processing (NLP); it
contributes to several downstream tasks and is beneficial for many real-world applications. Most
of the current SOTA (state-of-the-art) models for ED are based on Graph Neural Networks (GNN).
However, a few studies focus on the issue of GNN-based ED models’ robustness towards text
adversarial attacks, which is a challenge in practical applications of EDs that needs to be solved
urgently. In this paper, we first propose a robustness analysis framework for an ED model. Using
this framework, we can evaluate the robustness of the ED model with various adversarial data.
To improve the robustness of the GNN-based ED model, we propose a new multi-order distance
representation method and an edge representation update method based on attention weights,
then design an innovative model named A-MDL-EEGCN. Extensive experiments illustrate that the
proposed model can achieve better performance than other models both on original data and various
adversarial data. The comprehensive robustness analysis according to experimental results in this
paper brings new insights into the evaluation and design of a robust ED model.

Keywords: robustness; graph neural networks; event detection; multi-order distance

1. Introduction

Event Detection (ED) aims to identify trigger words from a given text and classify
them into corresponding event types. As shown in Figure 1, an ED model aims to identify
destroyed in S1 as an Attack trigger word and fired in S2 as an EndPosition trigger word.
As an important task in Natural Language Processing (NLP), ED contributes to Event
Argument Extraction [1] and Event–Event Relation Extraction [2,3] , and it is beneficial
for real-world applications, including Automatic Text Summarization [4], Information
Retrieval (IR) [5], and Question Answering (QA) [6].

S1: During a war, invaders destroyed the whole town.
S2: The airline fired that pilot for fault in work.

Event Detector Attack

Event Detector EndPosition
Figure 1. Example of Event Detection.

Traditional models for ED are mainly based on machine learning methods [7–10].
However, the performance of them was heavily dependent on manually selected features.
With the improvement of deep learning theory and technology in recent years, deep
learning has proven to be more suitable for NLP tasks [11–13]; therefore, more and more
researchers use deep learning methods to perform ED [14–17]. Recently, more research
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has focused on how to convert a text sequence into graph-structured data to incorporate
rich semantic information and then introduce Graph Neural Networks (GNN) into the ED
task [18–22], and the current SOTA (state-of-the-art) models for ED are based on GNN.

Most of the above models are based on default and perfect dataset assumption, i.e., the
label quality is high, the noise is low, and the distribution is balanced; hence, it is expected
that patterns learned from such a dataset can be generalized. However, a real dataset that
does not satisfy the completeness tends to result in a trained model that contains the same
biases as the training data [23]. The research on ED mainly focuses on the construction of
a model and evaluates the model performance according to the metrics on high-quality
datasets, such as Precision, Recall, and F1-score, which may lead to an overestimation of
the model’s ability [24].

In the field of NLP, the robustness of a model is apparently an essential indicator, and a
model that has strong adaptability to various input texts is desired for different applications
in which their inputs are not always perfect. Although some researchers have begun to pay
attention to the robustness of NLP models [25–30], there are few studies on ED models. The
issue of ED models’ robustness is a challenge for both theoretical research and the practical
application of ED, which needs to be solved urgently.

Differently from usual studies that propose a robust model for one specific instance
among various kinds of data contamination or imperfections (e.g., modeling the adversarial
data or adopting any adversarial optimization objective), our work follows a totally differ-
ent route toward more general robustness. The main idea is to introduce an endogenous,
robust enhancement mechanism rather than propose thousands of over-specific models
or methods in isolation. We first propose a Robustness Analysis Framework on an ED
Model to evaluate the performance of the ED model facing various text transformations
and subpopulations, based on which we can comprehensively analyze the ED model’s
robustness. To improve the robustness of the GNN-based ED model, we then propose
a new multi-order distance representation method (for a syntactic dependency graph of
input sentence) to better capture associations between long-distance words and an edge
representation update method based on attention weights to better distinguish the im-
portance of different edge types in edge update. The effectiveness of the two methods is
verified by extensive experiments.

The main contributions of this paper are:

• In the absence of current research on the robustness of ED models, we propose a
Robustness Analysis Framework on an ED Model that facilitates the comprehensive
analysis of the ED model’s robustness.

• We propose a new multi-order distance representation method and an edge represen-
tation update method based on attention weights to enhance EE-GCN, then design an
innovative GNN-based ED model named A-MDL-EEGCN. Our experiments illustrate
that the performance of this model is better than that of the previously proposed
GNN-based ED models on the ACE2005 dataset, especially when adversarial data
exists.

• Using the robustness analysis framework on the ED model, we perform extensive
experiments to evaluate the performance of several GNN-based ED models, and the
comprehensive robustness analysis according to experimental results brings new
insights to the evaluation and design of robust ED models.

2. Related Work
2.1. Event Detection

Early on, the research on ED mainly adopted machine learning methods that through
feature engineering use statistic and linguistic features such as N-grams, part of speech,
etc. [7–10]. However, feature engineering greatly determines the overall performance of
the ED model, and also has high requirements for human resources and expertise.

The most prominent advantage of deep learning over machine learning is learning
effective features from data through multi-layer neural networks [31]. With the gradual
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improvement in deep learning theory and technology in recent years, deep learning has
proven to be more suitable for NLP tasks [11–13]; therefore, more and more researchers
use deep learning methods to perform ED. Convolutional Neural Networks (CNN) [14]
were applied to capture the semantic associations between continuous words through
convolution operation; thereby candidate trigger word could aggregate the contextual
information. The dynamic multi-pooling strategy [15] was used to model various semantic
associations and thus enhanced CNN. Nguyen et al. considered that general CNNs are
poor at fusing discontinuous words, then they proposed the skip-grams method [16] to
make up for this deficiency. Ghaeini et al. constructed a Recurrent Neural Networks (RNN)
model for the first time [17] to detect multi-word events.

Recently, more research has focused on how to convert a text sequence into graph-
structured data to incorporate rich semantic information, and then GNN was introduced
into the NLP tasks. Nguyen et al. first leveraged Graph Convolutional Networks (GCN) [18]
to perform ED through a syntactic dependency tree and achieved remarkable model
performance. Liu et al. introduced a self-attention mechanism and highway network
structure into GCN [19] to improve the performance of ED. MOGANED utilized multi-
order syntactic dependency to aggregate each order word vector representation through the
attention mechanism [20], further improving the performance of GCN. Cui et al. proposed
the learning of the embedding vectors for the edges of the syntactic dependency graph
by the node update module and edge update module [21], and achieved the SOTA effect
of GCN. Lai et al. achieved an improvement in the GCN effect by using trigger word
filters [22] to reduce the influence of irrelevant noise between adjacent words.

2.2. Robustness Research in Natural Language Processing

Papernot et al. first studied how to design adversarial text sequences for RNN [25].
Alzantot et al. designed a heuristic optimization algorithm [26] to semantically and syntac-
tically generate similar adversarial text samples. A greedy algorithm named PWWS [27]
was proposed for generating adversarial text samples that preserve lexical correctness,
grammatical correctness, and semantic similarity. TextAttack is a platform that can use
adversarial attacks, data augmentation, and adversarial training for NLP tasks [28], which
only needs to define an objective function, a set of constraints, a text transformation, and a
search method to reproduce the previously proposed or customed text attack algorithm
for generating high-quality adversarial text samples. OpenAttack is different from and
complementary to TextAttack in supporting all attacks, multilinguality, and parallel process-
ing [29]. TextFlint is a multilingual robustness evaluation platform for NLP tasks [30] that
not only incorporates text transformations, adversarial attacks, subpopulations, and their
combinations but also automatically generates visualization reporst, which facilitates a
comprehensive robustness analysis.

The issue of the ED model’s robustness is of great practical significance and needs to
be solved, but there are few studies on it. Lu et al. proposed a ∆-representation learning ap-
proach [32] distinguish ambiguous trigger words and detect unseen/sparse trigger words
by effectively decoupling, learning, and fusing alterable incremental parts for event repre-
sentation, instead of learning a single comprehensive representation. Although Lu et al.
considered the ambiguity and sparsity of the input text, they ignored the crafted adversar-
ial text, making the ED model not very robust. Liu et al. proposed a training paradigm
called Context-Selective Mask Generalization [33], which improved the model’s robustness
against adversarial attacks, out-of-vocabulary (OOV) trigger words, and ambiguous trigger
words. However, Liu et al. just utilized the algorithm of Alzantot [26] to generate adversar-
ial samples perturbing only the trigger words or all words to evaluate the robustness of the
ED model without considering different types of text transformation and subpopulation,
which makes the analysis of the model’s robustness not comprehensive enough.
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3. Robustness Analysis Framework on Event Detection Model

This paper regards ED as a sequence labeling task. The input of the task is a sequence
of natural text, each word in the text is regarded as a token, and the sequence of event
types corresponding to each token is used as the output. Formally, given an input sequence
S = (w1, w2, . . . , wn) containing n tokens, the corresponding sequence of event types is
ET = (et1, et2, . . . , etn), where the event types are annotated by ‘BIO’ schema.

TextFlint can only perform the robustness analysis of specific NLP tasks such as
Named Entity Recognition (NER), Relation Extraction (RE), Part of Speech Tagging (POST),
and Sentiment Analysis (SA). Therefore, we use the functions provided by TextFlint to
build a Robustness Analysis Framework on an ED model, as shown in Figure 2. This
framework utilizes TextFlint to generate adversarial data, including transformed data and
data subpopulations from the original data, and compares the performance of the ED
model to the original data, based on which we can comprehensively analyze the model’s
robustness. The text transformations and subpopulations used are described below.

Original data TextFlint

Transformations

Model for Event Detection

Subpopulations

Experimental Results Robustness Analysis

Figure 2. The architecture of the robustness framework on an ED model .

3.1. Text Transformations

Keyboard, Ocr, SpellingError, Tense, Typos, and SwapSyn were selected from the
universal text transforms. Meanwhile, since A-MDL-EEGCN, EE-GCN, and MOGANED
all take entity types into input, EntTypos was selected from the NER-specific text transfor-
mations. The descriptions of the above seven text transformations are shown in Table 1.

Table 1. Text transformations and corresponding descriptions.

Transformations Descriptions

Keyboard Simulates the errors of how people type words with the use of keyboard.
Ocr Simulates Ocr error by random values.

SpellingError Simulate possible mistakes in the spelling of words.
Tense Transforms all verb tenses in a sentence.
Typos Randomly inserts, deletes, and swaps a letter within one word.

SwapSyn Replaces one word with its synonym provided by WordNet [34].
EntTypos Applies Typos for words with entity type label.

3.2. Subpopulations

Due to the length of each input text not being exactly equal, the sequence labeling
model usually sets a maximum text length to fill short text (by placeholder) and truncate
long text in order to output a prediction sequence with the same length. Therefore, the
length subpopulation was chosen to screen the original data based on text length for
generating data subpopulations.

In addition, the Perplexity of the GPT-2 language model [35] was chosen to screen the
original data to generate data subpopulations; its formula is as follows:

Perplexity(S) =
(

p(w1, w2, . . . , wn)
)− 1

n
, (1)

where p(w1, w2, . . . , wn) is the probability that GPT-2 language model generates text se-
quence S = (w1, w2, . . . , wn).
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In short, the higher Perplexity of S, the weak its plausibility; thus Perplexity could
roughly embody the plausibility of S.

4. Model

For the given input sequence S = (w1, w2, . . . , wn), we vectorize each wi to
xi = [wi, ei] ∈ R(dw+de), where wi (pre-trained on the NYT corpus by the skip-gram
method) and ei (entity type is annotated by ‘BIO’) represent the word-embedding vector
and entity-type embedding vector of wi, dw and de are the dimension of above vectors,
respectively. Then we feed [x1, x2, . . . , xn] ∈ Rn×(dw+de) into a Bi-LSTM with a hidden
size of dl/2,

−→
hi ,
←−
hi ∈ Rdl /2 are the forward and reverse hidden states of xi. Finally,

hi = [
−→
hi ,
←−
hi ] ∈ Rdl was used to represent each token wi.

Meanwhile, we conduct syntactic dependency parsing on the input sequence S.
Figure 3 shows the syntactic dependency parsing of S2 in Figure 1. By taking words
as nodes and dependencies as edges, we obtain a syntactic dependency graph (adjacency
matrix).

The airline  fired that pilot for fault in work

det

ROOT

nsubj det

dobj

prep

dobj

prep

pobj

Figure 3. Example of syntactic dependency parsing.

4.1. Edge-Enhanced Graph Convolution Networks

Due to previous GNN-based ED models usually ignoring dependency label infor-
mation, which conveys rich and useful linguistic knowledge for ED, Cui et al. proposed
EE-GCN [21], which embeds the edges of the syntactic dependency graph into a vector
space to obtain an edge representation tensor EM = [emi,j,k] ∈ Rn×n×p, where emi,j ∈ Rp

is the vector representation of the corresponding edge in the syntactic dependency graph,
it contains more semantic information than 0 or 1 of the traditional adjacency matrix.

Denoting H0 = (h1, h2, . . . , hn) ∈ Rn×dl . After each node (word) representation was
converted to the dimension of dg, H0 is the input state of layer 1 in EE-GCN. The vector of
each node in layer l ∈ [1, L] updates by aggregating the information from its neighbor nodes
through the edge representation tensor, so the output state of each layer l (Hl ∈ Rn×dg ) is
as follows:

Hl = σ(Pool(Hl
1, Hl

2, . . . Hl
p)), (2)

Specifically, the aggregation is conducted channel by channel in the adjacency tensor
as follows:

Hl
k = EMl−1

:,:,k Hl−1
k WN , k ∈ [1, p], (3)

where Pool is the mean-pooling operation to compress information from all channels,
WN ∈ Rdg×dg is a learnable parameter, and σ is the ReLU activation function.

The vector of each edge in layer l updates as follows:

eml
i,j = WE[eml−1

i,j ⊕ hl
i ⊕ hl

j], i, j ∈ [1, n], (4)

where WE ∈ R(2∗dg+p)×p is a learnable parameter and ⊕ is the join operation.
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We feed the final representation of each word (node) hL
i to a fully-connected network,

which is followed by a softmax function to compute the probability distribution over all
event types as follows:

p(yi|hL
i ) = softmax(WChL

i + bC), (5)

where WC maps the word representation hL
i to the feature score for each event type, and

bC is a bias term. The event label with the largest probability is chosen as the classifica-
tion result.

The bias loss function is used to enhance the influence of event labels during training:

J(θ) = −
Ns

∑
i=1

ni

∑
j=1

log p(yt
j |si, θ) · I(O) + α log p(yt

j |si, θ) · (1− I(O)), (6)

where Ns is the number of sentences, ni is the number of words in sentence si, and yt
j is

the ground-truth event label of words; I(O) equals 1 if the event type of the word is ‘O’,
otherwise 0; α is the bias weight large than 1.

4.2. Enhancement of EE-GCN

According to the statistical results in the ACE2005 dataset, about 51% of event-related
words need at least two hops to get to the corresponding trigger words in the syntactic
dependency graph; we propose a new multi-order distance representation method, i.e.,
introducing multi-order distance labels, which contributes to capturing the associations
between long-distance words so that it enhances the contextual awareness of trigger words,
especially in long sentences. “nsubj” (nominal subject), “dobj” (direct object), and “nmod”
(noun compound modifier) make up 32.2% of trigger word-related dependency labels,
we propose an edge representation update method based on attention weights to better
distinguish the importance of different edge types in an edge update when multi-order
distance labels are introduced.

Differently from usual studies, which propose a robust model for one specific instance
among various kinds of data contamination or imperfections, our work follows a totally
different route toward more general robustness. The main idea is to introduce an en-
dogenous robust enhancement mechanism rather than propose thousands of over-specific
models or methods in isolation. Hence, inspired by the way humans read and understand
natural language, we believe that comprehensive comprehension of multi-order distance
words is an intrinsic mode of human understanding of language, which helps humans
fully understand the meaning of sentences. Even if there are a few mistakes (i.e., various
kinds of data contamination or imperfections) in the sentence, it will not affect their correct
understanding. Therefore, drawing on this natural endogenous robustness mechanism,
we propose the multi-order distance representation method (similarly in the design of
attention weights) in a targeted manner to achieve more general robustness.

The above two methods are utilized to enhance EE-GCN, thereby, we design a new
GNN-based ED model named A-MDL-EEGCN, and its architecture is shown in Figure 4.
A-MDL-EEGCN makes up for the defect of EE-GCN that does not consider multi-order
distance and the defect of MOGANED that ignores dependency labels information [36].
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Figure 4. The architecture of A-MDL-EEGCN.

4.2.1. Multi-Order Distance Representation Method

Distance refers to the syntactic distance (least hops) between two words (nodes) in the
syntactic dependency graph. As shown in Figure 5, the solid line and dashed line represent
1-order distance and multi-order distance, respectively.

firedThe

airline

that

pilot

for

fault

in

work

nsubjdet

dobj

prep

pobj

dobj

prep
det

distance: 2

distance: 2 distance: 2

distance: 2

distance: 3

distance: 2

Figure 5. Syntactic dependency graph with multi-order distance.

MOGANED hierarchically introduced multi-order distance [20]; that is, each order
word vector is calculated by the corresponding GCN layer and aggregates to be the final
vector representation by the attention module. However, this method requires considerable
computation. Therefore, we propose a new multi-order distance representation method, i.e.,
label 2-order distance and 3-order distance to “distance: 2” and “distance: 3”, respectively.
In this way, the embedding vectors of these edges can participate in the node and edge
update of EE-GCN instead of separate calculation. Thus the EE-GCN is able to better
capture associations between long-distance words.

4.2.2. Edge Representation Update Method Based on Attention Weights

Separately introducing the above method into EE-GCN led to performance degra-
dation, thus we considered that the edge representation update method of EE-GCN had
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difficulty distinguishing the importance of different edge types in edge updates when
multi-order distance labels are introduced. For example, as shown in Figure 5, “pilot” is the
object in the “EndPosition” event and “fired” is a trigger word, so the edge “dobj” between
“fired” and “pilot” should contain important semantic information and accordingly have
higher weights after the edge update.

In short, each edge should have a weight associated with its head and tail node when
updated. Therefore, an edge representation update method based on attention weights is
proposed in this paper. Each vector representation of an edge is updated according to the
weight score, which is calculated from the attention aggregation of its head and tail node
vector representation; this method can be mathematically defined as follows:

eml
i,j = eml

i,j ·WA · [hl
i ⊕ hl

j], i, j ∈ [1, n] (7)

where WA ∈ R(2∗dg)×1 is a learnable parameter.

5. Experiments
5.1. Implementation Details

The experimental dataset is ACE2005, and data preprocessing is the same as MO-
GANED and EE-GCN, including syntactic dependency parsing (by using the Stanford
CoreNLP toolkit [37]) and data split.

Precision (P), Recall (R), and F1-score (F1) are used as metrics. For the sequence label-
ing task, positive and negative refers to words with non-“O” and “O” labels, respectively.
The mathematical definition of the above metrics as follows:

P =
TP

TP + FP
× 100% (8)

R =
TP

TP + FN
× 100% (9)

F1 =
2× P× R

P + R
(10)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively.
Obviously, P indicates the percentage of predicted positives that are true positives,

while R indicates the percentage of actual positives that are true positives, F1 is the harmonic
average of P and R.

In order to fairly compare the performance, each model’s hyper-parameters are the
parameters that achieve the best performance on the original data. The hyper-parameters
of A-MDL-EEGCN are listed in Table 2.

Table 2. Hyper-parameters of A-MDL-EEGCN.

Hyper-Parameters Values

Dimension of word vectors (dw) 100
Dimension of entity types vectors (de) 50
Dimension of edge labels vectors (p) 50

Dimension of Bi-LSTM (dl/2) 100
Dimension of GCN (dg) 150

Layers of GCN (L) 2
Learning rate 0.001

Optimizer Adam [38]
Bias weight of loss function (α) 5

Batch size 30
Epoch 100

Maximum text length 50
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5.2. Model Performance on the Original Data

The experimental results on the original data are shown in Table 3, where MDL-
EEGCN refers to EE-GCN with the separate introduction of proposed multi-order distance
labels (MDL), and A-EEGCN refers to EE-GCN enhanced by the edge representation update
method based on attention weights.

Table 3. Performance of each model on the original data.

Model P R F1

GCN-ED [18] 77.9 68.8 73.1
JMEE [19] 76.3 71.3 73.7

MOGANED [20] 79.5 72.3 75.7
GatedGCN [22] 78.8 76.3 77.6

EE-GCN [21] 76.7 78.6 77.6
MDL-EEGCN 78.9 75.6 77.2

A-EEGCN 77.6 78.4 78.0
A-MDL-EEGCN 78.2 78.7 78.4

Bold indicates the highest value.

The results show that the A-MDL-EEGCN we proposed is better than MOGANED and
GatedGCN on R and F1 and than GCN-ED, JMEE, and EE-GCN on all metrics, illustrating
A-MDL-EEGCN can achieve better performance than the previously proposed GNN-based
ED models. We further analyze the effect of the two enhancement methods.

Although MDL-EEGCN is better than MOGANED on R and F1, it is worse than
EE-GCN on R and F1. By checking the edge representation tensor EM of MDL-EEGCN, we
find that this is because the l2 norm (regarded as the association score of word pair) of the
embedding vector of edge “distance: 2” is larger than some 1-order distance edges. Thus
we believe that when new edge types are introduced into EE-GCN, it is difficult for the edge
representation update method of EE-GCN to distinguish the importance of different edge
types in the edge update, but instead dilutes the original semantic, then degrades the
performance. A-EEGCN improves on P and F1 compared to EE-GCN, confirming the
effectiveness of the edge representation update method based on attention weights. A-
MDL-EEGCN outperforms A-EEGCN and MDL-EEGCN on R and F1, meanwhile, its EM
accurately embodies the difference of each order distance edge importance, demonstrating
the positive effect of MDL and the necessity of combining the two methods we propose in
this paper.

5.3. Model Performance on the Adversarial Data

We did no additional tuning to the models so that the models’ robustness can be
compared fairly and the effectiveness of the two methods proposed in this paper can
be validated.

For text transformations, we set Tense to transform all verb tenses in the input text,
SwapSyn to replace each word in the input text with probability = 0.5, and other text
transformations to transform each word with probability = 0.3.

For subpopulations, since the maximum text length of GNN-based ED models we
use is 50, we screen the original data with text lengths, then generate length ≤ 50 and
length > 50 to evaluate the effect of padding and truncating input text on the model
performance. Meanwhile, we use the Perplexity of the GPT-2 language model as a metric
to sort the original data, then generate Perplexity-0-50% and Perplexity-0-20% to evaluate
the model performance on input text with high Perplexity.

The data generated by text transformations and subpopulations are collectively called
adversarial data. Notice that due to the randomness of text transformations we performed
more than 10 runs (conducting text transformations by setting different random seeds)
to test the performance of models. The t-test (significance level p = 0.05) indicates that
there was no statistically significant difference among these 10 test runs , so that we only
report one test run result. Table 4 shows the performance of A-MDL-EEGCN, EE-GCN,
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and MOGANED on each adversarial data, i.e., the robustness evaluation results of these
GNN-based ED models.

In most cases, it is consistent with the performance on the original data that A-MDL-
EEGCN performs best on R while MOGANED on P. The definitions of P and R are both
critical, but they are generally contradictory. Therefore, we used composite metric F1 to
embody the model’s robustness and conducted the following analysis.

Table 4. Robustness evaluation results.

Adversarial Data
A-MDL-EEGCN EE-GCN MOGANED

P R F1 P R F1 P R F1

Keyboard 72.1 58.1 64.3 70.9 59.5 64.7 70.8 48.4 57.5
Ocr 69.6 52.6 59.9 73.2 47.9 57.9 71.5 42.7 53.5

SpellingError 71.1 56.7 63.1 73.4 55.1 62.9 69.2 47.5 56.3
Typos 71.7 49.9 58.8 71.0 47.7 57.0 71.9 40.7 52.0

EntTypos 74.5 77.5 75.8 71.8 75.9 73.8 71.8 65.3 68.4
Tense 71.1 77.2 74.0 71.3 74.9 73.1 72.2 63.9 67.8

SwapSyn 73.2 72.4 72.8 69.6 68.5 69.1 73.7 60.0 66.2
Tense + Typos 70.5 51.9 59.8 69.6 49.0 57.5 66.2 39.5 49.5

SwapSyn + Typos 68.9 41.9 52.1 70.3 40.3 51.2 67.4 34.3 45.5
Length ≤ 50 79.2 79.1 79.1 78.0 78.6 78.3 79.7 72.6 76.1
Length > 50 63.6 71.8 67.5 59.0 59.0 59.0 73.4 56.3 63.7

Perplexity-0-50% 69.8 77.0 73.2 68.8 74.4 71.5 73.6 66.1 69.7
Perplexity-0-20% 65.8 75.0 70.1 67.0 70.9 68.9 69.6 64.9 67.1

Bold indicates the highest value.

5.3.1. Model Robustness to Character-Level Transformations

Keyboard, Ocr, SpellingError, Typos, and EntTypos all transform one or several char-
acters in a word, which are character-level transformations. The experimental results show
that the robustness of models to EntTypos is significantly (p = 0.05) stronger than that of
the other four. It is obvious that EntTypos is only for words with entity labels so that it
causes less perturbation to the original sentence than other character-level transformations.
Further, we analyze the robustness of the models to four other text transformations one by
one:

• The perturbation caused by Typos is irregular, and the transformed words will almost
certainly be OOV words, so the robustness of models to Typos is very weak.

• Although Ocr simulates possible errors in reality, the robustness of the model to it is
also weak. We believe that because the corpus for training word vectors is manually
typed rather than recognized from pictures, errors caused by Ocr rarely appear in the
corpus.

• SpellingError and Keyboard simulate errors that may be caused by humans and
appear in the corpus, so models are more robust to these two text transformations
than the other two.

It can be seen from the above analysis that the robustness of the GNN-based ED
models to character-level transformations is related to the training corpus. Although these
models use the same pre-trained word vectors, A-MDL-EEGCN and EE-GCN are more
robust to character-level transformations than MOGANED. We infer that since MOGANED
only considers adjacency instead of dependency labels, it is more sensitive to noise from
transformed words.

5.3.2. Model Robustness to Word-Level Transformations

Both Tense and SwapSyn are word-level transformations because they transform one
word into another. The experimental results show that the model’s robustness to Tense and
SwapSyn are both relatively strong, while the former is a little stronger than the latter. We
have conducted the following analysis:
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• Transforming all verb tenses basically does not change the meaning of the sentence,
and the semantic difference between verbs in different tenses is small; the correspond-
ing word vectors should be very similar, thus Tense causes little perturbation to the
original sentence.

• Replacing words with synonyms slightly changes the meaning of the sentence (e.g.,
the degree of emotion); although word vectors of synonyms should also be similar,
SwapSyn causes perturbation to the original sentence a little more than Tense.

It can be seen from the above analysis that the GNN-based ED model can cope with
the slight change in lexical features well; that is, the model can handle sentences with
different expressions but nearly the same meaning. A-MDL-EEGCN is more robust to
word-level transformations than EE-GCN and MOGANED.

5.3.3. Model Robustness to Combining Text Transforms

We combine Typos, the character-level transformation that has the greatest effect on
model performance, with word-level transformations. As the character-level transformation
will affect the recognition of words, we first conduct SwapSyn (Tense) on the original
sentence and then conduct Typos, which is called SwapSyn + Typos (Tense + Typos). The
experimental results show that the combination of text transformations will further degrade
the model’s performance, which suggests that we can create more new combinations of
text transformations to evaluate the robustness of the model more comprehensively.

5.3.4. Model Robustness to Data Subpopulations

The experimental results show that the performance of models upgrade where the
length ≤ 50, while degrade where length > 50. The reason is obvious:

• In the program, the model masks the filled placeholder (padding) at the end of the
input sequence. When reading, humans also ignore meaningless symbols at the end of
sentences. Therefore, a short sentence filled with placeholders still retains the original
meaning.

• On the contrary, truncation affects the structural and semantic integrity of a long
sentence (i.e., making the sentence incomplete and difficult to understand for both
humans and machines); thus the important information may be lost.

Most of the text in the original data are short sentences so that the performance of each
model on length≤ 50 is comparable to that of the original data. However, many associations
between long-distance words exist in a long sentence, A-MDL-EEGCN and MOGANED
significantly (p = 0.05) outperform EE-GCN on length > 50, illustrating that it is essential
to capture these associations in long sentences for ED. Moreover, the time consumption in
the training of MOGANED (about 1000 s per epoch) is much longer than that of A-MDL-
EEGCN and EE-GCN (about 6 s per epoch) in our experimental environment, illustrating
that A-MDL-EEGCN is efficient and effective.

The model’s performance on Perplexity-0-20% is worse than that on Perplexity-0-50%,
and the model’s performance on Perplexity-0-50% is worse than that on the original data,
indicating that the Perplexity of GPT-2 could measure the quality of the input text and the
quality of the input text affects ED model performance. Perplexity-0-20% is the top 20%
input texts in terms of Perplexity, and the models’ F1 on it decreases by not more than 10,
demonstrating that the GNN-based ED models are robust in regards to texts with high
Perplexity. Moreover, more metrics than just Perplexity are needed to measure the quality
of the input text to evaluate the ability of the ED model to detect events represented by
low-quality text.

6. Conclusions

To study the robustness of ED models, we first proposed a Robustness Analysis Frame-
work on an ED model to evaluate the performance of the ED model facing various text
transformations and subpopulations. Further, we proposed a new multi-order distance rep-
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resentation method and an edge representation update method based on attention weights
to enhance GNN, then designed an innovative GNN-based ED model, A-MDL-EEGCN.
The main idea is to introduce an endogenous robust enhancement mechanism rather than
propose thousands of over-specific models or methods in isolation. Finally, we used the
Robustness Analysis Framework on an ED model to perform extensive experiments, i.e.,
a comprehensive robustness evaluation for several GNN-based ED models and analyzed
the reasons based on the experimental results for the difference in the model’s robustness
on different adversarial data.

Notably, our proposed model showed a general superiority over other GNN-based
models, especially when different adversarial data exist. The comprehensive robustness
analysis, according to the experimental results, brings new insights into the evaluation and
design of robust ED models.

This study had the following limitations:

1. This paper only focuses on GNN-based ED models, while other models are also
worthy of in-depth study and analysis. We expect more novel and robust model
structures to emerge in the future.

2. Text transformations and subpopulations contained in the Robustness Analysis Frame-
work on an ED model were limited, and we encourage future studies focused on ED
model robustness to consider more types (or combinations) of adversarial text attacks.
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