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Abstract: Resistance of the bare hull of the tourist submarine with spherical heads, moving in forward
and transverse directions is analyzed in OpenFOAM using Computational Fluid Dynamics. The
resistance coefficients of the submarine are estimated for different length-to-diameter ratios and
Reynolds numbers. The Artificial Neural Network with the optimum number of neurons is then
trained to predict the resistance coefficients. Two simplified Artificial Neural Network models and
Nonlinear Least Squares Marquardt-Levenberg algorithm are employed to fit the results in the form
of equations that may be used in the initial design of this type of submarines. The comparative
analysis of different prediction models is performed and guidelines for their practical application
are given.
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1. Introduction

The present study is inspired by the tourist submarine with the transparent acrylic hull,
designed to provide visitors a view of the surrounding ocean in a comfortable manner [1,2].
The overall length of the studied submarine is about 25 m, while the external diameter of
the acrylic hull is 2.64 m. The hull of the submarine has spherical heads on the ends, where
one head is made of steel, while the other one has large acrylic dome to provide visibility
to the pilot of the submarine. The specific feature of tourist submarines is their ability to
move in different directions with low speed, while the power requirements are a central
consideration in their design to maximize the cruising duration. Although power reduction
can be achieved in different ways, e.g., by adopting energy-saving propulsion systems or
controlling the boundary layer on the submarine’s surface, the shaping of the submarine’s
hull is considered as the most efficient approach. So, the purpose of the present paper
is twofold:

1. To develop accurate and efficient numerical hydrodynamic model for the resistance
coefficient of the submarine moving in forward and transverse directions.

2. To develop prediction tool for the resistance coefficients of the submarine in the initial
design phase, without need to perform complex hydrodynamic analysis.

Hydrodynamic calculations are performed by the numerical model in OpenFOAM,
using Computational Fluid Dynamic (CFD). Practical engineering tool replacing hydrody-
namic computations is developed using the Artificial Neural Network (ANN) with optimal
number of neurons. As designers of marine structures may be disinclined for using ANN as
a “black box”, relatively simple design equations are proposed using two ANN models with
small number of neurons, and by Nonlinear Least Squares Marquardt-Levenberg algorithm.
Although the actual resistance coefficient of the tourist submarine is higher because of the
appendices and additional structures, there is a great need to have preliminary estimate of
the bare hull resistance, which is the main benefit of the present study [2].

Appl. Sci. 2022, 12, 10953. https://doi.org/10.3390/app122110953 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122110953
https://doi.org/10.3390/app122110953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1473-2950
https://orcid.org/0000-0002-8566-4927
https://orcid.org/0000-0002-8338-9634
https://doi.org/10.3390/app122110953
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122110953?type=check_update&version=2


Appl. Sci. 2022, 12, 10953 2 of 21

The paper is organized as follows. In the second part of Introduction, literature review
regarding hydrodynamic analysis of submarines and combinations of physics with neural
networks is provided. After the explanation of the governing equations and boundary
conditions in the second section, the developed model was validated in the third section.
Section 4 presents the results and comparative analysis of different prediction models for
the resistance coefficients. Finally, the conclusions are presented in Section 5.

Literature Review

Among the key aspects of naval architecture is predicting the resistance of ships and
submerged bodies. In this regard, Reynolds Averaged Navier Stokes Equations (RANS)
based solutions were studied broadly in the literature. Larsson et al. [3] compared the
results for benchmark vessels investigated by various institutions and universities with
codes implementing RANS. Wang et al. [4], investigated resistance and wave patterns of a
submarine model at different depths, and the influence of free surface on the resistance was
discussed. Moonesun et al. [5] studied flow behavior on a model of an underwater vehicle
with a tango-shaped nose and presented some formulas for the resistance of submarine
bare hulls in deep water. Lastly, they compared the equation to determine the optimum
resistance coefficient for the submarine.

Sukas et al. [6] applied RANS-based CFD to the numerical simulation of the flow
field around a surface piercing and a fully submerged body to estimate the total resistance
of the submarine. A CFD analysis was presented by Moonesun et al. [7] on the bare
hull form of submarines or torpedoes to minimize resistance. They studied the bare hull
form without free surface effect since the required power will always be estimated for
submerged navigation. CFD was used by Ahmed [8] to determine the viscous resistance of
a tourist submarine suitable for work in the Red Sea region. In that study, the resistance and
hydrodynamic characteristics of the flow surrounding the tourist submarine under different
speeds were investigated using the finite volume RANS code CFX. Shen et al. [9] used
model-scale submarine resistance tests to predict full-scale resistance. It was assumed that
the residual resistance coefficient is independent of the Reynolds number and is measured
at the model-scale.

Utina et al. [10] evaluated experimentally and numerically the pressure and frictional
force in the opposite direction of the mini submarine movement. Anh et al. [11] calculated
the resistance coefficient of an exploratory submarine with a displacement of 6.8 tons
moving forward, backward, diving, and rising in different directions. A full-scale SUBOFF
model was investigated by Liu et al. [12] for different forward speeds, submerged positions,
and fluid densities. They showed that the submarine hydrodynamic performance is
significantly affected by the forward speed and submerged depth. Based on Star CCM+
fluid simulation software, the resistance coefficients under different submarine depths and
speeds were calculated based on the specific resistance characteristics of submarines sailing
near the surface by Chen et al. [13].

Combining physics models with neural networks has been used in fluid dynamics
during the last few years [14–18]. As an example, convolutional neural networks were
used by Takaaki et al. [14] to model the flow around a circular cylinder at 100 Reynolds
numbers. Brenner et al. [17] used machine learning for advancing fluid mechanics. The
authors demonstrated that the suggested model is likely to have a positive impact pro-
vided outcomes are held to the long-held critical standards that should guide flow physics
research. In another research, Brunton et al. [18] reviewed the history and development
of machine learning in fluid mechanics, as well as opportunities for the future. A dis-
cussion of fundamental machine learning methodologies and their use in understanding,
modeling, optimizing, and controlling fluid flow was presented in that paper. The mod-
els in these studies were used as a “black box” without explicit equations to estimate
unknown parameters.
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2. Governing Equations and Boundary Conditions

In the present study, a submerged bare hull of a submarine was modeled in a viscous
and incompressible fluid so that the fluid flow was considered turbulent. Accordingly,
RANS are used as the governing equations [19]:

∇.(ρV) = 0 (1)

∂

∂t
[ρV] +∇.[ρVV] = −∇p +∇.

[
τ − ρV′V′

]
+ fb (2)

The nomenclature is presented at the end of the paper. To solve the RANS, the
Pressure Implicit Method with Pressure Linked Equations (PIMPLE) algorithm was applied.
Different terms of the discretized equations, such as derivative terms, gradient parameters,
Laplace derivative terms, and divergence terms, were discretized using 1st order implicit
Euler, 2nd order centered Gauss linear, skewness corrected centered Gauss linear correction,
and Upwind schemes, respectively [20]. Using block mesh and refinement techniques, a
cylindrical domain was generated by using a Cartesian structured grid. Different boundary
conditions summarized in Table 1 were used for the velocity, pressure, kinetic energy, and
dissipate rate on the boundaries shown in Figure 1. According to Allmendinger [21], if the
submarine moves at a depth greater than five times the diameter of its hull, the effect of
surface and wave interactions can be ignored.

Table 1. Different boundary conditions used for different parameters.

Boundary Velocity Pressure Kinetic Energy (k) Dissipation Rate (ε)

Inlet Fixed Value Zero Gradient Fixed Value Fixed value
Outlet Inlet Outlet Fixed Value Inlet Outlet Inlet Outlet
Body Moving wall velocity Zero Gradient Wall Function Wall function

around Symmetry Symmetry Symmetry Symmetry
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In addition, the K-Epsilon two-equation model was used to account for turbulence [22].

∂

∂t
[ρk] +∇.[ρVk] = ∇.

[
µe f f ,k∇k

]
+ Pk − βρkε (3)

∂

∂t
[ρε] +∇.[ρVε] = ∇.

[
µe f f ,ε∇ε

]
+ Cε1

ε

k
Pk − Cε2ρ

ε2

k
(4)

where
Cε1 = 1.44Cε2 = 1.92β = 0.09
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µe f f ,k = µ +
µt

σk
µe f f ,ε = µ +

µt

σε
σk = 1.0σω = 1.3

The resistance force and coefficient were calculated by integrating pressure and shear
stress over the surface of the submarine as follows [23]:

R =
∫

S
pnxdA +

∫
S
τxynydA +

∫
S
τxznzdA (5)

CR =
R

1
2 ρSV2

f

(6)

where S is the surface area of the submarine’s bare hull.

2.1. Artificial Neural Network (ANN)

The back propagation (BP) ANN is a multilayer feedforward ANN used for bench-
marking prediction performance [24–26]. There are three layers in BP ANN: input, hidden,
and output. Each hidden layer receives the input signal through the input layer, and
finally, the output layer receives it. Error signals are sent back to the hidden layer and the
input layer. After that, the gradient descent algorithm is applied to adjust the weight and
threshold of each neuron so that the BP analogy output is close to the expected value (See
Figure 2). The number of neurons in the hidden layer is selected by repeated experiments
to optimize the performance of the neural network.
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As ANN with many neurons can be used only as the “black box”, the approach may be
inconvenient for submarine designers, who are usually not familiar with ANN. Therefore,
it is of great practical interest to develop design equations for practical engineering usage.
Since the equation derived from a neural network with many neurons would be very long
and unusable, two ANN structures with one and two neurons in the hidden layer are
considered (See Figures 3 and 4).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 22 
 

 
Figure 3. ANN structures with one neuron in the hidden layer. 

 
Figure 4. ANN structures with two neurons in the hidden layer. 

Convolution produces the following output for the ANN shown in Figures 3 and 4, 
respectively:  𝐶ோ = 𝑓ଶ ൭𝑏ଶ + 𝑤ଷ𝑓ଵ ൬𝑤ଵ 𝐿𝐷௦ + 𝑤ଶ𝑙𝑜𝑔(𝑅௘) + 𝑏ଵ൰൱ (7) 

𝐶ோ = 𝑓ଶ ൭𝑏ଷ + 𝑤ହ𝑓ଵ ൬𝑤ଵ 𝐿𝐷௦ + 𝑤ଷ𝑙𝑜𝑔(𝑅௘) + 𝑏ଵ൰ + 𝑤଺𝑓ଵ ൬𝑤ଶ 𝐿𝐷௦ + 𝑤ସ𝑙𝑜𝑔(𝑅௘) + 𝑏ଶ൰൱ (8) 

Activation functions introduce non-linearity into neural networks and help to cap-
ture the non-linear characteristics of input data [28,29]. There are different activation func-
tions including Sigmoid, hyperbolic tangent, and Identity used in the neurons of the hid-
den and output layers of ANN [27]. According to the preliminary results of this study, 
ANNs with hyperbolic tangents ൫𝑓ଵ(𝑥) = 𝑡𝑎𝑛ℎ(𝑥)൯ and Identity (𝑓ଶ(𝑥) = 𝑥) activation 
functions in the hidden and output layers provides credible results. 

2.2. Nonlinear Least Squares Levenberg-Marquardt Algorithm (NLLS) 
Due to its high convergence efficiency to obtain the global optimal solution, the NLLS 

algorithm has been widely used [30–33]. By considering the equation 𝐶ோ =𝑓 ቀ ௅஽ೞ , 𝑙𝑜𝑔(𝑅௘), 𝑝ቁ, the problem-solving nonlinear equations are expressed as:  𝐹(𝑥, 𝑝) = 𝐶ோ − 𝑓 ൬ 𝐿𝐷௦ , 𝑙𝑜𝑔(𝑅௘), 𝑝൰ (9)

The nonlinear equation 𝑓(𝑥, 𝑝) needs to be solved, where x is the time series, y is the 
observations, and p is the nonlinear equation parameters. A nonlinear model is fitted by 
minimizing the sum of the square of errors, which can be expressed as:  

Figure 3. ANN structures with one neuron in the hidden layer.



Appl. Sci. 2022, 12, 10953 5 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 22 
 

 
Figure 3. ANN structures with one neuron in the hidden layer. 

 
Figure 4. ANN structures with two neurons in the hidden layer. 

Convolution produces the following output for the ANN shown in Figures 3 and 4, 
respectively:  𝐶ோ = 𝑓ଶ ൭𝑏ଶ + 𝑤ଷ𝑓ଵ ൬𝑤ଵ 𝐿𝐷௦ + 𝑤ଶ𝑙𝑜𝑔(𝑅௘) + 𝑏ଵ൰൱ (7) 

𝐶ோ = 𝑓ଶ ൭𝑏ଷ + 𝑤ହ𝑓ଵ ൬𝑤ଵ 𝐿𝐷௦ + 𝑤ଷ𝑙𝑜𝑔(𝑅௘) + 𝑏ଵ൰ + 𝑤଺𝑓ଵ ൬𝑤ଶ 𝐿𝐷௦ + 𝑤ସ𝑙𝑜𝑔(𝑅௘) + 𝑏ଶ൰൱ (8) 

Activation functions introduce non-linearity into neural networks and help to cap-
ture the non-linear characteristics of input data [28,29]. There are different activation func-
tions including Sigmoid, hyperbolic tangent, and Identity used in the neurons of the hid-
den and output layers of ANN [27]. According to the preliminary results of this study, 
ANNs with hyperbolic tangents ൫𝑓ଵ(𝑥) = 𝑡𝑎𝑛ℎ(𝑥)൯ and Identity (𝑓ଶ(𝑥) = 𝑥) activation 
functions in the hidden and output layers provides credible results. 

2.2. Nonlinear Least Squares Levenberg-Marquardt Algorithm (NLLS) 
Due to its high convergence efficiency to obtain the global optimal solution, the NLLS 

algorithm has been widely used [30–33]. By considering the equation 𝐶ோ =𝑓 ቀ ௅஽ೞ , 𝑙𝑜𝑔(𝑅௘), 𝑝ቁ, the problem-solving nonlinear equations are expressed as:  𝐹(𝑥, 𝑝) = 𝐶ோ − 𝑓 ൬ 𝐿𝐷௦ , 𝑙𝑜𝑔(𝑅௘), 𝑝൰ (9)

The nonlinear equation 𝑓(𝑥, 𝑝) needs to be solved, where x is the time series, y is the 
observations, and p is the nonlinear equation parameters. A nonlinear model is fitted by 
minimizing the sum of the square of errors, which can be expressed as:  

Figure 4. ANN structures with two neurons in the hidden layer.

Convolution produces the following output for the ANN shown in Figures 3 and 4, respectively:

CR = f2

(
b2 + w3 f1

(
w1

L
Ds

+ w2log(Re) + b1

))
(7)

CR = f2

(
b3 + w5 f1

(
w1

L
Ds

+ w3log(Re) + b1

)
+ w6 f1

(
w2

L
Ds

+ w4log(Re) + b2

))
(8)

Activation functions introduce non-linearity into neural networks and help to capture
the non-linear characteristics of input data [28,29]. There are different activation functions
including Sigmoid, hyperbolic tangent, and Identity used in the neurons of the hidden and
output layers of ANN [27]. According to the preliminary results of this study, ANNs with
hyperbolic tangents ( f1(x) = tanh(x)) and Identity ( f2(x) = x) activation functions in
the hidden and output layers provides credible results.

2.2. Nonlinear Least Squares Levenberg-Marquardt Algorithm (NLLS)

Due to its high convergence efficiency to obtain the global optimal solution, the NLLS
algorithm has been widely used [30–33]. By considering the equation CR = f

(
L

Ds
, log(Re), p

)
,

the problem-solving nonlinear equations are expressed as:

F(x, p) = CR − f
(

L
Ds

, log(Re), p
)

(9)

The nonlinear equation f (x, p) needs to be solved, where x is the time series, y is the
observations, and p is the nonlinear equation parameters. A nonlinear model is fitted by
minimizing the sum of the square of errors, which can be expressed as:

min
n

∑
i=k

R− f
(

L
Ds

, log(Re), pk

)
= min

n

∑
i=k

εk (10)

where pk is the parameter of the kth iteration, and εk is the residual of the kth iteration.
Taylor expansion was used to approximate the nonlinear function of f (x, pk+1) for solving
Equation (10) as follows:

f
(

L
Ds

, log(Re), pk+1

)
= f

(
L

Ds
, log(Re), pk + ∆

)
= f (x, pk) + J(pk)∆ (11)

where J is the Jacobian matrix and ∆ are the steps of the (k + 1)th iteration. By solving the
following equation, we can get the residual of the (k + 1)th iteration as follows:

CR − f
(

L
Ds

, log(Re), pk+1

)
= CR − f

(
L

Ds
, log(Re), pk

)
− J(pk)∆ = εk − J(pk)∆ = 0 (12)
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It is known as Newton’s method. This method, however, cannot be used to solve equations with
overdetermined matrices. This problem was solved by multiplying a transposed matrix to reduce the
overdetermined matrix’s dimension by Gauss-Newton (Equation (13)).

J(pk)
T J(pk)∆ = J(pk)

T J(pk)εk = g (13)

By developing the Levenberg-Marquardt (LM) algorithm, the Gauss-Newton method was
improved, since it does not work when the Hessian matrix is singular. To use the LM method, a
constant, the trust-region radius, must be included in the equation as follows.

∆LM
k = −

(
J(pk)

T J(pk) + µk I
)−1

g (14)

The parameter µk is an iteration parameter introduced to overcome constraints caused by
singularities or near singularities of J(pk). This parameter is also used to preventing ∆LM

k from
being too large when the Hessian matrix (J(pk)

T J(pk)) is nearly singular. ∆LM
k is well defined in this

case if µk is positive. In comparison to the steepest gradient method, Newton’s method, and the
Gauss-Newton method, the LM method is the most widely used nonlinear fitting method. Near to
the solution, µk may be very small. In contrast, when the solution is far away, the value of µk may be
very large; therefore, controlling µk can lead to an optimal solution.

3. Mesh Size Calibration
Figure 5a shows how a cube with LC = 0.45 m edge length was placed inside a cylinder of 6 m

length and 2 m diameter to determine mesh size. By considering the input boundary condition as a
constant velocity, the total resistance of the cube against fluid flow is estimated. A cube was analysed
against a constant 10 m/s fluid flow to examine the mesh size dependency. The numerical results
showed that uniform mesh sizes (ms) with ms/LC less than 0.09 did not significantly affect the total
resistance as shown in Figure 5b.
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Figure 5. (a) The generated mesh of the cube inside a cylinder in OpenFOAM, (b) Mesh size
dependence evaluation.

Accordingly, the developed model was used to estimate the resistance coefficient (CR) of the
cube by using Equation (15) against fluid flows with different velocities (Vf), and the results are
shown in Figure 6a. Based on the results shown in Figure 6a, the average resistance coefficient for
different speeds is calculated to be about 1.13. According to the literature [34–36], the resistance
coefficient of a cube is estimated to be between 1.05 and 1.20. Therefore, the average of 1.13 was
found to be in very good agreement with the amount suggested by other researchers.

CR =
2R

ρV2
f L2

(15)
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Figure 6. The resistance coefficient and total resistance of different geometries against fluid flowing
at different Reynolds numbers (a) a cube of 0.45m length, (b) a sphere of 2.64 m diameter.

The cube exhibits significantly more vortex shedding than the submarine’s bare hull, so another
mesh size verification is performed using the sphere. Thus, a sphere with a diameter of 2.64 m is also
computed with the same mesh size. Figure 6b shows the resistance force and coefficient for fluid
flows with different Reynolds numbers, where an average resistance coefficient of 0.45 was calculated.
The resistance coefficient of a sphere is estimated in the range of 0.4 and 0.5 for Reynolds numbers
greater than 104 [36]. Consequently, the average of 0.45 was found to be very close to the amount
suggested in [37].

4. Results
The present study aims to model the bare hull of a submarine against speeds to derive equations

for resistance coefficients in forward and transverse directions. To that end, a range of credible tourist
submarine geometries, represented by the ratio L/DS, is defined, and shown in Table 2, where L
represents the length of the cylindrical hull, Loa is the overall length including the heads, and DS
represents the diameter of the cylindrical hull. The geometries are defined by keeping the total
internal volume of the submarine nearly constant. Isabella, a supercomputer housed at SRCE—
University Computing Centre of the University of Zagreb, is used for the analysis. Isabella consists
of 135 worker nodes, 3100 processor cores, 12 GPUs, and 756 TiB of data storage [38].

Table 2. The dimensions of a submarine for different L/DS ratios.

Case L (m) DS (m) L/DS

1 25 2.44 10.2
2 24 2.49 9.6
3 23 2.54 9.1
4 22 2.59 8.5
5 21.06 2.64 8.0
6 20 2.7 7.4
7 19 2.76 6.9
8 18 2.83 6.4
9 17 2.9 5.9

4.1. Forward Motion
A total of 117 different cases, as described in the previous section, were modeled in OpenFOAM

for 13 different speeds (0.25, 0.35, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5 m/s). Therefore, all
117 cases listed in Appendix A were analyzed. OpenFOAM computation for each of the 117 cases
lasted for about 18,000 s, so the total running time was about 35,100 min. Results of the analysis were
presented in Figure 6. The resistance coefficient for the forward motion in Figure 7 were presented
against L/DS and Reynolds number, given by the following expression:

Re f =
Vf DS

υ
(16)
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In the present case, υ is the dynamic viscosity of 10−6 m2

s [39].
The results shown in Figure 7 indicate that the relationship between the resistance coefficient

in the forward direction (CD–f) and L/DS is almost linear. However, the change of this parameter is
somewhat nonlinear at the low (e.g., 0.5 m/s) and high (e.g., 1.5 m/s) speeds. On the other hand, for
all L/DS, the relationship between CD–f and forward speed (Vf) is nonlinear.

Next, NLLS and ANN methods were applied to fit the best curve to the results shown in Figure 7
and find a nonlinear equation to estimate the resistance coefficient of the bare hull based on two
dimensionless parameters, L/DS and Reynolds number (Ref). The following equations were derived
for the resistance coefficient of the submarine with the forward speed using the developed code in
MATLAB. For the ANN, 70%, 15%, and 15% of data (corresponding to 83, 17, and 17 data) were used
in training, testing, and evaluation steps, respectively:

NLLS:

CR− f = 5.372 − 0.34 L
DS

+ 1.625log(Re f ) + 0.0031
(

L
DS

)2
+ 0.096 L

DS
log(Re f ) + 0.125

(
log(Re f )

)2

−0.0000534
(

L
DS

)3
− 0.0002102

(
L

DS

)2(
log(Re f )

)
+ 0.007171 L

DS

(
log(Re f )

)2

(17)
ANN (Figure 3):

CR− f = 0.0971 + 0.0827tanh
(
−0.146

L
DS
− 1.584log(Re f

)
+ 9.578) (18)

ANN (Figure 4):

CR− f = 0.112 + 0.0547tanh
(
−0.161 L

DS
+ 1.971log(Re f )− 13.066

)
+ 0.047tanh

(
−0.119 L

DS

−2.004log(Re f

)
+ 12.325)

(19)

To assess that accuracy of Equations (17)–(19), ANNs with larger number of neurons (NON) in
the hidden layer (see Figure 8) are also trained.
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Figure 8. ANN structures with large NON in the hidden layer.

In ANN, the optimal NONs in the hidden layers is determined by trial and error and not
straightforwardly. However, it was advised to use 2–4 times the input layer’s number of nodes [40,41].
So, by considering the number of nodes in the input layer = 2, ANNs with 3–10 neurons in the hidden
layer (as a “black box”) were used to estimate the resistance coefficient of the submarine for the

speeds of 0.1, 0.45, 1.15, and 1.7 m/s, and Sum Square Error (SSE =
((

CR− f

)
CFD
−
(

CR− f

)
Pre

)2
)

of the models were estimated and shown in Figure 9.
(

CR− f

)
CFD

and
(

CR− f

)
Pre

are the predicted

resistance coefficient by using CFD and ANN, respectively.
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Figure 9 shows that ANN with six neurons in the hidden layer (NON = 6) has the best perfor-
mance for predicting resistance coefficients.

Equations (17) to (19) and the trained ANN with NON = 6 were used to predict the resistance
coefficient of the submarine for the speeds 0.1, 0.45, 1.15, and 1.7 m/s, and the results were shown in

Figure 10. The error estimated as Error = 100 ∗ (CR− f )CFD
−(CR− f )Pre

(CR− f )CFD

was also calculated for different

methods and shown in Figure 11.
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the submarines for different forward speeds, (a) Vf = 0.1 m/s, (b) Vf = 0.45 m/s, (c) Vf = 1.15 m/s,
(d) Vf = 1.7 m/s.

According to Figure 11a, Equations (18) and (19) are unable to estimate accurately the resistance
coefficient for speeds lower than those used in training the artificial neural network. The model error
varies from 15 to 30 percent depending on the submarine’s length and diameter. NLLS (Equation
(17)) estimates the resistance coefficient with a maximum error of 15%. ANN with NON = 6 estimates
the resistance coefficient with a maximum error of 3% and 10% for the submarines with L/DS > 7.5
and L/DS < 7.5, respectively.
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As shown in Figure 11b,c, Equations (17) and (19) and ANN with NON = 6 provide high accuracy
for estimating resistance coefficients at speeds used for training ANNs and NLLS.

The results for the forward speed 1.7 m/s (Figure 11d) which was higher than the range of
speeds used in the extraction of relationships indicates that Equations (17) and (19) estimate the
resistance coefficient with a maximum 10% and 7% error, respectively. ANN with NON = 6 shows a
better performance than other methods, with maximum error of 3%.

4.2. Transverse Motion
Tourist submarines are equipped with transverse thrusters to enable transverse motion and

maneuvering. Additionally, they are used to prevent the transverse motion by acting in the opposite
direction to the sea current. Therefore, there is an interest in studying the transverse resistance of the
submarine as well as the transverse motion of the submarine, and to suggest equations to estimate the
resistance coefficient in the transverse direction. To accomplish this, 90 different cases are modeled in
OpenFOAM using the developed code for 10 different transverse speeds (0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.4, 0.45 and 0.5 m/s). Therefore, 90 cases listed in Appendix B were analyzed and are
shown in Figure 12. OpenFOAM computation for each of the 90 cases lasted for about 18,000 s, so the
total running time was about 27,000 min.
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Figure 12. Variation of the resistance coefficient versus the dimensionless parameters, L/DS and log
(Ret) for the transverse directions.

Figure 12 shows that the resistance coefficient in the transverse direction (CD-t) is linearly related
to the L/DS. Nevertheless, for all L/DS, the relationship between CD-t and transverse speed (Vt)
is nonlinear. NLLS and ANNs were applied to fit the best curve to the obtained results shown in
Figure 13 and to find a nonlinear equation to estimate the resistance coefficient of the bare hull
based on two dimensionless parameters, L/DS and Reynolds number (Ret). The following equations
were derived for the resistance coefficient of the submarine with transverse speed using the code in
MATLAB. In ANN, 70%, 15%, and 15% of data (corresponding to 64, 13, and 13 data) were also used
in training, testing, and evaluation steps, respectively:
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NLLS:

CR−t = 232.71− 5.211889 L
DS
− 105.35826(log(Ret)) + 0.083091

(
L

DS

)2
+ 1.46633 L

DS
(log(Ret))

+16.000585(log(Ret))
2 − 0.0133027

(
L

DS

)2
log(Ret)− 0.101747 L

DS
(log(Ret))

2

−0.815011(log(Ret))
3

(20)
ANN (Figure 3):

CR−t = 1.772 + 1.513tanh(−0.093
L

DS
− 1.92log(Ret) + 10.361) (21)

ANN (Figure 4):

CR−t = 1.516 + 1.22tanh
(
−0.1093 L

DS
− 2.278log(Ret) + 12.466

)
+ 0.0374tanh(−0.534 L

DS

−3.695log(Ret) + 26.177)
(22)

The data in Appendix B has also been used to train ANNs with more than two neurons in the
hidden layer (see Figure 8). The resistance coefficient was estimated at 0.02 m/s as a test of the
ability of the proposed models to estimate it at different speeds. This speed is lower and outside the
range used for the extraction of relations. In addition, the resistance coefficient of the submarine at
transverse speeds of 0.125 and 0.375 was estimated, which was included in the range of speeds used
in the extraction of relationships, but not in the training. In a similar manner, the resistance coefficient
was estimated for a speed of 0.6, which was higher than the range of speeds used to extract the
relationships. Training ANNs with different NONs were used to predict the coefficient of resistance
of the submarine at speeds of 0.02 m/s, 0.125, 0.375, and 0.6, and SSE is shown in Figure 13.

It is shown in Figure 13 that ANN with seven neurons in the hidden layer (NON = 7) performs
the best at predicting resistance coefficients. So, Equations (20) to (22) and the trained ANN with
NON = 7 were used to estimate the resistance coefficient at speeds of 0.02 m/s, 0.125, 0.375, and 0.6,
and the results were shown in Figure 14. The estimation error for the resistance coefficient is shown
in Figure 15.
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Figure 15a shows that the derived equations (Equations (21) and (22)) by using ANN are not
able to estimate accurately resistance coefficients at lower speeds than those used in the ANN training,
while the NLLS method (Equation (20)) can estimate the resistance coefficient for the transverse
direction with a maximum error of 15%. Even ANN with NON = 7 is not performing well, having a
maximum error of 20%.

As shown in Figure 15b,c, the proposed equations and ANN with NON = 7 are effective in
estimating resistance coefficients at speeds inside the training range.

According to the results for 0.6 m/s transverse speed (Figure 15d), which is higher than the
range of speeds used to extract relationships, Equation (21) can estimate resistance coefficients with a
maximum of 10% for the submarine with L/DS > 7.5, while Equation (20) shows maximum error of
12% in all cases. ANN with NON = 7 is slightly better, with 10% prediction error.

5. Discussion
The range of the estimation error is summarized in Table 3.

Table 3. The range of the estimation error (%) for the velocities below, within, and above those used
for the training.

Parameter Equation
Below the Range Within the Range Above the Range

L/DS > 7.5 L/DS < 7.5 L/DS > 7.5 L/DS < 7.5 L/DS > 7.5 L/DS < 7.5

CR-f

Equation (17)
(NLLS) 10–15 11–13 7–9 6–7 6–10 1–11

Equation (18)
(ANN) 15–30 16–17 1–13 6–18 5–23 24–26

Equation (19)
(ANN) 15–21 24–30 0.2–5 1–4 0.2–7 1–6

ANN (NON = 6) 1–3 7–10 2–4 1–4 0.1–2 0.8–3
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Table 3. Cont.

Parameter Equation
Below the Range Within the Range Above the Range

L/DS > 7.5 L/DS < 7.5 L/DS > 7.5 L/DS < 7.5 L/DS > 7.5 L/DS < 7.5

CR-t

Equation (20)
(NLLS) 11–12 13–16 4–6 2–4 3–7 3–12

Equation (21)
(ANN) 28–30 31–30 1–9 2–8 1–10 7–9

Equation (22)
(ANN) 25–30 21–27 2–3 0.4–3 5–11 12–15

ANN (NON = 7) 13–15 16–20 0.6–1 0.1–0.2 2–4 3–10

The following conclusions can be made on the accuracy of the procedures for estimating the
resistance coefficient:

â For the velocities lower than the range used for training, ANN with NON = 6 shows much
better ability to estimate the resistance coefficient for the forward direction compared to the
equations. Surprisingly, for transverse movement the NLSS performs better than the ANN.

â For forward velocities higher than those used for the training, ANN with optimal NON has the
lowest error. However, for transverse directions, differences between equations and ANN are
small.

â For transverse velocities within training range, ANN with NON = 7 is more accurate than the
equations. For forward motion, however error of Equation (19) is close to the error of ANN
with NON = 6.

6. Conclusions
A Computational Fluid Dynamics numerical model in OpenFOAM is developed to compute

the resistance coefficient of a tourist submarine’s bare hull with a variable length-to-diameter ratio at
different speeds, moving in forward and transverse directions.

To propose a practical design estimation method for hydrodynamic resistance of a submarine,
the Artificial Neural Network is trained with optimal number of neurons, which is found to be 6
and 7 for forward and transverse direction, respectively. Furthermore, two simple Artificial Neural
Network models with small number of neurons and Nonlinear Least Squares Marquardt-Levenberg
algorithm are employed to develop design equations for the resistance of the bare hull in two
directions. Although the proposed equations perform relatively well compared to the numerical
results, the Artificial Neural Network with optimal number of neurons leads to the more reliable
results in most of the cases. The care should be taken when employing Artificial Neural Network
outside the training range, as large errors could arise, as shown in Table 3.

The actual resistance coefficient of the tourist submarine will be higher because of the ap-
pendages and external structures [2]. Nevertheless, equations and results developed herein may be
used for preliminary estimate of the bare hull resistance, which is necessary step in evaluation of the
total submarine’s resistance.
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Nomenclature

Symbols
CR− f Resistance coefficient for the forward speed
CR−t Resistance coefficient for the transverse speed
DS Diameter of the submarine
L Length of the parallel middle body of submarine
Loa Total length of submarine
Re f Reynolds number for the forward speed
Ret Reynolds number for the transverse speed
V Velocity vector
Vf Forward speed of the submarine
Vt Transverse speed of the submarine
fb Body force
dx Mesh size in x direction
dy Mesh size in y direction
dz Mesh size in z direction
p Dynamic pressure
t Time
τ Shear stress tensor
ρ Fluid density
τxy Shear stress in the plane xy
τxz Shear stress in the plane xz
∇ Gradient operator
Abbreviations
ANN Artificial Neural Network
BP Back Propogation
CFD Computational Fluid Dynamics
LM Levenberg-Marquardt
NLLS Nonlinear Least Squares Marquardt-Levenberg algorithm
NON Number of neurons in the hidden layer of ANN
PIMPLE Pressure Implicit Method with Pressure Linked Equations
RANSE Reynolds Average Navier Stokes equations

Appendix A

Table A1. Various scenarios of the submarine at different speeds for the forward motion.

Case L (m) Loa (m) DS (m) L/DS Vf (m/s) Log(Ref)

1 25 27.44 2.44 10.2 0.25 5.79
2 24 26.49 2.49 9.6 0.25 5.79
3 23 25.54 2.54 9.1 0.25 5.80
4 22 24.59 2.59 8.5 0.25 5.81
5 21.06 23.7 2.64 8.0 0.25 5.82
6 20 22.7 2.7 7.4 0.25 5.83
7 19 21.76 2.76 6.9 0.25 5.84
8 18 20.83 2.83 6.4 0.25 5.85
9 17 19.9 2.9 5.9 0.25 5.86
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Table A1. Cont.

Case L (m) Loa (m) DS (m) L/DS Vf (m/s) Log(Ref)

10 25 27.44 2.44 10.2 0.35 5.93
11 24 26.49 2.49 9.6 0.35 5.94
12 23 25.54 2.54 9.1 0.35 5.95
13 22 24.59 2.59 8.5 0.35 5.96
14 21.06 23.7 2.64 8.0 0.35 5.97
15 20 22.7 2.7 7.4 0.35 5.98
16 19 21.76 2.76 6.9 0.35 5.98
17 18 20.83 2.83 6.4 0.35 6.00
18 17 19.9 2.9 5.9 0.35 6.01

19 25 27.44 2.44 10.2 0.5 6.09
20 24 26.49 2.49 9.6 0.5 6.10
21 23 25.54 2.54 9.1 0.5 6.10
22 22 24.59 2.59 8.5 0.5 6.11
23 21.06 23.7 2.64 8.0 0.5 6.12
24 20 22.7 2.7 7.4 0.5 6.13
25 19 21.76 2.76 6.9 0.5 6.14
26 18 20.83 2.83 6.4 0.5 6.15
27 17 19.9 2.9 5.9 0.5 6.16

28 25 27.44 2.44 10.2 0.6 6.17
29 24 26.49 2.49 9.6 0.6 6.17
30 23 25.54 2.54 9.1 0.6 6.18
31 22 24.59 2.59 8.5 0.6 6.19
32 21.06 23.7 2.64 8.0 0.6 6.20
33 20 22.7 2.7 7.4 0.6 6.21
34 19 21.76 2.76 6.9 0.6 6.22
35 18 20.83 2.83 6.4 0.6 6.23
36 17 19.9 2.9 5.9 0.6 6.24

37 25 27.44 2.44 10.2 0.7 6.23
38 24 26.49 2.49 9.6 0.7 6.24
39 23 25.54 2.54 9.1 0.7 6.25
40 22 24.59 2.59 8.5 0.7 6.26
41 21.06 23.7 2.64 8.0 0.7 6.27
42 20 22.7 2.7 7.4 0.7 6.28
43 19 21.76 2.76 6.9 0.7 6.29
44 18 20.83 2.83 6.4 0.7 6.30
45 17 19.9 2.9 5.9 0.7 6.31

46 25 27.44 2.44 10.2 0.8 6.29
47 24 26.49 2.49 9.6 0.8 6.30
48 23 25.54 2.54 9.1 0.8 6.31
49 22 24.59 2.59 8.5 0.8 6.32
50 21.06 23.7 2.64 8.0 0.8 6.32
51 20 22.7 2.7 7.4 0.8 6.33
52 19 21.76 2.76 6.9 0.8 6.34
53 18 20.83 2.83 6.4 0.8 6.35
54 17 19.9 2.9 5.9 0.8 6.37

55 25 27.44 2.44 10.2 0.9 6.34
56 24 26.49 2.49 9.6 0.9 6.35
57 23 25.54 2.54 9.1 0.9 6.36
58 22 24.59 2.59 8.5 0.9 6.37
59 21.06 23.7 2.64 8.0 0.9 6.38
60 20 22.7 2.7 7.4 0.9 6.39
61 19 21.76 2.76 6.9 0.9 6.40
62 18 20.83 2.83 6.4 0.9 6.41
63 17 19.9 2.9 5.9 0.9 6.42
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Table A1. Cont.

Case L (m) Loa (m) DS (m) L/DS Vf (m/s) Log(Ref)

64 25 27.44 2.44 10.2 1.0 6.39
65 24 26.49 2.49 9.6 1.0 6.40
66 23 25.54 2.54 9.1 1.0 6.40
67 22 24.59 2.59 8.5 1.0 6.41
68 21.06 23.7 2.64 8.0 1.0 6.42
69 20 22.7 2.7 7.4 1.0 6.43
70 19 21.76 2.76 6.9 1.0 6.44
71 18 20.83 2.83 6.4 1.0 6.45
72 17 19.9 2.9 5.9 1.0 6.46

73 25 27.44 2.44 10.2 1.1 6.43
74 24 26.49 2.49 9.6 1.1 6.44
75 23 25.54 2.54 9.1 1.1 6.45
76 22 24.59 2.59 8.5 1.1 6.45
77 21.06 23.7 2.64 8.0 1.1 6.46
78 20 22.7 2.7 7.4 1.1 6.47
79 19 21.76 2.76 6.9 1.1 6.48
80 18 20.83 2.83 6.4 1.1 6.49
81 17 19.9 2.9 5.9 1.1 6.50

82 25 27.44 2.44 10.2 1.2 6.47
83 24 26.49 2.49 9.6 1.2 6.48
84 23 25.54 2.54 9.1 1.2 6.48
85 22 24.59 2.59 8.5 1.2 6.49
86 21.06 23.7 2.64 8.0 1.2 6.50
87 20 22.7 2.7 7.4 1.2 6.51
88 19 21.76 2.76 6.9 1.2 6.52
89 18 20.83 2.83 6.4 1.2 6.53
90 17 19.9 2.9 5.9 1.2 6.54

91 25 27.44 2.44 10.2 1.3 6.50
92 24 26.49 2.49 9.6 1.3 6.51
93 23 25.54 2.54 9.1 1.3 6.52
94 22 24.59 2.59 8.5 1.3 6.53
95 21.06 23.7 2.64 8.0 1.3 6.54
96 20 22.7 2.7 7.4 1.3 6.55
97 19 21.76 2.76 6.9 1.3 6.55
98 18 20.83 2.83 6.4 1.3 6.57
99 17 19.9 2.9 5.9 1.3 6.58

100 25 27.44 2.44 10.2 1.4 6.53
101 24 26.49 2.49 9.6 1.4 6.54
102 23 25.54 2.54 9.1 1.4 6.55
103 22 24.59 2.59 8.5 1.4 6.56
104 21.06 23.7 2.64 8.0 1.4 6.57
105 20 22.7 2.7 7.4 1.4 6.58
106 19 21.76 2.76 6.9 1.4 6.59
107 18 20.83 2.83 6.4 1.4 6.60
108 17 19.9 2.9 5.9 1.4 6.61

109 25 27.44 2.44 10.2 1.5 6.56
110 24 26.49 2.49 9.6 1.5 6.57
111 23 25.54 2.54 9.1 1.5 6.58
112 22 24.59 2.59 8.5 1.5 6.59
113 21.06 23.7 2.64 8.0 1.5 6.60
114 20 22.7 2.7 7.4 1.5 6.61
115 19 21.76 2.76 6.9 1.5 6.62
116 18 20.83 2.83 6.4 1.5 6.63
117 17 19.9 2.9 5.9 1.5 6.64



Appl. Sci. 2022, 12, 10953 18 of 21

Appendix B

Table A2. Various scenarios of the submarine at different speeds for the transverse motion.

Case L (m) Loa (m) DS (m) L/DS Vt (m/s) Log(Ret)

1 25 27.44 2.44 10.2 0.05 4.69
2 24 26.49 2.49 9.6 0.05 4.70
3 23 25.54 2.54 9.1 0.05 4.71
4 22 24.59 2.59 8.5 0.05 4.71
5 21.06 23.7 2.64 8.0 0.05 4.72
6 20 22.7 2.7 7.4 0.05 4.73
7 19 21.76 2.76 6.9 0.05 4.74
8 18 20.83 2.83 6.4 0.05 4.75
9 17 19.9 2.9 5.9 0.05 4.76

10 25 27.44 2.44 10.2 0.1 5.09
11 24 26.49 2.49 9.6 0.1 5.10
12 23 25.54 2.54 9.1 0.1 5.10
13 22 24.59 2.59 8.5 0.1 5.11
14 21.06 23.7 2.64 8.0 0.1 5.12
15 20 22.7 2.7 7.4 0.1 5.13
16 19 21.76 2.76 6.9 0.1 5.14
17 18 20.83 2.83 6.4 0.1 5.15
18 17 19.9 2.9 5.9 0.1 5.16

19 25 27.44 2.44 10.2 0.15 5.39
20 24 26.49 2.49 9.6 0.15 5.40
21 23 25.54 2.54 9.1 0.15 5.40
22 22 24.59 2.59 8.5 0.15 5.41
23 21.06 23.7 2.64 8.0 0.15 5.42
24 20 22.7 2.7 7.4 0.15 5.43
25 19 21.76 2.76 6.9 0.15 5.44
26 18 20.83 2.83 6.4 0.15 5.45
27 17 19.9 2.9 5.9 0.15 5.46

28 25 27.44 2.44 10.2 0.2 5.48
29 24 26.49 2.49 9.6 0.2 5.49
30 23 25.54 2.54 9.1 0.2 5.50
31 22 24.59 2.59 8.5 0.2 5.51
32 21.06 23.7 2.64 8.0 0.2 5.52
33 20 22.7 2.7 7.4 0.2 5.53
34 19 21.76 2.76 6.9 0.2 5.54
35 18 20.83 2.83 6.4 0.2 5.55
36 17 19.9 2.9 5.9 0.2 5.56

37 25 27.44 2.44 10.2 0.25 5.56
38 24 26.49 2.49 9.6 0.25 5.57
39 23 25.54 2.54 9.1 0.25 5.58
40 22 24.59 2.59 8.5 0.25 5.59
41 21.06 23.7 2.64 8.0 0.25 5.60
42 20 22.7 2.7 7.4 0.25 5.83
43 19 21.76 2.76 6.9 0.25 5.84
44 18 20.83 2.83 6.4 0.25 5.85
45 17 19.9 2.9 5.9 0.25 5.86

46 25 27.44 2.44 10.2 0.3 5.86
47 24 26.49 2.49 9.6 0.3 5.87
48 23 25.54 2.54 9.1 0.3 5.88
49 22 24.59 2.59 8.5 0.3 5.89
50 21.06 23.7 2.64 8.0 0.3 5.90
51 20 22.7 2.7 7.4 0.3 5.91
52 19 21.76 2.76 6.9 0.3 5.92
53 18 20.83 2.83 6.4 0.3 5.93
54 17 19.9 2.9 5.9 0.3 5.94
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Table A2. Cont.

Case L (m) Loa (m) DS (m) L/DS Vt (m/s) Log(Ret)

55 25 27.44 2.44 10.2 0.35 5.93
56 24 26.49 2.49 9.6 0.35 5.94
57 23 25.54 2.54 9.1 0.35 5.95
58 22 24.59 2.59 8.5 0.35 5.96
59 21.06 23.7 2.64 8.0 0.35 5.97
60 20 22.7 2.7 7.4 0.35 5.98
61 19 21.76 2.76 6.9 0.35 5.98
62 18 20.83 2.83 6.4 0.35 6.00
63 17 19.9 2.9 5.9 0.35 6.01

64 25 27.44 2.44 10.2 0.4 5.96
65 24 26.49 2.49 9.6 0.4 5.97
66 23 25.54 2.54 9.1 0.4 5.98
67 22 24.59 2.59 8.5 0.4 5.99
68 21.06 23.7 2.64 8.0 0.4 6.00
69 20 22.7 2.7 7.4 0.4 6.01
70 19 21.76 2.76 6.9 0.4 6.01
71 18 20.83 2.83 6.4 0.4 6.03
72 17 19.9 2.9 5.9 0.4 6.04

73 25 27.44 2.44 10.2 0.45 5.99
74 24 26.49 2.49 9.6 0.45 6.00
75 23 25.54 2.54 9.1 0.45 6.01
76 22 24.59 2.59 8.5 0.45 6.02
77 21.06 23.7 2.64 8.0 0.45 6.02
78 20 22.7 2.7 7.4 0.45 6.03
79 19 21.76 2.76 6.9 0.45 6.09
80 18 20.83 2.83 6.4 0.45 6.10
81 17 19.9 2.9 5.9 0.45 6.12

82 25 27.44 2.44 10.2 0.5 6.09
83 24 26.49 2.49 9.6 0.5 6.10
84 23 25.54 2.54 9.1 0.5 6.10
85 22 24.59 2.59 8.5 0.5 6.11
86 21.06 23.7 2.64 8.0 0.5 6.12
87 20 22.7 2.7 7.4 0.5 6.13
88 19 21.76 2.76 6.9 0.5 6.14
89 18 20.83 2.83 6.4 0.5 6.15
90 17 19.9 2.9 5.9 0.5 6.16
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