Active Disturbance Rejection Control for Speed Control of PMSM Based on Auxiliary Model and Supervisory RBF
Abstract
:1. Introduction
- (1)
- By introducing an auxiliary model of friction, the MADRC has a more accurate compensation of disturbances than the general ADRC.
- (2)
- The MRESO has lower order and fewer parameters than standard ESO, which is more conducive to improving the efficiency of state tracking and parameter tuning.
- (3)
- The SRBF is combined with the MADRC, which can quickly respond to the abrupt feedback error so as to further promote the anti-disturbance ability of the servo system.
2. Mathematical Model of PMSM with Friction Disturbance
3. Controller Design
3.1. Auxiliary Model of Friction
3.2. Design of SRBF-MADRC
4. Simulation
5. Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Chen, W.L.; Li, S.H.; Guo, L.; Yan, Y.D. Disturbance/uncertainty estimation and attenuation techniques in PMSM drives—A survey. IEEE Trans. Ind. 2017, 64, 3273–3285. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Yang, J.; Sun, Z.; Zhang, C.; Li, S.; Yu, H. Robust speed regulation for PMSM servo system with multiple sources of disturbances via an augmented disturbance observer. IEEE/Asme Trans. Mechatron. 2018, 23, 769–780. [Google Scholar] [CrossRef]
- Kong, L.H.; He, W.; Yang, C.G.; Li, Z.J.; Sun, C.Y. Adaptive Fuzzy Control for Coordinated Multiple Robots With Constraint Using Impedance Learning. IEEE Trans. Cybern. 2018, 49, 3052–3063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Yu, H.; Yu, J. Robust adaptive tracking control for servomechanisms with continuous friction compensation. Control Eng. Pract. 2019, 87, 76–82. [Google Scholar] [CrossRef]
- Ravindra, S.; Shahida, K.; Himanshu, C.; Ashish, P.; Hanmandlu, M. Neural-fuzzy controller configuration design for an electro-optical line of sight stabilization system. Comput. Electr. Eng. 2020, 88, 101–121. [Google Scholar]
- Li, J.H.; Wang, J.Z.; Peng, H.; Hu, Y.B.; Su, H. Fuzzy-Torque Approximation-Enhanced Sliding Mode Control for Lateral Stability of Mobile Robot. IEEE Trans. Syst. Man Cybern.-Syst. 2021, 52, 2491–2500. [Google Scholar] [CrossRef]
- Liang, K.; Tu, Q.Z.; Shen, X.M. An improved LuGre model for calculating static steering torque of rubber tracked chassis. Def. Technol. 2022, 18, 797–810. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M.; Gao, Y.; Chen, Y. Periodic adaptive learning control of PMSM servo system with LuGre model-based friction compensation. Mech. Mach. Theory 2022, 167, 561–580. [Google Scholar] [CrossRef]
- Yue, F.; Li, X. Robust adaptive integral back stepping control for opto-electronic tracking system based on modified LuGre friction model. Isa Trans. 2018, 80, 312–321. [Google Scholar] [CrossRef]
- Saha, A.; Wahi, P.; Wiercigroch, M.; Stefański, A. A modified LuGre friction model for an accurate prediction of friction force in the pure sliding regime. Int. J. Non-Linear Mech. 2016, 80, 122–131. [Google Scholar] [CrossRef]
- Marques, F.; Woliński, Ł.; Wojtyra, M.; Flores, P.; Lankarani, H.M. An investigation of a novel LuGre-based friction force model. Mech. Machine Theory 2021, 166, 104493. [Google Scholar] [CrossRef]
- Abdo, M.M.; Vali, A.R.; Toloei, A.R.; Arvan, M.R. Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller. Isa Trans. 2014, 53, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.C.; Yin, R.; Lei, X. An adaptive decoupling control for three-axis gyro stabilized platform based on neural networks. Mechatronics 2015, 27, 38–46. [Google Scholar] [CrossRef]
- Song, P. Robust control of gyro stabilized platform driven by ultrasonic motor. Sens. Actuators A Phys. 2017, 261, 280–287. [Google Scholar]
- Mao, J.L.; Li, S.H.; Li, Q.; Yang, J. Design and implementation of continuous finite-time sliding mode control for 2-DOF inertially stabilized platform subject to multiple disturbances. Isa Trans. 2019, 84, 214–224. [Google Scholar] [CrossRef]
- Han, J.Q. Active Disturbance Rejection Control Technique: The Technique for Estimating and Compensating the Uncertainties; National Defense Industry Press: Beijing, China, 2008. [Google Scholar]
- Han, J.Q. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Aole, S.; Elamvazuthi, I.; Waghmare, L. Active Disturbance Rejection Control Based Sinusoidal Trajectory Tracking for an Upper Limb Robotic Rehabilitation Exoskeleton. Appl. Sci. 2022, 12, 1287. [Google Scholar] [CrossRef]
- Liu, C.; Luo, G.; Chen, Z.; Tu, W. Measurement delay compensated LADRC based current controller design for PMSM drives with a simple parameter tuning method. ISA Trans. 2020, 101, 482–492. [Google Scholar] [CrossRef]
- Sui, S.; Zhao, T. Active disturbance rejection control for optoelectronic stabilized platform based on adaptive fuzzy sliding mode control. ISA Trans. 2022, 125, 85–98. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Gao, H.; Zhao, B.L.; Zhao, L.B. A GA-based parameters tuning method for an ADRC controller of ISP for aerial remote sensing applications. Isa Trans. 2018, 81, 318–328. [Google Scholar] [CrossRef]
- Kong, L.H.; He, W.; Dong, Y.T. Asymmetric Bounded Neural Control for an Uncertain Robot by State Feedback and Output Feedback. IEEE Trans. Syst. Man Cybern.-Syst. 2019, 51, 1735–1746. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.J.; He, X.Y.; Ren, Z.G.; Wen, G.L. Boundary Adaptive Robust Control of a Flexible Riser System With Input Nonlinearities. IEEE Trans. Onsystems Man Cybern.-Syst. 2018, 49, 1971–1980. [Google Scholar] [CrossRef]
- Zhao, Z.; Ren, Y.; Mu, C.; Zou, T.; Hong, K. Adaptive Neural-Network-Based Fault-Tolerant Control for a Flexible String With Composite Disturbance Observer and Input Constraints. IEEE Trans. Cybern. 2021, 97, 101–111. [Google Scholar] [CrossRef]
- Shen, S.Y.; Xu, J.F. Adaptive neural network-based active disturbance rejection flight control of an unmanned helicopter. Aerospace Sci. Technol. 2021, 119, 107062. [Google Scholar] [CrossRef]
- Liu, W.T.; Zhao, T. An active disturbance rejection control for hysteresis compensation based on Neural Network adaptive control. ISA Trans. 2021, 109, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Tang, D.; Wang, S. Research on parallel nonlinear control system of PD and RBF neural network based on U model. Automatika 2020, 61, 284–294. [Google Scholar] [CrossRef]
- Hua, L.H.; Zhang, J.F.; Li, D.J.; Xi, X.B. Fault-Tolerant Active Disturbance Rejection Control of Plant Protection of Unmanned Aerial Vehicles Based on a Spatio-Temporal RBF Neural Network. Appl. Sci. 2021, 11, 4084. [Google Scholar] [CrossRef]
- Thangarajan, K.; Soundarrajan, A. Performance comparison of permanent magnet synchronous motor(PMSM) drive with delay compensated predictive controllers. Microproc. Microsyst. 2020, 75, 103081. [Google Scholar] [CrossRef]
- Piatkowski, T. Dahl and LuGre dynamic friction models—The analysis of selected properties. Mech. Mach. Theory 2014, 73, 91–100. [Google Scholar] [CrossRef]
- Radosław, P.; Piotr, D. On the stability of ADRC for manipulators with modelling uncertainties. ISA Trans. 2020, 102, 295–303. [Google Scholar]
- Liu, J.K. RBF Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation; Tsinghua University Press: Beijing, China, 2014. [Google Scholar]
SRBF-MADRC | |
---|---|
TD: | |
NLSEF: | |
MRESO: | , , , , |
SRBF: | , , , |
ADRC | |
TD: | |
NLSEF: | , , , |
ESO: | , , , |
NPD | |
TD: | |
NLSEF: | , , , |
Parameter | Value |
---|---|
Rated voltage | 24 V |
Rated power | 35 W |
Pole pairs | 4 |
Rated torque | 0.6 Nm |
Rated current | 1.5 A |
Rated power | 2000 rpm |
Line resistance | 4.7 Ω |
Line inductance | 3 mH |
Torque coefficient | 0.45 Nm/A |
Back EMF coefficient | 0.055 V/r/min |
Torque fluctuation | <10% |
Algorithms | Command Signal | Adjustment Time (s) | Tracking Accuracy (%) |
---|---|---|---|
NPD | Sinusoidal | 0.17 | 34.7 |
High-speed step | 0.57 | 8.8 | |
Low-speed step | Unstable | Unstable | |
ADRC | Sinusoidal | 0.86 | 15.4 |
High-speed step | 0.42 | 5.2 | |
Low-speed step | 1.06 | 23.7 | |
SRBF-MADRC | Sinusoidal | 0.63 | 8.9 |
High-speed step | 0.18 | 3.4 | |
Low-speed step | 0.07 | 4.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Su, X.; Pan, Z.; Xiao, M.; Zhang, W.; Liu, R. Active Disturbance Rejection Control for Speed Control of PMSM Based on Auxiliary Model and Supervisory RBF. Appl. Sci. 2022, 12, 10880. https://doi.org/10.3390/app122110880
Gao P, Su X, Pan Z, Xiao M, Zhang W, Liu R. Active Disturbance Rejection Control for Speed Control of PMSM Based on Auxiliary Model and Supervisory RBF. Applied Sciences. 2022; 12(21):10880. https://doi.org/10.3390/app122110880
Chicago/Turabian StyleGao, Peng, Xiuqin Su, Zhibin Pan, Maosen Xiao, Wenbo Zhang, and Ruoyu Liu. 2022. "Active Disturbance Rejection Control for Speed Control of PMSM Based on Auxiliary Model and Supervisory RBF" Applied Sciences 12, no. 21: 10880. https://doi.org/10.3390/app122110880
APA StyleGao, P., Su, X., Pan, Z., Xiao, M., Zhang, W., & Liu, R. (2022). Active Disturbance Rejection Control for Speed Control of PMSM Based on Auxiliary Model and Supervisory RBF. Applied Sciences, 12(21), 10880. https://doi.org/10.3390/app122110880