Advanced Coatings of Polyureas for Building Blast Protection: Physical, Chemical, Thermal and Mechanical Characterization
Abstract
:1. Introduction
- Shock-wave-induced hard-domain compaction and ordering, where the extent of this blast-mitigation effect is expected to be directly proportional to the hard-domain volume fraction;
- Shock-wave-induced hard domain crystallization/densification, where the hard domains of the polyurea experience irreversible compaction and densification with an associated increase in their degree of order upon being subjected to shock-wave loading;
- Shock wave induced hydrogen bond cleavage and formation, where the exposure to shock loadings leads to the cleavage of bi-dentate H-bond between the urea linkages, which subsequently rearrange to form more numerous H-bonds within the hard domains, thereby leading to the absorption and dispersion of shock energy;
- Shockwave-capture-and-neutralization, shock waves travel as a single wave in homogeneous materials. However, upon loading of a layered heterogeneous material system, e.g., polyurea, a two-wave structure is obtained: a leading shock front followed by a complex pattern that varies with time. This dual shock-wave pattern is attributed to the material architecture through which shock wave propagates, i.e., the impedance (and geometric) mismatch present at various length scales, and nonlinearities arising from material inelasticity and failure. This secondary trailing shock-wave (release wave), reportedly catches up with and attenuates the leading shockwave, thereby leading to shock attenuation [13].
- A one mm thick Fiber Reinforced Polymer (FRP) with a modulus of elasticity of 26.13 MPa, a tensile strength of 600 MPa, a 2.24% elongation at break, and a density of 0.915 kg/m2.
- A polyurea with an elastic modulus of 234 MPa, secant modulus of 165 MPa, yield strength of 11.5 MPa, and tensile strength of 13.8 MPa. The elongation at yield and rupture are 4.7 and 89%, respectively.
- A one mm thick sheet hot-dipped in A-36 galvanized steel placed behind the wall.
2. Materials and Methods
2.1. Raw Materials
2.2. Production of Samples
2.3. Characterization
2.3.1. Chemical Analysis
2.3.2. Thermal Characterization
2.3.3. Physical Analysis
2.3.4. Mechanical Characterization
3. Results
3.1. Chemical Analysis of the Polyurea
3.2. Thermal Analysis Results
3.3. Physical Characterization Results
3.4. Mechanical Characterization of the Polyurea
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, T.; Fragiadakis, D.; Roland, C.M.; Runt, J. Microstructure and Segmental Dynamics of Polyurea under Uniaxial Deformation. Macromolecules 2012, 45, 3581–3589. [Google Scholar] [CrossRef] [Green Version]
- Mott, P.H.; Giller, C.B.; Fragiadakis, D.; Rosenberg, D.A.; Roland, C.M. Deformation of polyurea: Where does the energy go? Polymer 2016, 105, 227–233. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, H.; He, H.; Deng, Q. Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range. Compos. Struct. 2019, 222, 110923. [Google Scholar] [CrossRef]
- Szafran, J.; Matusiak, A. Polyurea coating systems: Definition, research, applications. Parameters 2016, 2, 103–110. [Google Scholar]
- White, J.; Naskar, K. Rubber Technologist’s Handbook; iSmithers Rapra Publishing: Shewsbury, UK, 2001; Volume 2. [Google Scholar]
- Draganić, H.; Gazić, G.; Varevac, D. Experimental investigation of design and retrofit methods for blast load mitigation—A state-of-the-art review. Eng. Struct. 2019, 190, 189–209. [Google Scholar] [CrossRef]
- Smith, P.D. Blast Walls for Structural Protection against High Explosive Threats: A Review. Int. J. Prot. Struct. 2010, 1, 67–84. [Google Scholar] [CrossRef]
- Naito, C.; Dinan, R.; Bewick, B. Use of Precast Concrete Walls for Blast Protection of Steel Stud Construction. J. Perform. Constr. Facil. 2011, 25, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Knox, K.J.; Hammons, M.I.; Lewis, T.T.; Porter, J.R. Polymer Materials for Structural Retrofit; Air Force Research Laboratory: Eglin AFB, FL, USA, 1969. [Google Scholar]
- Muszynski, L.C.; Purcell, M.R. Use of Composite Reinforcement to Strengthen Concrete and Air-Entrained Concrete Masonry Walls against Air Blast. J. Compos. Constr. 2003, 7, 98–108. [Google Scholar] [CrossRef]
- Johnson, C.F. Concrete Masonry Wall Retrofit Systems for Blast Protection. Doctoral Dissertation, Texas A&M University, College Station, TX, USA, 2013. [Google Scholar]
- Raman, S.N.; Ngo, T.D.; Mendis, P.; Pham, T. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast. Adv. Mater. Sci. Eng. 2012, 2012, 754142. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Tripathi, M.; Parthasarathy, S.; Kumar, D.; Roy, P.K. Polyurea coatings for enhanced blast-mitigation: A review. RSC Adv. 2016, 6, 109706–109717. [Google Scholar] [CrossRef]
- Wang, J.; Ren, H.; Wu, X.; Cai, C. Blast response of polymer-retrofitted masonry unit walls. Comp. Part B Eng. 2017, 128, 174–181. [Google Scholar]
- Iqbal, N.; Sharma, P.K.; Kumar, D.; Roy, P.K. Protective polyurea coatings for enhanced blast survivability of concrete. Constr. Build. Mater. 2018, 175, 682–690. [Google Scholar]
- Davidson, J.S.; Porter, J.R.; Dinan, R.J.; Hammons, M.I. Explosive Testing of Polymer Retrofit Masonry Walls. J. Perform. Constr. Facil. 2004, 18, 100–106. [Google Scholar]
- Guo, H.; Guo, W.; Amirkhizi, A.V.; Zou, R.; Yuan, K. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures. Polym. Test. 2016, 53, 234–244. [Google Scholar]
- Baylot, J.T.; Bullock, B.; Slawson, T.R.; Woodson, S.C. Blast Response of Lightly Attached Concrete Masonry Unit Walls. J. Struct. Eng. 2005, 131, 1186–1193. [Google Scholar] [CrossRef]
- Boubakri, A.; Guermazi, N.; Elleuch, K.; Ayedi, H.F. Study of UV-aging of thermoplastic polyurethane material. Mater. Sci. Eng. 2010, 527, 1649–1654. [Google Scholar]
- Yılgör, E.; Yılgör, I.; Yurtsever, E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer 2002, 43, 6551–6559. [Google Scholar] [CrossRef]
- Boubakri, A.; Elleuch, K.; Guermazi, N.; Ayedi, H.F. Investigations on hygrothermal aging of thermoplastic polyurethane material. Mater. Des. 2009, 30, 3958–3965. [Google Scholar]
- Iqbal, N.; Kumar, D.; Roy, P.K. Emergence of time-dependent material properties in chain extended polyureas. J. Appl. Polym. Sci. 2018, 135, 46730. [Google Scholar]
- Che, K.; Lyu, P.; Wan, F.; Ma, M. Investigations on Aging Behavior and Mechanism of Polyurea Coating in Marine Atmosphere. Materials 2019, 12, 3636. [Google Scholar] [CrossRef] [Green Version]
- Arunkumar, T.; Ramachandran, S. Surface coating and characterisation of polyurea. Int. J. Ambient. Energy 2017, 38, 781–787. [Google Scholar] [CrossRef]
- Awad, W.H.; Wilkie, C.A. Investigation of the thermal degradation of polyurea: The effect of ammonium polyphosphate and expandable graphite. Polymer 2010, 51, 2277–2285. [Google Scholar] [CrossRef] [Green Version]
- Toutanji, H.A.; Choi, H.; Wong, D.; Gilbert, J.A.; Alldredge, D.J. Applying a polyurea coating to high-performance organic cementitious materials. Constr. Build. Mater. 2013, 38, 1170–1179. [Google Scholar] [CrossRef]
- Delucchi, M.; Barbucci, A.; Cerisola, G. Crack-bridging ability and liquid water permeability of protective coatings for concrete. Prog. Org. Coat. 1998, 33, 76–82. [Google Scholar] [CrossRef]
- Grujicic, M.; Pandurangan, B.; Bell, W.C.; Cheeseman, B.A.; Yen, C.F.; Randow, C.L. Molecular-level simulations of shock generation and propagation in polyurea. Mater. Sci. Eng. A 2011, 10–11, 3799–3808. [Google Scholar] [CrossRef]
- Zhou, Q.; Cao, L.; Li, Q.; Yao, Y.; Ouyang, Z.; Su, Z.; Chen, X. Investigation of the Curing Process of Spray Polyurea Elastomer by FTIR, DSC, and DMA. J. Appl. Polym. Sci. 2012, 125, 3695–3701. [Google Scholar] [CrossRef]
Sample | Density (g·cm−3) |
---|---|
Polyurea A | 1.022 ± 0.005 |
Polyurea B | 1.010 ± 0.005 |
Sample | Longitudinal Direction Variation (%) | Transversal Direction Variation (%) |
---|---|---|
Polyurea A | 3.04 | 3.63 |
Polyurea B | 4.25 | 5.38 |
Sample | Duration of Test (s) | |
---|---|---|
3 | 15 | |
Polyurea A | 59 ± 1 | 57 ± 1 |
Polyurea B | 44.4 ± 0.8 | 42.3 ± 0.3 |
Sample | σ 10% (MPa) | σ 20% (MPa) | σ 30% (MPa) | Compression Modulus (MPa) |
---|---|---|---|---|
Polyurea A | 16.9 ± 0.4 | 21.3 ± 0.5 | 26.9 ± 0.5 | 314 ± 0.0 |
Polyurea B | 8.4 ± 1.8 | 15.2 ± 4.9 | 37 ± 21.4 | 41.2 ± 3.6 |
Sample | Tensile Strength (MPa) | Maximum Elongation (%) | Young Modulus (GPa) |
---|---|---|---|
Polyurea A | 16.80 ± 1.84 | 113.61 ± 15.82 | 0.17 ± 0.03 |
Polyurea B | 31.23 ± 2.04 | 2920.86 ± 43.98 | 0.03 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, F.; Mota, C.; Bessa, J.; Cunha, F.; Fangueiro, R.; Gomes, G.; Mingote, J. Advanced Coatings of Polyureas for Building Blast Protection: Physical, Chemical, Thermal and Mechanical Characterization. Appl. Sci. 2022, 12, 10879. https://doi.org/10.3390/app122110879
Leite F, Mota C, Bessa J, Cunha F, Fangueiro R, Gomes G, Mingote J. Advanced Coatings of Polyureas for Building Blast Protection: Physical, Chemical, Thermal and Mechanical Characterization. Applied Sciences. 2022; 12(21):10879. https://doi.org/10.3390/app122110879
Chicago/Turabian StyleLeite, Fernando, Carlos Mota, João Bessa, Fernando Cunha, Raul Fangueiro, Gabriel Gomes, and José Mingote. 2022. "Advanced Coatings of Polyureas for Building Blast Protection: Physical, Chemical, Thermal and Mechanical Characterization" Applied Sciences 12, no. 21: 10879. https://doi.org/10.3390/app122110879
APA StyleLeite, F., Mota, C., Bessa, J., Cunha, F., Fangueiro, R., Gomes, G., & Mingote, J. (2022). Advanced Coatings of Polyureas for Building Blast Protection: Physical, Chemical, Thermal and Mechanical Characterization. Applied Sciences, 12(21), 10879. https://doi.org/10.3390/app122110879