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Abstract: As robots become more versatile and combined with a variety of Internet-of-Things
technologies, they will be able to serve humans in their daily environments. To provide services by
satisfying various human requests, several robots must take turns performing a series of tasks that
constitute the service. Because the order of service delivery may differ according to user requests,
sequential interdependencies between tasks should be considered. Therefore, we propose a dynamic
service scheduler consisting of dynamic sequencing and allocation that can handle scheduling of
tasks with user requests such as prioritizing certain tasks or actively changing their order in a multi-
agent environment. We experimented with the proposed method in four situation scenarios by
building a virtual reality smart office consisting of multiple robots with a robot arm, mobile robot,
and smart lamp. The results demonstrated the feasibility and effectiveness of the proposed approach
by satisfying the user requirements in different situations. The proposed approach constitutes a basis
for further development of efficient in-office and at-home multi-agent environments.

Keywords: service scheduling; multiple agent; human-centered approach

1. Introduction

Service robots capable of assisting humans in their environments [1] are rapidly being
developed to provide services such as household chores, in-home delivery, healthcare, and
assistance in offices, hotels, hospitals, and educational environments [2,3]. Combining
robotics with innovations in computer vision, sensors, and the Internet of Things (IoT)
enables robots to interpret and monitor real-world settings contextually. Improvements
in speech recognition and artificial intelligence facilitate intuitive human interactions
with robots [4,5]. Accordingly, the application of human–robot interaction technology is
gradually expanding to the daily service industry, and research on robots that provide
highly complex and personalized services to users is in progress [6].

To provide services to users using service robots in daily life, various challenges need
to be addressed. Because service robots should be able to accept and complete the user
requests, service tasks must be appropriately scheduled so that they are allocated to a
suitable robot and executed according to the user requirement. However, existing research
on robot scheduling does not reflect these characteristics because human multi-robot system
interaction was first introduced in the industry to reduce the workload of human workers
and increase the productivity of manufacturing processes. In terms of efficiency, the parallel
execution and synchronization of robots [7] have been a major concern for multi-robot
systems. We thoroughly studied how the overall workload is distributed to ensure that
the work is performed quickly. For example, Refs. [8,9] proposed a scheduling system that
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dynamically changes the task distribution according to the variability of human workers
so that multiple robots can safely and efficiently collaborate with humans. These studies
focused on enabling industrial robots deployed in highly structured and well-controlled
environments to work as efficiently as possible. Service robots, however, must be able to
operate in a dynamic environment to satisfy the continuous and varying service requests
of humans [1].

Moreover, humans have complex requirements for the services that they want to
receive. These requirements typically include complex procedures (e.g., priority of service
delivery) and guidelines that the robot should follow [10]. This results in services with
sequential interdependencies. Tasks with multiple sequences are common in both natural
and artificial systems. They must be consecutively completed to properly perform the
entire task. Therefore, a single service can contain multiple individual subtasks that must
be performed sequentially. For example, serving coffee in a kitchen may involve two
separate subtasks: pouring coffee into a cup and delivering the cup to the user. If each
subtask is performed by a different robot, the second robot must wait for the first robot
to finish pouring coffee into the cup. In addition, we can consider a service that delivers
coffee to a specific cup that the user wants. In this case, the robot should be able to bring
a specific cup into the kitchen and then proceed with coffee serving. This implies that
the detailed requirements of the user significantly change the sequential interdependence
of the entire service. For this reason, multiple robots in a service environment need to
collaborate, considering the correlation between services to fully accommodate the needs of
users. This implies that the service robot must be able to dynamically accept user requests
and provide services accordingly. However, current multi-robot systems do not consider
the sequential relationship between services that occur according to the user’s request,
resulting in performance degradation or failure to fulfill. A given service can be divided
into multiple sequential subtasks, each of which can vary in interdependencies owing
to dynamic user requests, which are addressed by coordinating several heterogeneous
robots with different capabilities. Therefore, for effective deployment of service robots,
a systematic scheduling framework that can dynamically adjust and manage schedules
according to user requests is required.

In this paper, we propose a novel scheduling framework in which multiple robots can
effectively provide services through collaboration in response to dynamic requests of the
users. The main contributions of this study are as follows.

1. We present a scheduler in which multiple heterogeneous agents perform services with
sequential interdependencies.

2. The proposed scheduler can accept complex and dynamic user requests.

The remainder of this paper is organized as follows. Section 2 presents the related
work, and Section 3 explains the proposed scheduling scheme. Section 4 describes several
simulated scenarios and analyzes the results to evaluate the effectiveness of the scheduler.
Finally, Section 5 concludes the paper.

2. Related Work

Task scheduling is important for the effective service coordination of multiple service
robots. So far, multi-agent task scheduling has been mainly studied in industrial robots, as
multiple agents introduce parallel implementation into the workflow enabling tightly organized
executions and thus promote efficiency and minimal cycle times (see, e.g., [7,9,11,12]). Many
studies on industrial robots have only considered the presence of homogeneous agents [11]
because industrial robots operate in a specific setting (e.g., assembly lines [7–9,13,14] and
warehouse operations) to maximize productivity and efficiency. However, service robots
have diverse forms, functions, and abilities [4,10]. Even if the same task is presented,
the time and prerequisites required to complete the task vary depending on the type of
robot responsible. The main purpose of a service robot is to satisfy service requests of
a user. Therefore, it is important to properly incorporate agent heterogeneous variables,
such as the ability of each agent and duration of task scheduling. To achieve this, first, a
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given task must be modeled to recognize how the entire task is performed in terms of task
component relationships and agent dependencies. The task model describes resources, task
sequences, and procedural knowledge of tasks [15]. With an appropriate task model, agent
heterogeneity can be introduced by mapping agent variables to each task component. A
variety of useful task-modeling tools are available for designing and modeling specific
processes. Many scheduling methods utilize precedence relationships [16–18], temporal
constraint networks [19], hierarchical task decompositions (such as AND/OR trees [7,9,20]),
and Petri nets [9,12], especially because they directly encode parallel implementations.
Some studies considered individual agent capabilities and obtained the final schedule
based on capability indicators which evaluate the extent to which an agent is suitable for
a specific execution [13,16]. The decision-making algorithms are often based on a multi-
criteria approach using a cost function. Frequently used optimization methods for selecting
the optimal schedule include tree search algorithms [7], genetic algorithms [17,21], and
mixed-integer linear programming [18]. Ref. [7] proposed a hierarchical framework and
used an A* graph search algorithm to generate an optimal task sequence for agents in
human–robot assembly. Ref. [18] found a final schedule using variants of mixed-integer
linear programming in an optimization framework that generates task assignments and
schedules for a human–robot team to improve both time and ergonomics. However, these
studies do not consider system variability but primarily pursue optimization regarding
ergonomics or cost-effectiveness. They lead to fixed schedules and do not allow flexibility
for spontaneous decisions.

Dynamic task allocation for heterogeneous agents makes it possible to cope with
systemic inconsistencies better than a single fixed schedule. Various methods have been
proposed to estimate the duration time of robots (e.g., methods-time measurement strat-
egy [14,22]). More recently, [8] used a directed acyclic graph to represent the dependency
relationship between tasks and introduced a delay-predicting strategy that predicts human
duration and adjusts the robots’ schedules accordingly. Similarly, Refs. [9,20] applied an
AND/OR tree to specify all asymmetric actions that an agent can perform in a single graph
to enable just-in-time rescheduling of the assembly process according to agent volatility and
robotic failures. Ref. [20] suggested an online perception-simulation planning framework
to dynamically allocate tasks to robots or humans by always monitoring the manufac-
turing process. Ref. [12] defined time Petri nets for specific actions or part transports to
handle multiple executions. The proposed adaptive scheduling scheme predicts the future
evolution of a system based on the agent’s previous performance. However, the above
literature requires precise knowledge of the progress of a task at a specific point in time.
This type of full observability can only be achieved by continuously monitoring the agents’
actions or the state of the workspace with a wide range of sensor settings. Moreover, such
approaches primarily rely on manually specified task descriptions for the deployment
of static jobs and do not consider incorporating new incoming tasks into the system and
dynamic changes in the execution order of tasks. Alternatively, Ref. [11] uses the largest
total amount of processing time first strategy and schedules with a tabu-search algorithm
to minimize the makespan of the jobs with tree-formed precedence constraints. However,
the study did not consider the agent heterogeneity. The service robot must be able to accept
new requests from the user and create a newly ordered task model in real time. Therefore,
task scheduling for service robots must embody dynamic task sequencing (modeling) and
dynamic task allocation. Ref. [23] suggests a heuristic algorithm based on a greedy for
dynamic scheduling for tasks. It reduced the total workload but could not adjust the
specific timing and task sequency.

Recently, studies have been conducted on service robots used in smart homes. A
knowledge-based framework for object search [24] and ontology-based smart home ar-
chitecture [25,26] have been proposed. Probabilistic inference has been applied to hybrid
task planning to address task failures [27]. These studies combined intelligent space and
semantic task models to dynamically create and sequence a new task but focused on
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context-aware services and did not address the scheduling aspect. In addition, all the
executions were dedicated to a single robotic agent.

In summary, the limitations of the previous robot task scheduling approach are as
follows. (1) Existing methods determine an optimal schedule based on maximum produc-
tivity, but service robots must prioritize user demands and specifications over efficiency.
(2) Only environmental variabilities such as delays and robotic failures are considered,
and the user activity dynamics, such as user requests, are not considered. (3) They require
precise knowledge of the overall progress via constant monitoring. (4) The previous robot
task scheduling method could not accept new tasks or user requirements and build newly
sequenced task models in real time. Therefore, we believe that a new approach to task
scheduling for multiple service robots is essential to ensure the accessibility of service
robots in daily environments. We propose a systematic scheduling framework that can
dynamically adjust and manage a schedule according to user requests for the effective
provision of services.

3. Human-Centered Dynamic Service Scheduling Approach
3.1. Proposed Scheduling Framework Overview

Humans can receive services from one or more agents (service providers) of different
types and functions in their daily lives. There are two types of service providers. An active
agent can perform a variety of tasks through their own processes with distinct mechanisms,
whereas a passive agent is limited to specific processes, such as turning a smart lamp on
and off in a home management system. In this study, both are referred to as agents and can
share and collaborate on a given task according to their capabilities. These capabilities are
assumed to be predetermined and stored in a database so that the scheduler can distribute
tasks accordingly.

When a user requests a service, it is set as a single job. The job is then divided into an
ordered set of operations, where each operation is characterized by its numbered sequence
and the agents that can execute it. In this study, we define an operation as an essential
action that is completed independently by a single agent. Thus, a job can be performed by
multiple agents one after another completing sequential operations.

A user may have various service requirements, and each job may have additional
constraints on when it should be provided to the user. A user may request that a specific
service be provided before or after a different service, or only when a specific condition
is met. For example, a user can ask for a meal and coffee to be delivered simultaneously
or for coffee to be delivered first. Therefore, services must be provided in a manner that
satisfies these requirements.

To provide the requested services, an appropriate agent must perform the task while
satisfying the constraints requested by the user. That is, the job is decomposed into
operations that each agent can perform, and these operations must be performed by
the appropriate agent based on the agent’s capability and duration while satisfying the
constraints requested by the user.

In this study, a scheduling framework is proposed to allow multiple agents to properly
perform the services requested by the user while satisfying dynamic requests (Figure 1).
The proposed scheduling framework comprises three main components.

1. Job Decomposer: It decomposes the job requested by a user into a list of operations
that an agent can perform.

2. Operation Manager: It sequences and organizes the operations using operation queues.
3. Operation Allocator: It allocates an operation to an appropriate agent.
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3.2. Multi-Agent Scheduler
3.2.1. Job Decomposer

The service is independent and has no correlation with other services. However, the
service job requested by a user may have specific requirements regarding when it should
be provided. We categorized these additional user requirements as follows:

• Perform the service first;
• Perform the service last;
• Perform the service in a specific order;
• Perform multiple services simultaneouly;
• Perform the service only when specific conditions are met.

These additional requirements contribute to sequential interdependencies among
different services. As we have defined a service as a single job, a job may contain a
certain sequence of activities and prerequisites, detailing how it should be delivered. The
activities are transcribed into operations, and prerequisites are stored for a specific time and
situational condition that can be followed by multiple agents. For agents to successfully
provide services, a job must be translated into an executable one, considering the agents’
capabilities and action units. We divide a job into operations, which are a collection of
essential actions completed independently by a single agent. This allows multiple agents
to perform a job by completing sequential operations. For example, when a person asks
for coffee, the job ”Bring coffee“ can be divided into two operations: ”Get coffee from the
coffee machine“ and ”Bring coffee to the table”. Each operation has its own order because
bringing coffee should only be executed after getting coffee is complete.

The job decomposer decomposes the requested jobs into operations and creates an
operation list for user requests. When the user requests M jobs for the agents to perform,
each job J1, J2, . . . , JM is decomposed into a sequence of one or more operations. For
example, job J1 is decomposed into (O11, O12, . . . , O1n). We assumed that there is a job-to-
operation database for properly mapping jobs to operations. The operation list (Table 1)
consists of variables such as the operation type, object, capable agents, and the agent’s
operation completion time, etc. Operation types can be ”fetch”, ”drop”, or ”move“ etc. The
object is the target of the operation. The start and end positions are where the operation
starts and ends, respectively, and information is obtained from the target object. A capable
agent lists the agents that can perform the operation. The duration of each agent is a
predetermined nominal number and represents the execution time of the operation. If the
agent is unable to perform the operation, the duration time is set as infinite. As previously
described, the job decomposer is presented as pseudocode in Algorithm 1.
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   i ← i + 1 

  end 

 end 

Table 1. Example of an operation list. 

Job Op 
Seq. 
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Arm 
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Time 
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Time 

Bring cube 1 Move Bring cube to the table 
from the shelf 

Cube A 75 ∞ ∞ 

Bring coffee 
1 Fetch Get coffee from the cof-

fee machine 
Cup1 M ∞ 50 ∞ 

2 Move 
Bring coffee to the table 
from the coffee machine Cup1 A, M 55 40 ∞ 
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table 
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Turn on light 1 Turn on Turn on light Lamp L ∞ ∞ 5 

Table 1. Example of an operation list.

Job Op Seq. Op Type Description Obj Capable
Agent

Arm
Time

Mobile
Time

Light
Time

Bring cube 1 Move Bring cube to the table
from the shelf Cube A 75 ∞ ∞

Bring coffee 1 Fetch Get coffee from the
coffee machine Cup1 M ∞ 50 ∞

2 Move Bring coffee to the table
from the coffee machine Cup1 A, M 55 40 ∞

Bring water 1 Fetch Bring water to the table Bottle A, M 50 35 ∞

Take back empty cup 1 Fetch Take empty cup
from the table Cup2 A, M 50 50 ∞

Throw away trash 1 Move
Take trach from the table

and throw it away
in the bin

Trash M ∞ 50 ∞

Turn on light 1 Turn on Turn on light Lamp L ∞ ∞ 5

Managing user requests of service with additional requirements and complicated user
requirements are addressed in the next section.

3.2.2. Operation Manager

The operation manager is responsible for carefully sequencing the order of operations
based on the operation list created by the job composer. The operation manager also
reorganizes the order of operations by considering the user requirements. In environments
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in which multiple agents perform sequential operations simultaneously, it is important to
consider the relationships among operations in terms of overall execution. This implies
that the scheduler must monitor all executions to avoid possible failures. The order of
operations determined by the operation manager affects how agents are utilized. For
example, delivering coffee to a person involves two separate and sequential operations:
pouring coffee into a cup and delivering the cup full of coffee to the person. Two different
agents may be assigned to perform each operation; therefore, to avoid failure to complete
the job, it is very important that the second agent does not deliver the cup before the first
pours the coffee into the cup.

To monitor these sequential correlations between operations, the operations are man-
aged by queue types to prevent them from mixing. To sequence and organize operations
from the original order in which jobs were requested, we created two types of operation
queues: candidate and incoming. The candidate queue represents operations that can be
executed immediately and do not require waiting for other existing operations. By contrast,
the incoming queue is a bundle of subsequent operations that must be held waiting until
the previous queue is executed or user-specific conditions are met. The candidate queue is
created by enqueuing the first operation of each job in the order in which they are requested.
The remaining operations are then stacked on top of the candidate queue and named the
incoming queue because they are waiting to enter the candidate queue.

The operation manager also rearranges the queues to be rescheduled according to the
dynamic requests of a user. If a job is canceled before execution, all related operations are
removed from the candidate and incoming queues. The user requirement for the order
of service is resolved by three functions of the operation manager that adjust the stacked
queue: freezing, stacking, and combining.

The freezing function is used when a user wants the service to be provided first or last.
To perform the job first, the remaining jobs are frozen until the requested job is completed.
If a job needs to be completed last, it will be frozen until all other jobs have been completed.

The stacking function is used to insert related operations into the requested position
when a user wants to receive the service in a specific order. For example, if a user wants job
J4 performed immediately after job J1, the operation manager stacks the operations of J4 on
top of J1 so that J4 can be executed immediately after J1 is completed.

The combining function is used when a user wants to receive multiple services simul-
taneously. If a user wants jobs J1 and J4 to be executed together, such as by asking for a
meal and coffee to be delivered together, the service can be performed separately by two
different agents simultaneously or by a single agent. If two agents are running in parallel,
the operation manager uses the freezing function and freezes the last operation of J1 and J4
until both are in the candidate queue, and the two agents are available for simultaneous
delivery. The combining function is used in a single-agent execution, and a new operation
is created that combines the last operations of J1 and J4 to be performed by the agent as one.
When all the previous operations are completed, the new operation O14cb is fetched and
replaces the last two operations in the candidate queue. The combining function can only
be applied when the two operations have the same operation type, object, start position,
and end position. In addition, only agents that can perform both operations can execute
a combined operation. The duration of the combined operation was arbitrarily set to be
longer than that of both operations.

The scheduler also utilizes human monitoring and agent monitoring, which allows
multiple agents to provide services at user-specified preferred times. For instance, the
operation manager freezes the operation in the candidate queue until the human monitoring
condition is met. The operation status in the candidate queue can be ”ready”, ”frozen”,
and ”execute”. There is no ”finished“ status for operations because when an operation is
complete, the agent status changes to ”finished”, and the operation is dequeued from the
candidate queue by the operation manager. As described above, the operation manager is
implemented according to the pseudocode reported in Algorithm 2.
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  for i = 1 to M do 

   Oi ← getOperations(O) 

   CanQi ← Oi[0] 

   Oi ← remove(Oi[0]) 

   InQi ← Oi 

   i ← i + 1 

  end 

  (InQ, CanQ) ← RearrangeQueue(InQ, CanQ, H, R) 

  break; 

 end 

 SA ← AgentMonitoring(A) 

 Afin ← getFinishedAgents(SA) 

 if Afin ≠ Ø then 

  for ak ∈ Afin do 

   CanQi ← pop(Oak) 

   O ← remove(Oak) 

  end 

  (InQ, CanQ) ← ManageQueue(InQ, CanQ) 

 end 

 if H is True then 

  (InQ, CanQ) ← UnfreezeQueue(InQ, CanQ, H, R) 

 end 

3.2.3. Operation Allocator 
The operation allocator allocates operations according to the order specified by the 

operation manager. The operation allocator allocates operations from the candidate queue 
to available agents. In this study, the problem of allocating operations to each agent is 
addressed by solving the following optimization problem (1): 

3.2.3. Operation Allocator

The operation allocator allocates operations according to the order specified by the
operation manager. The operation allocator allocates operations from the candidate queue
to available agents. In this study, the problem of allocating operations to each agent is
addressed by solving the following optimization problem (1):

minx(maxak ∑M
i=1 ∑N

j=1

(
wijak ·xijak

)
) (1)

subject to
ak ∀k ∈ {1, . . . , K}
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Oij ∀i ∈ {1, . . . , M}, ∀j ∈ {1, . . . , N}

xij,ak [boolean] ∀Oij, ∀ak ∈ A

Wijak = Cijak ·Dijak ∀Oij, ∀ak ∈ A

A

∑
ak=1

xij,ak = 1 ∀Oij, ∀ak ∈ A

The term Wijak represents the weight of the allocation operation Oij to agent ak. Cijak
and Dijak are the capability and duration, respectively, and the weight is calculated as their
combination. If agent ak was capable of performing Oij, Cijak was given a constant 1, and if the
agent was incapable, Cijak was given an infinite cost. Boolean variable xijak ∈ {0,1} is a decision
variable for detecting whether operation Oij is assigned to each agent. According to the last
constraint, the sum of the decision variables for a single operation is always equal to 1, only
one of the Wijak is true, and the agent is decided for the allocation. Because we adopted
parallel execution of multiple agents, we modified the multi-objective mixed-integer linear
program from [8] to a min–max optimization to minimize the longest completion time
among the entire agents. We use decision variables to determine an appropriate agent for
each operation to minimize the overall time. As shown in Function CostCalculator, this
calculation process determines the number of cases of the decision variable by repeated
permutation and compares the time required for each case to find the combination of agents
with minimum cost. The result of the optimization problem (1) is an operation for idle agent
ak to perform. When the operation is allocated, the agent status changes to “executing” and
when the agent is completed, it changes to “completed”, signaling the operation manager
to dequeue the completed operation from the candidate queue. As previously described,
the dynamic allocator is presented with its pseudocode in Algorithm 3.

It should be noted that our framework separates the sequencing and allocation com-
ponents of the scheduler. The order of operations is already in place because the operation
manager has utilized the user requirements in the operation queue and handled the rela-
tionship between the requested services. This means that the allocation is executed simply,
as the operation allocator only needs to carefully time the execution of each operation to
minimize the total cost.
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Algorithm 3: DynamicAllocator() 

 SA ← AgentMonitoring(A) 

 Afin ← getFinishedAgents(SA) 

 Aidl ← getIdleAgents(SA) 

 if Afin ≠ Ø || (CanQ is Updated & Aidl ≠ Ø) then 

  for ak ∈ Afin do 

   Oak ← Ø 

   Sak ← Idle; 

  end 

  while O ≠ Ø do 

   Aidl ← getIdleAgents(SA) 

   if CanQ ≠ Ø do 

    Xreal ← CostCalculator(x, w) 

    for ak ∈ Aidl do 

     Oak ← AllocateOperation(Xreal) 

     if Oak ≠ Ø then 

      Sak ← Execute; 

      break; 

     else 

      Sak ← Idle; 

      break; 

     end 

    end 

   else 

    Sak ← Idle; 

    break; 

   end 

  end 

 end 
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Function CostCalculator(x, w)

Appl. Sci. 2022, 12, 10850 12 of 20 
 

Function CostCalculator(x, w) 

 //Initialization 

 Wc = 0 //Total Cost of a case 

 Wmin = Inf //Minimum Cost amongst all cases 

 input: xi,j,ak //Decision Variable [Boolean] 

       wi,j,ak = Cij[k] · Dij[k] 

 NA //Number of Agents 

 Ncq //Number of ‘Ready’ Operations in the Candidate Queue 

 X = {xij,a1, xij,a2, xij,a3, …, xi’j’,ak} //A case of an Allocation 

 where ∀Oij ∈ CanQ, ∑ 𝑥,ೖೖୀଵ = 1 

 Xp //Set of Possible cases of Allocation 

 𝑁ು//Number of Set of Possible cases of Allocation 

 Xp[𝑁ು] ← GetPermutation(CanQ, A) where 𝑁ು = (𝑁)ே  

 for n = 1 to 𝑁ು  do 

  Xn ← XP[n] 

  for k = 1 to NA do 

   𝑊ೖ =   (𝑤,ೖ ∙ 𝑥,ೖ)ெୀଵேୀଵ  

   if Wc < Wak then 

    Wc = Wak 

   end 

   k ← k + 1; 

  end 

  if Wmin > Wc & Executable then 

   Wmin = Wc 

   Xreal ← Xn 

  end 

  n ← n + 1; 

 end 

 return(Xreal) 

It should be noted that our framework separates the sequencing and allocation com-
ponents of the scheduler. The order of operations is already in place because the operation 
manager has utilized the user requirements in the operation queue and handled the rela-
tionship between the requested services. This means that the allocation is executed simply, 
as the operation allocator only needs to carefully time the execution of each operation to 
minimize the total cost. 

4. Experiments and Results 

4. Experiments and Results

To evaluate the proposed scheduler, we built a virtual reality (VR) smart office for
simulation (Figure 2) and used it to experiment with four service scenarios.
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4.1. Smart Office Prototype

A VR smart office, in which multiple robots provide daily services to a user, consists
of a user sitting at a table and three agents with different functions. For the active agents,
KINOVA Jaco [28], a robotic arm capable of object manipulation (e.g., pick-up, transfer,
put down), and a simulated mobile robot were used. A smart lamp, an integration of an
IoT system, was used as the passive agent. The operations used in this experiment are
listed in Table 1.

4.2. System Setup

The simulated environment for providing services to a user in a VR smart office is
illustrated in Figure 3a. The VR smart office was displayed on a 55-inch flat 3D display
with full HD (1920 × 1080). An RGBD camera was mounted on the top to track the user’s
hand and show that the user received a service from the agent (Figure 3b).
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The experimental system was implemented in Openframeworks from OpenGL to C++
and Bullet Physics 2.82 for the physics simulation. The robotic arm was planned and simu-
lated on the ROS Moveit and the simulated mobile robot on Bullet Physics. The experiments
were performed on an Intel Core i7-3770 3.5 GHz computer with 16 GB memory.

4.3. Experimental Scenarios

We designed four service scenarios to demonstrate the proposed scheduling method
in dynamic situations of our daily life environment. The dynamic situation that occurs
when a user requests and receives services is composed of the following scenarios. First, the
user requests a new task while the agents are still performing the previous task (Scenario 1).
The second scenario includes a delay situation. Agents interact with humans in real service
situations, and although we can estimate the average execution time of the agents, it is
very difficult to predict it accurately; therefore, delays cannot be avoided (Scenario 2). The
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following are additional dynamic situations caused by a user. A user may request a service,
including specific requirements regarding when it should be provided. These requirements
may include “request to change the order of a service,” “simultaneous execution of services,”
or “preferred time for the execution of service.” Therefore, we selected two different
scenarios for the various user requests. The third scenario occurred when a user requested
a change in the execution order of the service (Scenario 3) and the fourth when a user
designated a preferred time for a specific service (Scenario 4).

4.4. Results and Discussion

The proposed scheduler was compared with a baseline scheduler, which represents
a basic scheduling method that exemplifies how the existing scheduling solutions would
work for service robots. Both schedulers determine the optimum schedule that mini-
mizes the overall time span based on the agent capability and duration. The baseline
scheduler executes jobs on”first-in-first-out“ basis and reschedules them whenever a new
job is requested.

4.4.1. Scenario 1: Additional Job Request

In Scenario 1, a user asks for an additional job “Bring water” while the agents are
executing jobs J1 and J2. When a new request is made in the form of job J4, the baseline
scheduler reschedules them because jobs J3 and J4 have not been yet executed; however,
the proposed scheduler dynamically accepts and reschedules the new request, including
operation O22 of Job 2. In other words, the proposed scheduler divides the job into more
basic units of operation, so that multiple agents share and complete the job more efficiently.
In Figure 4, the block representing the execution of each job (operation) is shown based
on the execution start and end times of the job by the scheduler. Figure 4 shows a 7.14%
reduction in the total completion time when using the proposed scheduler compared with
the baseline. The proposed method provides services in the order of the user’s requests
whereas the baseline does not.
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4.4.2. Scenario 2: Delay Occurs

Scenario 2 is a delay situation that occurs when an agent executes a service. The
baseline cannot handle systemic changes because it can only be rescheduled on a new
request. If there is a delay, the baseline encounters problems in all subsequent jobs. As
shown in Figure 5a, if the robot arm is delayed in bringing the cube, Job 3 will also be
delayed, and the mobile robot will not be able to take over Job 3 even after it has finished
performing the job. This delays the provision of the service, and the user waits for it for a
long time.
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However, our scheduler can handle delays by adjusting the schedule based on these
system changes and dynamically allocating the rest of the job to account for the overall
outcome. The operation allocator allocates operations whenever a previous operation is
completed, and the other available agents can take over the remaining operations, even
if there is a delay. As shown in Figure 5b, the proposed method reduces the delay of the
overall service by dynamically allocating Job 4 to a mobile robot when the robot arm is
occupied by the delay of Job 1. In addition, it is noteworthy that the computational load of
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the allocation is similar to that of the baseline. This is because instead of calculating the
entire job each time, it selectively computes the optimal allocation only from the candidate
queue. The computational cost of the allocation is considerably reduced because the
number of operations in the candidate queue is always constant. Therefore, our scheduler
can conveniently solve a systemic change, such as a delay, through dynamic allocation.

4.4.3. Scenario 3: User Requests to Change the Order of Service

In Scenario 3, the execution order of services is changed according to the user request.
The user requested jobs in the following order: Job 1 (Bring a cube), Job 2 (Bring a cup
of coffee), Job 3 (Take back an empty cup), and Job 4 (Bring water). Suppose the user
wants to get coffee (Job 2) after removing the empty cup from the table (Job 3) because the
table is full.

In the baseline scheduler, Job 3 is only assigned after all previous requests have been
executed; therefore, it does not meet the user requirement. However, the operation manager
in our scheduler handles sequential relationships between jobs so that it can accommodate
and follow user requirements. As shown in Figure 6b, the operation manager stacks the
operations of Job 2 on top of Job 3. Operations O21 and O22 are allocated only after O31 is
completed and the service is successfully provided as requested by the user. As a result,
while the baseline scheduler fails to satisfy user requests by bringing coffee before an empty
cup is removed from the table, the proposed method succeeds.
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4.4.4. Scenario 4: Preferred Time and Simultaneous Request

Scenario 4 includes a user requesting two jobs to be performed simultaneously or
having a preferred execution time for the service. For example, a user may ask for two
empty cups to be simultaneously brought from a table and a reading light to turn on when
the user performs a specific action. To visually demonstrate the execution of the service in
the VR smart office, the specific action is lifting a cup.
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The baseline scheduler does not accept these requests; therefore the two cups are
fetched separately, and the reading light is on regardless of the user’s status, as shown in
Figure 7a. The proposed scheduler combines O31 and O51 using the combining function
of the operation manager to change the new operation O31-51 to be performed by a single
agent so that the mobile robot simultaneously takes back empty cups 1 and 2, as shown in
Figure 7b. Additionally, as shown in Figure 8, O41 “Turn on light” is performed when the
user raises the cup.
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5. Conclusions

We propose a novel scheduling framework for heterogeneous multiple agents that can
actively accept dynamic user requests and provide services in daily life. In this study, we
focused on the sequential and temporal aspects of services that occur owing to user requests.
Therefore, the aim was to dynamically accept new requests and reschedule services so that
multiple robots could satisfy these sequential interdependencies or complex prerequisites
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of a requested job. To validate the technical reliability of the proposed scheduler, we
developed a VR simulation and tested it in four smart office scenarios with interactive and
dynamic requests. The results indicated that our scheduler was effective in all the scenarios
by providing appropriate services according to dynamic user requests. In future research,
we plan to refine our optimization solution for improved computational efficiency. We plan
to increase the complexity of the user request of service, such as different robots performing
a single service by operating simultaneously. For real-world applications, the service setting
could be broadened from a home to a wider and more complex multi-purpose facility with
multiple users. We also plan to further expand the human monitoring function with various
other IoT technologies and use the proposed system in real-world applications.
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