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Abstract: Accuracy prediction of the yield strength and displacement of reinforced concrete (RC)
columns for evaluating the seismic performance of structure plays an important role in engineering
the structural design of RC columns. A new hybrid machine learning technique based on the least
squares support vector machine (LSSVM) and the particle swarm optimization (PSO) algorithm is
proposed to predict the yield strength and displacement of RC columns. In this PSO-LSSVM model,
the LSSVM is applied to discover the mapping between the influencing factors and the yield strength
and displacement, and the PSO algorithm is utilized to select the optimal parameters of LSSVM to
facilitate the prediction performance of the proposed model. A dataset covering the PEER database
and the available experimental data in relevant literature is established for model training and testing.
The PSO algorithm is then evaluated and compared with other metaheuristic algorithms based on
the experiment’s database. The results indicate the effectiveness of the PSO employed for improving
the prediction performance of the LSSVM model according to the evaluation criteria such as the root
mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). Overall,
the simulation demonstrates that the developed PSO-LSSVM model has ideal prediction accuracy in
the yield properties of RC columns.

Keywords: RC column; skeleton curve; yield strength; least squares support vector machine; particle
swarm optimization

1. Introduction

Reinforced concrete (RC) structures are the main parts of modern buildings, and
RC columns are one of the crucial weight-bearing components in RC structures, which
is closely related to the seismic performances of buildings [1,2]. The post-earthquake
reconnaissance [3] demonstrates that the collapse of buildings in the earthquake was
mostly caused by the destruction and failure of RC columns, which play an important role
in resisting lateral load. It is thus necessary to evaluate the existing structural performance
and load-carrying capacity of post-earthquake RC columns, and quickly identify the most
collapse-prone RC frames across the region, providing insights for repair strategies and
useful information to emergency teams for making plans for safety rescues. Seismic
resistance assessment of post-earthquake RC structures is an important issue that has
received widespread attention in the structural engineering field. Several existing modeling
approaches were proposed for accurately estimating the residual collapse capacity of
buildings, but they are time-consuming and have low prediction accuracy and lack general
applicability [4–6]. Hence, efficient and accurate prediction of the yield strength and
displacement of RC columns has great practical significance for evaluating the seismic
performance and engineering design of RC structures [7].
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Several numerical and experimental [8] methods have been extensively employed
to investigate the nonlinear behaviors of RC structures. The numerical models, based
on the finite element method, are usually used for nonlinear static or dynamic analyses.
However, many FE-based models are incapable of capturing the hysteretic behaviors
accurately, something which depends on the selection of model parameters and boundary
conditions [4–6]. It is, therefore necessary to further improve the assessment accuracy
of the behaviors of RC columns by the numerical simulation method. Additionally, the
calculation of tedious iterative processes is time-consuming. In contrast, the experimental
method is more effective and capable of identifying the real responses of a structure [9,10],
but it is quite costly, time-consuming and labor-intensive.

Over the past few decades, artificial intelligence (AI) technologies, with the merits of
their strong nonlinear learning capacities, have been widely utilized in the earthquake and
civil engineering fields [11–16]. The technologies have gradually developed into an effective
research method to study the abovementioned problems [17–24], one which enables civil
engineers to predict the structural performance of concrete members. For instance, Quar-
anta et al. [24] performed innovative work in which a machine-learning-aided approach
was proposed to improve the accuracy of the mechanics-based shear capacity equation
for RC beams and columns. On the other hand, many models based on hybrid machine
learning (ML) techniques were developed to predict structural performance straightfor-
wardly without explicit formulae. Typical of these predictive models, the support vector
machine (SVM) proposed by Vapnik [25] is a widely used machine learning technique.
Thereafter, the least squares support vector machine (LSSVM) [26], as a modified version of
SVM, is reported to be able to conduct a faster training process for tackling many complex
and non-linear problems in engineering compared to the standard SVMs, i.e., with faster
computational and generalized capacity [27,28]. Some work on the application of machine
learning (ML) to the study of RC structures is listed in Table 1, as follows:

Table 1. Application of machine learning in the study of RC structures.

Study Model Issues or Objectives

Xu et al. [18] LSSVM Predict the strength of radiation-shielding concrete

Vu and Hoang [19] LSSVM Predict the ultimate punching shear capacity of
FRP-RC slabs.

Luo and Paal [20] ML-BCV Predict backbone curves of RC columns
Mangalathu and Jeon [21] MLs Predict shear strength for RC beam-column joints

Ning et al. [22] DE-ANN Predict the hysteresis loop of RC columns

It is worth noting that Luo and Paal [20] developed a novel machine learning–based
backbone curve (ML-BCV) model to predict backbone curves of RC columns subjected to
three different failure modes. This model consists of a modified LSSVM to address the
multioutput case, and a grid search algorithm (GSA) to facilitate the training process. The
essence of the training process is to select the optimal solution for two key parameters that
significantly affect the accuracy level of predicted results. The selection process of these
two parameters can be regarded as an optimization problem [20]. Thus, an appropriate
swarm intelligence (SI) algorithm is needed to solve the optimization problem. Several SI
algorithms have been widely applied for solving various optimization problems owing to
their powerful global search capability [29], typically genetic algorithm (GA) [30], differen-
tial evolution (DE) [31], artificial bee colony (ABC) [32] and particle swarm optimization
(PSO) [33] algorithms. The PSO algorithm developed by Kennedy and Eberhart [33], is
regarded as a reliable tool when combined with AI techniques due to its outstanding
features of high calculation efficiency, high accuracy and powerful global optimization and
search capability in searching for the optimal solution [34–37]. The PSO has been used to
enhance the training process of LSSVM or other models, and further improve the predictive
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accuracy of forecasting models in the fields of engineering [38–42]. A detailed introduction
to the PSO algorithm used in the present work can be found in Section 4.2.

To the best of our knowledge, there are still few computational models that can
rapidly calculate the strength-related properties of RC columns with high accuracy [7,43,44].
Moreover, the predictive models or formulae that enable the comprehensive covering of
most of the influencing factors are still scarce due to the complexity of multi-factor issues.
Based on the challenge, machine learning (ML) techniques are widely adopted by virtue of
their data-driven nature and their expertise in dealing with nonlinear correlations between
multiple factors.

The present work focuses on developing a new prediction model based on machine
learning techniques for achieving the goal of efficiently and accurately predicting yield
strength and displacement of RC columns with more influence factors considered. In this
model, the LSSVM is applied to establish a prediction model to estimate the nonlinear
mapping between influence factors and yield properties. The PSO algorism is adopted
to facilitate the training process of the LSSVM model for the purpose of improving the
predictive accuracy of this model through selecting the optimal solution of key parameters
i.e., regularization parameter (γ) and RBF kernel parameter (σ). For training and testing
the performance of the present model, a test database of the proposed model is built up by
an efficient program script compiled to collect and collate the existing experimental data
obtained by pseudo-static cyclic testing of RC columns. The performance of the trained
LSSVM model can be evaluated by the root mean square error (RMSE), mean absolute
error (MAE), explained variance (EV) and coefficient of determination (R2). Meanwhile,
the effectiveness of the PSO in enhancing the prediction accuracy of the LSSVM model is
evaluated compared to other metaheuristics.

2. Pseudo-Static Cyclic Test and Yield Point
2.1. Pseudo-Static Cyclic Test

The pseudo-static cyclic test, pseudo-dynamic test and simulated seismic shaking table
test are three test methods which are commonly used for testing the seismic performance
of building structures and their components. Therein, the pseudo-static cyclic test is an
approach which records the whole process from the elastic stage to the failure or damage by
controlling the load or displacement for low circumferential reciprocal cyclic loading [20,45].
The pseudo-static test is widely adopted by researchers in the field of study of the seismic
performance of structures or components relying on its advantages, such as the better
adaptability of the site and experimental equipment, which is convenient for conducting
full-scale experiments, and low loading rate that allows detailed observation of the whole
process of specimen failure.

Under the action of low circumferential cyclic load, a hysteresis loop denoting the
relationship between the load and the corresponding deformation of the structure is formed
during a loading and unloading process, and the series of hysteresis loops formed after
multiple cycles of loading constitute the hysteretic curves of the structure, namely the
load-displacement curves. Then, the skeleton curve of the specimen shown in Figure 1
can be obtained by connecting the peak points of each hysteretic curve of the specimen,
which reflects the relationship between the force and deformation of the experimental
model. The skeleton curve is a comprehensive reflection of the seismic performance of
the structure; it thus can be an important basis for analyzing the elastic-plastic dynamic
response of the specific structure. For the concrete specimen, its skeleton curve is taken as
the envelope connected by the peak points of the first cycle at each loading level of each
load-displacement curve, i.e., the envelope of the hysteretic curve.

In recent years, many experimental studies on the seismic performance of RC columns
have been conducted by using the pseudo-static cyclic test [46,47]. The influences of relevant
factors on their seismic performance are investigated. The load-displacement curve can be
obtained through the experimental test, and it reflects the nonlinear performance, energy
dissipation characteristics and ultimate damage mechanism of the structure or component.
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Figure 1. The hysteretic curve and skeleton curve.

2.2. Yield Point

It is well known that how to judge the yield point on the specific skeleton curve is still a
complicated problem, and there is no unified standard in the related research field [7,43,48].
Here are three judgment methods commonly used to determine the yield point as follows:

1. For the Geometric Graphic Method shown in Figure 2a, the yield displacement and
yield point are defined as follows: Draw the tangent line to the curve at ‘O’. The
line is extended to the intersection with a horizontal line through ‘D’ at ‘A’, where
the ‘D’ corresponds to the maximum applied shear Pmax shown in Figure 2a. The
perpendicular of line ‘OA’ intersects the curve at ‘B’. Connect ‘O’ and ‘B’ and extend
line ‘OB’ to meet the horizontal line ‘DA’ at ‘C’, and then project onto the horizontal
axis to obtain the yield displacement ∆y and the yield point ‘E’ on the curve, where it
corresponds to the yield applied shear Py.

2. For R. Park Method shown in Figure 2b [48], the yield displacement and yield point are
defined as follows: A secant ‘OB’ is drawn to intersect the lateral load-displacement
relation at a certain proportion of the maximum applied shear, i.e., the ‘B’ on the curve
corresponding to αPmax shown in Figure 2b. Similarly, this extension of line ‘OB’ and
the horizontal line corresponding to the maximum applied shear Pmax intersect at ‘A’,
and then projects onto the horizontal axis to obtain the yield displacement ∆y. The
intersection point ‘C’ of the vertical and curve is defined as the yield point, which
corresponds to the yield applied shear Py.

3. For Equivalent Elasto-Plastic Energy Method shown in Figure 2c, the yield displace-
ment and yield point are defined as follows: Determine a point ‘B’ on the curve and
draw secant ‘OB’ to intersect the curve for satisfying the principle that the energy
absorbed by the ideal elastoplastic structure is equal to that absorbed by the actual
structure, i.e., the areas of shaded area ‘OAB’ and ‘BCD’ are equal shown in Figure 2c.
Similar to the R. Park Method in Figure 2b, this extension of line ‘OB’ and the hori-
zontal line corresponding to the maximum applied shear Pmax intersect at ‘C’, and
is then projected onto the horizontal axis to obtain the yield displacement ∆y. The
intersection point ‘E’ of the vertical and curve is defined as the yield point, which
corresponds to the yield applied shear Py.

In this paper, the yield point of the skeleton curve of the load-displacement curve is
calculated by using the Equivalent Elasto-Plastic Energy Method.
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3. Data Collection and Pre-Processing

In this work, a quantity of data adopted for the following calculations is collected from
the PEER database [49,50] and the relevant literature [22,44]. The PEER database covers
extensive hysteretic curves of the RC columns with various material properties obtained
by pseudo-static cyclic test. As for the collected original experimental data, relevant pre-
processing should be conducted to obtain the corresponding yield point whose values
are used to compare with predictive values (see Section 4 for details). The steps of data
pre-processing are as follows: Firstly, determine the skeleton curve of each hysteretic curve
according to the rule seen in Section 2.1; secondly, determine the yield point on the obtained
skeleton curve according to the method seen in Section 2.2, and the yield strength and
displacement are obtained. However, the amount of data involved in the data collection
and pre-processing is enormous. To improve the data-processing efficiency, the above
two steps are implemented via programming calculation. Thus, a program script was
written for plotting the skeleton curves, and then the yield strength and yield displacement
are both outputted. Thereafter, a total of 382 test results were selected and organized in bulk
according to the parameter types, and then all the types of the parameter were categorized
into two parts: input parameters and output properties.

The input parameters are the influencing factors including the basic parameters of
the RC column. The output properties denote performances of the RC column, e.g., yield
strength and displacement, which are codetermined by the influence factors. In the present
model, nine representative influence factors are identified as the input parameters of
the proposed model for the prediction of output properties. The set of influence factors
can be expressed as {Dc, ρr, SecT, fc, fyl, fyv, ρl, ρv, ρn}, where Dc is the section size; ρr is
the span-to-depth ratio defined as L/Dc, in which L is length; SecT is the section type,
SecT = 1 or SecT = 2 denotes the square or circle section type; fc is the strength of con-
crete; fyl is the yield strength of longitudinal bars; fyv is the yield strength of transverse
bars; ρl is the longitudinal reinforcement ratio; ρv is the transverse reinforcement ratio;
ρn is the axial load ratio defined by ρn = P/(Ag·fc), in which P is the constant axial load and
Ag is the gross section area. These input parameters, i.e., influence factors mentioned above,
are summarized in Table 2.

The focus of the developed model is a prediction of the yield strength (Fy) and yield
displacement (∆y) of RC columns, which are considered as the output properties in the
present study. The ranges of the input parameters and output properties are presented in
Table 3 in detail. It can be seen that the input parameters and output properties are well-
distributed over a wide range. Thus, each specimen in the test database can be written as
{{Dc, ρr, SecT, fc, fyl, fyv, ρl, ρv, ρn}, {Fy, ∆y}}, which involves the input parameters and output
properties. Figure 3 displays the histograms of the input parameters and output properties.
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Table 2. Input parameters for LSSVM training.

Influencing Factors Parameters Description

Geometries
Dc Section size (mm)

ρr = L/Dc Span-to-depth ratio (%)
SecT Section type

Materials
fc Strength of concrete (MPa)
fyl Yield strength of longitudinal bars (MPa)
fyv Yield strength of transverse bars (MPa)

Reinforcement
ρl Longitudinal reinforcement ratio (%)
ρv Transverse reinforcement ratio (%)

Loading ρn = P/(Ag·fc) Axial load ratio

Table 3. Statistical description of the input and output variables.

Variables Min. Max. Mean Std.

Dc 80 1520 345.85 149.98
ρr 1 10 3.44 1.65
fc 16 118 46.54 25.98
fyl 0 587.1 422.84 72.41
fyv 0 1424 454.52 206.60
ρl 0.0046 0.0603 0.03 0.01
ρv 0 4.27 0.40 0.69
ρn −0.099 0.9 0.22 0.18
Fy 16.27 2654.11 202.49 204.25
∆y 0.54 114.70 12.64 14.55

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 16 
 

 

Table 2. Statistical description of the input and output variables. 265 

Variables Min. Max. Mean Std. 

Dc 80 1520 345.85 149.98 

ρr 1 10 3.44 1.65 

fc 16 118 46.54 25.98 

fyl 

fyv 

0 

0 

587.1 

1424 

422.84 

454.52 

72.41 

206.60 

ρl 0.0046 0.0603 0.03 0.01 

ρv 0 4.27 0.40 0.69 

ρn -0.099 0.9 0.22 0.18 

Fy 

Δy 

16.27 

0.54 

2654.11 

114.70 

202.49 

12.64 

204.25 

14.55 

 266 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

  

  

(i) (j)   

Figure 3. Statistical distribution of the input and output variables. (a) Section size; (b) Span-to-depth 267 
ratio; (c) Strength of concrete; (d) Yield strength of longitudinal bars; (e) Yield strength of 268 

transverse bars; (f) Longitudinal reinforcement ratio; (g) Transverse reinforcement ratio; 269 

(h) Axial load ratio; (i) Yield strength; (j) Yield displacement. 270 

4. Model Development and Verification 271 

4.1. Least Squares Support Vector Machine 272 

The LSSVM first introduced by Suykens et al [23], is a supervised machine learning 273 

method base on statistical learning theory. It is well-known that the LSSVM methodology 274 

possesses an outstanding feature in learning nonlinear functions, which simply solves a 275 

set of linear equations. Therefore, LSSVM as an extension of SVM equipped with the 276 

Figure 3. Statistical distribution of the input and output variables: (a) Section size; (b) Span-to-depth
ratio; (c) Strength of concrete; (d) Yield strength of longitudinal bars; (e) Yield strength of transverse
bars; (f) Longitudinal reinforcement ratio; (g) Transverse reinforcement ratio; (h) Axial load ratio;
(i) Yield strength; (j) Yield displacement.
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4. Model Development and Verification
4.1. Least Squares Support Vector Machine

The LSSVM, first introduced by Suykens et al. [26], is a supervised machine learning
method based on statistical learning theory. It is well-known that the LSSVM methodology
possesses an outstanding feature in learning nonlinear functions, which simply solves
a set of linear equations. Therefore, LSSVM, as an extension of SVM equipped with the
advantage of fast calculation and generalized capacity, has been widely applied for practical
problems such as nonlinearly, high-dimensional input space and small training samples.
These problems are generally divided into two categories, i.e., regression problems and
classification problems. The focus of the present study is predicting the yield strength and
displacement with the LSSVM adopted in this prediction model, which is thus considered
as a regression problem. The governing equations and numerical algorithms are described
in detail as follows.

For a set of given nonlinear training samples {xi, yi}, i = 1,2, . . . ,l, where l is the number
of training samples. xi∈Rn is the input vector, and yi∈R is its corresponding output vector.
The regression function is obtained by mapping the input space to high-dimensional feature
space using the nonlinear mapping function φ(·), the equation of the regression function
can be written as

f (x) = wTφ(x) + b (1)

where w is the weight vector; b is the bias term (also called the partial vector).
The objective of LSSVM regression can be transformed into an optimization problem

that is expressed as

min
w,b,ξ

J(w, ξ) = 1
2‖w‖

2 + γ
2

l
∑

i=1
ξ2

i

s.t. yi = wT f (xi) + b + ξi, i = 1, 2, . . . , l
(2)

where γ is the regularization parameter (also called the penalty parameter); ξ∈R are the
error variables.

The Lagrange function of the optimization problem, i.e., Equation (2) is formulated as
follows:

L = J −
l

∑
i=1

αi

[
wT · φ(xi) + b + ξi − yi

]
(3)

where αi is the Lagrange multiplier, and sample (αi 6= 0) is the support vector.
The Karush-Kuhn-Tucker (KKT) conditions are employed for the optimal solution of

the object function in a nonlinear optimization problem [51,52]. The resulting regression
model of LSSVM ultimately is obtained and can be evaluated by

y(x) =
l

∑
i=1

αiK(x, xi) + b (4)

where K(x, xi) = φ(x)Tφ(xi) is the kernel function, which is used for classification by mapping
the input data from the featured space into a high-dimensional space. In the present work,
the Radial Basis Function (RBF) kernel function is adopted in the implementation of the
LSSVM and given by

K(x, xi) = e−
‖x−xi‖

2

2σ2 (5)

where σ is the RBF kernel function parameter that needs to be determined, which is
optimized via an external optimization technique during the training process. The pseudo-
code of LSSVM algorithm is presented in Algorithm 1 as follows.
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Algorithm 1: Pseudo-code of LSSVM algorithm

1 Initialize LSSVM parameters
2 Normalize data using Equation (8)
3 while stopping condition is not met do
4 Train LSSVM model with parameters (σ and γ) using each training data point
5 end while
6 Predict testing data using trained LSSVM model
7 return accuracy

In the current study, the learning performance of the LSSVM is mainly determined by
two tuning parameters, i.e., the RBF kernel function parameter (σ) and the regularization
parameter (γ). The RBF kernel function parameter (σ) influences the smoothness of the
approximated nonlinear function, and the regularization parameter (γ) controls the penalty
imposed on data point that deviates from the regression function. Particle swarm opti-
mization (PSO) is a popular approach that is employed to search for the optimal solution
of parameters (σ, γ). The minimum computational error can be obtained by selecting the
optimal solution (σ, γ) during the training process.

4.2. Particle Swarm Optimization

In this section, the basic algorithm of particle swarm optimization (PSO) [33] is intro-
duced in detail. It is well-known that the PSO is a heuristic randomized algorithm and
developed based on animal social behavior, e.g., food searching of bird flocks and fish
schools. As the LSSVM starts working for regression fitting, the solution of tuning parame-
ters (σ, γ) has a direct impact on the feature space and solution accuracy of the prediction
model. Compared with the traditional manual selection method, the PSO algorithm with
the advantages of short time consumption and high accuracy in searching for the optimal
solution is adopted in this paper. The PSO algorithm is widely proposed for simulating
population intelligence, in which swarm the individual is treated as a particle without
volume. The PSO begins with a group of particles migrating at various initial speeds and
directions. The assignment of initial speed and direction proceeds randomly in a certain
range. Thereafter, each particle iteratively updates its speed and direction according to
individual and group behavior. Finally, all the particles in the swarm migrate to the optimal
location, which is considered as the optimal solution to the corresponding optimization
problem. The PSO algorithm possesses the strong power of global optimization property
and search capability.

As mentioned above, the principle of PSO is that particles iteratively search for the
optimal solution from a random solution, and find the global optimum by following the
currently searched optimal solution. Assuming that the initial location and velocity of the
ith particle in N-dimensional space are Ui = (ui1, ui2, . . . , uij) and Vi = (vi1, vi2, . . . ,vij),
j = 1,2, . . . ,N; i = 1,2, . . . ,M, where M is the swarm size. In PSO, the optimal values of
location and velocity are found by tracking the extreme values of pbesti and gbest in each
iteratively updated process of the ith particle, where the pbesti is the individual optimal
experience of the ith particle denoted by Pi = [pi1, pi2, . . . ,pij], and gbest is the global
optimal experience of the swarm denoted by Pg = [pg1,pg2, . . . ,pgj]. According to the fitness
value of particles, the location and velocity of each particle can be updated using the
equations below:

vk+1
id = χvk

id + c1r1(pid − uk
id) + c2r2(pgd − uk

id) (6)

uk+1
id = uk

id + vk+1
id (7)

where vk+1
id and vk

id are the velocities of the ith particle at kth and (k + 1)th iterations,
respectively; uk+1

id and uk
id are the locations of the ith particle at kth and (k + 1)th iterations,

respectively; χ is the inertia weight coefficient; c1 and c2 are the learning coefficients, which
are two prescribed constants in PSO; r1 and r2 are two random constants in the range of [0, 1].
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In the present work, two tuning parameters (σ, γ) are required to be optimized, thus
the value of N is selected as N = 2. Considering that the assignment of M is relevant to the
specific problems, whose value is 10~50 in general. For the present problem of optimization
and prediction, the size of the solution M is set to be M = 30. The empirical values of the
learning coefficients c1 = c2 = 2 is adopted [38,42]. Since a higher value of the inertia weight
coefficient (χ) is conducive to jumping out of local convergence, while a lower value of χ
has a stronger local search capability, the value of χ is taken as 0.8 [38]. And the maximum
number of swarm evolution (i.e., iteration number) kmax = 200 is pre-set in this work. The
pseudo-code of PSO algorithm is presented in Algorithm 2 as follows.

Algorithm 2: Pseudo-code of LSSVM algorithm

1 Initialize population of particles and derive local and global best particles (pbesti and gbest)
2 for k = 1 to maximum number of iterations do
3 for i = 1 to population size do
4 Update the velocity of the ith particle (vi) using Equation (6)
5 Update the location of the ith particle (ui) using Equation (7)
6 if F(ui) < F(pbesti) then
7 pbesti = ui.
8 if F(pbesti) < F(gbest) then
9 gbest = pbesti
10 end if
11 end if
12 end for
13 end for
14 return gbest

When the RMSE of the LSSVM is minimal, the corresponding σ and γ can be regarded
as the optimal parameters. The detailed optimization steps are stated as follows:

(i) Initialize the parameters in PSO algorithm.
(ii) Calculate the fitness value of each particle, and evaluate their fitness with Equation (8),

i.e., F(u) = F(σ, γ) = RMSE.
(iii) Update the location and velocity of the ith particle with Equations (6) and (7) and

compare the current fitness value of each particle F(ui) with the individual best fitness
value F(pbesti), if satisfying F(ui) < F(pbesti), pbesti = ui.

(iv) Compare the current fitness values of all particles in the swarm F(ui) with the fitness
value of the best location of the swarm F(gbest), if satisfying F(ui) < F(gbest), the global
optimal solution gbest = ui.

(v) Check whether the termination condition is met. If the error accuracy is satisfied or
the maximum number of swarm evolution is reached, then the process of searching
for the optimal solution (σ, γ) ends and the optimal values of σ and γ are outputted.
Otherwise, proceed to the next step from step (ii) to continue the process of parameter
optimization.

(vi) Substitute the optimal parameters (σ, γ) into Equation (1) for predicting the yield
strength and displacement of RC columns.

4.3. Implementation of the Yield Strength and Displacement Prediction

This section introduces the implementation of the proposed PSO-LSSVM model for
the yield strength and displacement prediction in detail, as shown in Figure 4. At the
beginning of the PSO-LSSVM, to prevent the formation of larger range numerical attributes
dominating smaller range attributes, data initialization is required. The normalized data
are in the range of [0, 1] through Equation (8), which is defined by

xn
i =

xi − xmin

xmax − xmin
(8)
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where xi is any data point, xmin and xmax are the minimum and maximum values of the
entire dataset; xn

i is the normalized value of the data point.
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4.4. Evaluation of the PSO-LSSVM Prediction Performance
4.4.1. Performance Evaluation Indicators

The prediction performance of PSO-LSSVM is evaluated by the coefficient of determi-
nation (R2), mean absolute error (MAE) and root mean square error (RMSE). The coefficient
R2 represents the level of explained variability between the actual values measured in the
experiment and predicted values computed by the PSO-LSSVM model. The closer the
coefficient R2 varies toward 1, the more similar the actual values and predicted values are.
Likewise, the lower values for MAE and RMSE, the higher accuracy in the predicted values
indicate. Equations (9)–(12) are the mathematical formulation of the adopted performance
evaluation criteria RMSE, MAE and R2, respectively, as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (10)

R2 =
(n∑ yi × ŷi −∑ yi∑ ŷi)

2(
n∑ y2

i − (∑ yi)
2
)(

n∑ ŷ2
i − (∑ ŷi)

2
) (11)

Explained Variance =

(
1− Var(yi − ŷi)

Var(yi)

)
× 100% (12)
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where yi is the experimental value of the ith sample, ŷi is the predicted value of the ith
sample, and n is the total number of samples, and Var() is the variance.

4.4.2. Evaluation of the PSO-LSSVM Prediction Results

Before evaluating the proposed model, the dataset composed of 382 test results is
randomly divided into two sets: the training set (305 data samples) and the testing set
(77 data samples). With the optimal parameters in Table 4 adopted, the training performance
and testing results of the PSO-LSSVM are displayed in Figures 5 and 6, respectively. The
scatter-plots in the two figures show that the proposed model has yielded prediction results
that present quite excellent agreement with the experimental test results in both training
and testing processes. Moreover, it also can be seen that the PSO-LSSVM earned relatively
high values of R2 for testing, the corresponding values of the coefficient of determination
(R2) are 0.99 and 0.96 for the training and testing cases of yield strength, respectively
(Figures 5a and 6a), and the corresponding values of R2 are 0.98 and 0.97 for the training
and testing cases of yield displacement, respectively (Figures 5b and 6b). The high values
of R2 imply that a strong correlation exists between the predicted and measured yield point,
which indicates that the PSO-LSSVM is proficient at capturing the underlying function of
yield strength and yield displacement of RC columns.

Table 4. Obtained optimal parameters of LSSVM by PSO.

σ γ

Fy 0.47 195.45
∆y 0.43 49.93
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In addition, the mean absolute error (MAE) and root mean square error (RMSE) for
evaluating the predictive accuracy of the PSO-LSSVM model, are also presented in Figures 5
and 6. The PSO-LSSVM model attains good perdition performances in both yield strength
and yield displacement reflected in the low values of MAE and RMSE. Nevertheless, the
values of MAE and RMSE in the testing process of the PSO-LSSVM are low enough already,
which demonstrates that the new model has a good capability of predicting yield strength
and displacement accurately. To sum up, the results indicate that the estimated yield
strength and displacement are trustworthy and reliable due to the high R2 and low RMSE
and MAE. Thus, the proposed PSO-LSSVM model is deemed suited for predicting yield
strength and displacement of RC columns as a new and effective method. Meanwhile, the
results shown in Figures 5 and 6 also indicate that the PSO algorithm adopted for searching
optimal solutions to the LSSVM model is quite effective and meets the calculation accuracy
requirement in both training and testing results.

4.4.3. Comparative Evaluation of Model Prediction Performance

For further elaborating the effectiveness of the PSO algorithm in terms of parameter (σ, γ)
optimization, other metaheuristic algorithms such as GA [30], DE [31] and ABC [32] are
also applied to optimize the parameters of the LSSVM model. The identical training and
testing samples are employed to make a performance comparison among standard LSSVM
models without the optimized algorithm, and LSSVM optimized by GA, ABC, DE and
PSO algorithms, respectively. The configuration of the standard LSSVM model is the same
as that of the proposed model with the parameters of standard LSSVM and kernel set as
σ2 = 0.1, γ = 10 [39]. The parameter settings of the GA, ABC and DE algorithms are
identical to that used in the PSO, i.e., the size of the solution M = 30 and the maximum
iteration number kmax = 200. Table 5 is the evaluation results of the LSSVM, GA-LSSVM,
ABC-LSSVM, DE-LSSVM and PSO-LSSVM models. As shown in Table 5, it is obvious that
the prediction performance of the standard LSSVM is improved by adopting the optimized
algorithms due to the increase in R2 and EV, and the decrease in RMSE and MAE. The higher
R2 and EV, and lower RMSE and MAE imply the higher accuracy of models. Meanwhile,
comparing the evaluation indices (R2, EV, RMSE and MAE) of testing data between the
LSSVM optimized by other metaheuristic algorithms and the proposed PSO-LSSVM model,
it can be found that the R2 of the PSO-LSSVM model in predicting yield strength (Fy) and
yield displacement (∆y) can be up to 0.96 and 0.97, respectively. The RMSE and MAE of
the PSO-LSSVM model are both sufficiently minimal. For the prediction of Fy, there is
little difference in the prediction accuracy between GA-LSSVM, ABC-LSSVM, DE-LSSVM
and PSO-LSSVM models. While for the prediction of ∆y, the prediction accuracy of the
PSO-LSSVM model is higher than other models. This demonstrates that the PSO-LSSVM
model performs better than GA-LSSVM, ABC-LSSVM and DE-LSSVM models in terms
of R2, EV, RMSE and MAE, indicating the proposed PSO algorithm has an outstanding
advantage over the GA, ABC and DE algorithms in establishing the LSSVM model used
for effectively predicting the yield properties of RC columns.

Table 5. Evaluation results of standard LSSVM, GA-LSSVM, ABC-LSSVM, DE-LSSVM, PSO-LSSVM.

Model
Training Testing

RMSE MAE R2 EV RMSE MAE R2 EV

Fy

LSSVM 25.41 15.65 0.9859 98.5933 43.29 26.58 0.9248 92.6090
GA-LSSVM 20.61 13.41 0.9907 99.0746 31.92 23.93 0.9591 95.9857

ABC-LSSVM 20.54 13.25 0.9908 99.0802 31.60 23.38 0.9599 96.0527
DE-LSSVM 19.90 12.94 0.9913 99.1371 31.42 23.17 0.9603 96.1449

PSO-LSSVM 20.53 13.22 0.9907 99.0821 31.45 23.25 0.9601 96.0898

∆y

LSSVM 2.067 1.282 0.9775 99.7536 7.870 2.895 0.7848 78.5773
GA-LSSVM 1.800 1.108 0.9830 98.2953 4.647 2.87 0.9249 92.5010

ABC-LSSVM 1.876 1.168 0.9815 98.1484 4.943 2.674 0.9151 91.5142
DE-LSSVM 1.831 1.139 0.9823 98.2360 4.975 2.686 0.9140 91.4036

PSO-LSSVM 1.795 1.140 0.9832 98.3245 2.798 1.822 0.9728 97.2999
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5. Conclusions

A new ML-based method incorporating algorithms of the LSSVM and PSO is proposed
for predicting the yield strength and displacement of RC columns. The present PSO-LSSVM
model is capable of learning the nonlinear regression function that controls the mapping
between the influencing factors and the yield strength and displacement with the PSO
utilized for assisting to adaptively and quickly determine two optimal tuning parameters
(σ, γ). A test database of 382 pseudo-static cyclic test of RC columns is built, then the
effects of the column featured parameters on the yield-related properties are investigated
concerning the related research results. The proposed PSO-LSSVM model is then compared
with the standard LSSVM and the LSSVM optimized by other metaheuristic algorithms,
such as GA, ABC and DE algorithms, with the identical experimental database used for
model training and testing. The comparative results show that the PSO empowers the
LSSVM model to efficiently and accurately predict the target data with a self-optimized
machine learning algorithm based on the collected data samples. Based on the analysis
results about the prediction performance of the PSO-LSSVM for the yield strength and
displacement of RC columns, the following conclusions are drawn:

(1) The determination coefficient R2 is 0.96, if 80% of the whole dataset is used for training
the PSO-LSSVM model, which means a low prediction error. Meanwhile, the RMSE
and MAE are 31.45 and 23.25, respectively, which indicates that the prediction model
has a low prediction deviation.

(2) The PSO adopted for parameter optimization of σ and γ that are embedded in the
LSSVM model, can quickly find the optimal parameters to effectively assist the LSSVM
model in prediction work.

(3) The proposed PSO-LSSVM model can predict the yield strength and displacement of
RC columns with high efficiency and accuracy by comparing them with the LSSVM
models optimized by other metaheuristic algorithms.

Hence, the developed PSO-LSSVM model can be a useful tool to provide effective
guidance for the structural design of RC columns in practical engineering applications.
Essentially, the proposed model based on the ML technique is a data-driven approach that
focuses on correlations between research objects, different from the traditional research
method that is more concerned with cause-effect relationships. Moreover, ML methods
characterized by data-driven approaches are very powerful at solving regression and
optimization problems, as long as sufficient data can be provided. In our future work, the
model will be extended to study the deformation properties of other key component units
of building structures, such as RC beams and shear walls, and, the data collection and
processing of the relevant experimental database will be conducted.
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