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Featured Application: With this contribution, we aim to aid the drug development process as
well as the identification of possible adverse drug events due to simultaneous drug use.

Abstract: The task of extracting drug entities and possible interactions between drug pairings is
known as Drug–Drug Interaction (DDI) extraction. Computer-assisted DDI extraction with Machine
Learning techniques can help streamline this expensive and time-consuming process during the
drug development cycle. Over the years, a variety of both traditional and Neural Network-based
techniques for the extraction of DDIs have been proposed. Despite the introduction of several
successful strategies, obtaining high classification accuracy is still an area where further progress
can be made. In this work, we present a novel Knowledge Graph (KG) based approach that utilizes
a unique graph structure in combination with a Transformer-based Language Model and Graph
Neural Networks to classify DDIs from biomedical literature. The KG is constructed to model the
knowledge of the DDI Extraction 2013 benchmark dataset, without the inclusion of additional external
information sources. Each drug pair is classified based on the context of the sentence it was found
in, by utilizing transfer knowledge in the form of semantic representations from domain-adapted
BioBERT weights that serve as the initial KG states. The proposed approach was evaluated on the
DDI classification task of the same dataset and achieved a F1-score of 79.14% on the four positive
classes, outperforming the current state-of-the-art approach.

Keywords: Drug–Drug Interactions; transformers; graph neural networks; language models; relation
classification; domain-adaption

1. Introduction

Drug–Drug Interactions (DDI) refer to the pharmacological action between drugs
that can occur during polypharmacy, and the co-administration of more than one drug
can potentially lead to harmful adverse drug reactions that have a significant impact on
public health. Most DDIs are discovered during the various drug development stages
or during Phase IV clinical trials conducted on already publicly available drugs [1]. The
dissemination of these findings are reported at an exponential rate, rendering the task of
manually finding the most relevant information very difficult and time-consuming [2].
However, the heterogeneity of the available data regarding DDIs presents new challenges
in their exploration, analysis and manageability. The identification and retrieval of docu-
mented drug interactions requires gathering and analyzing data from multiple data sources,
especially in the early stages of drug development.

Moreover, as the practice of medicine and scientific research increasingly produces
and depends on data, addressing these issues becomes a necessity. Therefore, the automatic
extraction of DDIs from biomedical literature is important in order to accelerate this time-
consuming and strenuous process. Vast amounts of relevant knowledge can be extracted
from various types of information sources such as scientific literature, electronic health
records, online databases and many more [3]. However, these sources contain textual
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information that is very diverse in terms of type, format, level of detail and differ in
terms of expressiveness and semantics. Additionally, the possibility of conflicting or
outdated information presents among the various sources adds to the overall complexity
regarding the collection, storage and analysis of the data and consequently the extraction
and exploitation of the hidden wealth of information.

DDI extraction from textual corpora is a traditional Relationship Extraction (RE) task
in Machine Learning (ML) that aims to classify the interaction between drug entities [4]
into specific predefined categories. Related DDI extraction studies vary based on the
underlying task they aim to tackle and could be divided into pattern-based, traditional
machine learning-based and deep learning-based [5]. The DDI classification task focuses
on classifying the interactions between drug pairs by using gold entities with Relationship
Classification (RC) techniques and are evaluated on the DDI Extraction 2013 corpus, which
is considered as the benchmark dataset [6]. Similar to all underlying extraction tasks, the
Deep Learning-based (DL) methods achieve the best performance and advance the state-of-
the-art research in this field. Early DL-based approaches mainly utilized Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) as their base architectures
to learn better task-specific representations with the use of contextualized information
incorporated into their Neural Network-based architectures.

Liu et al. [7] introduced the first CNN-based approach for the DDI task, focusing
on local sentence information without defining additional features generated by Natural
Language Processing (NLP) toolkits. They applied a convolutional layer that takes the
input from a look-up table constructed from word and position embeddings, leveraging
the neural networks ability to automatically learn features. A max pooling layer then
extracts the most important feature from each feature vector before finally classifying the
interactions into one of the five classes using a softmax layer. The reported results show
that the position embeddings improve the classification performance but face challenges
due to the different position distribution on the test set.

Similarly, Quan et al. [8] integrated multiple word embeddings in their proposed
MCCNN model, to tackle the vocabulary gap, the integration of semantic information
and the manual feature selection in the DDI extraction task. The proposed approach
implemented a multi-channel CNN model and fused multiple versions of word embeddings
that were trained on biomedical domain corpora. However, the systems performance
depends greatly on the CNN’s window size, leading to errors in long sentences where the
relevant drug mentions are either very close or very far from each other. In an attempt to
capture long distance dependencies, Liu et al. [9] utilized syntactic features in the form of
dependency parsing trees and word syntax-based embeddings in their proposed DCNN
approach. Due to the small number of correctly parsed long sentences, a threshold was
implemented where sentences with a length smaller than the threshold were classified
by the DCNN, while the rest by a CNN. Similarly, Zhao et al. [10] utilized dependency
features in combination with Part-of-Speech (PoS) and position embeddings with an auto-
encoder to transfer sparse bag-of-words feature vectors to dense real value feature vectors.
The proposed SCNN approach additionally implemented a rule-based negative instance
filtering, leading to limited generalization ability.

To alleviate the limitations of CNN-based approaches, various DDI extraction studies
employed RNN-based networks that capture long sequences using an internal memory
mechanism, such as Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU)
networks. Accordingly, Wang et al. [11] presented a three channel bidirectional LSTM
(BiLSTM) architecture to capture distance and dependency-based features with their DL-
STM model. To account for the imbalanced class distribution of the DDI corpus, negative
instance filtering and training set sampling were employed. However, the reported results
indicate that the lengths of the instances continue to adversely affect the classification
performance of the model. Yi et al. [12] introduced 2ATT-RNN, a GRU architecture that
leverages multiple attention layers. A word-level attention layer extracts sentence represen-
tations in combination with a sentence-level attention layer that combines other sentences
containing the same drug mentions. However, the inclusion of the negative class in the
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overall performance metric does not allow for a clear depiction of the effectiveness of
the proposed method. Zhang et al. [13] divided the input sentence sequences into three
parts according to the position of two drug entities, and applied a hierarchical BiLSTMs to
integrate sentence sequences, shortest dependencies paths and attention mechanisms to
classify DDIs. The experimental results show improvements over the previous approaches,
but continue to underperform in cases where the two drug entities are mentioned over a
long distance with each other.

Similarly, Zhou et al. [14] utilized the attention mechanism in a BiLSTM-based archi-
tecture. To improve the efficiency of the attention mechanism, the proposed PM-BLSTM
system utilizes an additional position embedding to generate the attention weights. The
model takes advantage of multi-task learning by predicting whether or not two drugs inter-
act with each other, further distinguishing the types of interactions jointly. The reported
results show that the position-wise attention improves the performance but continues to
misclassify instances that contain multiple drug mentions. Salman et al. [15] proposed a
straightforward LSTM and attention-based architecture and expanded the DDI extraction
task to include sentiment-based severity prediction. The sentence-level polarity is extracted
using an NLP toolkit and finally classified as either low, moderate or high level of severity
for instances that contain at least on DDI. However, the Word2Vec [16] generated word
embeddings are context-independent and do not account for the word positions in the
sentences. Furthermore, Word2Vec learns word level embeddings, resulting in the same
embedding for any learned word, independently of the surrounding context. Therefore,
this type of embedding cannot generate representations for words encountered outside the
initial vocabulary space, which is a major disadvantage in the DDI corpus.

Recently, Transformer-based Language Models (LM) such as ELMo [17], GPT-2 [18]
and BERT [19] achieved state-of-the-art results in general domain NLP. By leveraging
the capabilities of the transformers, transfer learning and the self-supervised training ap-
proach, biomedical and scientific-domain LMs, such as BioBERT [20] and SciBERT [21],
were introduced in the DDI extraction task as well. Mondal [22] incorporated BioBERT as a
pre-trained LM and chemical structure representations of drugs, in the form of SMILES, to
extract DDIs from text. The proposed approach focused on the encoding and incorporation
of the chemical structure information from external sources using a Variational AutoEn-
coder in an attempt to leverage both entities and sentence-level information. However,
the low dimensionality of the final representations used for the Transformer initialization
could potentially lead to information loss in longer sentences.

The integration and utilization of knowledge through semantic representations of data
aims to mitigate the aforementioned problems [23]. Specifically, in recent years, biomedical
knowledge base information represented as Knowledge Graphs (KG) tends to be preferred
more and more often. KGs are powerful knowledge representation models which focus
on the semantic meaning instead of only on the information structures, modeling the
relationships between the graph entities [24]. As a result, KGs provide a homogenized
view of data regardless of their origin, allowing for human-interpretable encoding of
domain-specific information with the use of node and relation types.

Consequently, Graph Neural Networks (GNN) that take advantage of graph-based
structures, in combination with Transformer-based LMs, have seen great success in various
general-domain NLP tasks and have been introduced in the DDI extraction task as well.
Xiong et al. [25] introduced GCNN-DDI, which utilized dependency graphs in a BiLSTM
and GCN architecture to classify the interactions. Shi et al. [26], similar to GCNN-DDI,
adopted a GNN and introduced a PageRank based multi-hop relevant words selection
strategy for the dependency graph. These approaches rely on the construction of depen-
dency trees (or syntax trees) from the sentences where nodes represent individual words
and edges the syntactic dependency paths between words in the sentence’s dependency
tree. The feature vectors of the nodes are initialized by a pre-trained domain-specific LM,
utilizing the POS tag of each word and a BiLSTM to update the initial word embeddings for
contextual feature extraction. Both approaches utilize GNNs to improve the representations
through the incorporation of dependency relations with the word embeddings. However,
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while GCNN-DDI uses the raw dependency graph, DREAM additionally enhances it with
long-range potential words discovered by PageRank by extending some potential relevant
multi-hop neighbors, which have high information transferability.

GNN-based approaches exclusively implement dependency graphs which are complex
graph structures where the number of nodes equals the number of tokens in each sen-
tence making the application of GNNs slow and computationally expensive. Additionally,
since the benchmark corpus is considered relatively small and imbalanced, proposed ap-
proaches try to overcome this limitation by incorporating complicated feature engineering
or extending the available information from external sources.

In contrast to the previously reported methods, in this paper, we present a novel KG
schema for the DDI classification task that is leveraged by our GNN-based architecture
that includes message and non-message passing units. We constructed the KG according
to the principles of the Resource Description Framework (RDF) data model where each
relation is annotated by an subject-predicate-object triplet. The proposed graph structure
is built upon the DDI corpus to model the sentence and drug mention relations and is
further semantically enhanced by domain-adapting a BERT-based LM pre-trained on large-
scale domain-specific corpora that generates the initial state of the graph nodes. Finally,
the interactions are classified by utilizing a sub-graph, taking the context of the sentence
into consideration.

We evaluated our proposed approach for the classification of DDIs according to the
SemEval 2013 shared task [4] on the DDI Extraction 2013 dataset. Experimental results indi-
cate that our KG and GNN-based classification model achieves a state-of-the-art F1-score of
79.14% on the four positive classes, outperforming other methodologies. Additionally, we
show that the KG information in combination with negative instance filtering can enhance
the performance of our model. Table A1 shows a comparative analysis of the related studies
presented in this work and our proposed approach.

The remainder of this paper is organized as follows: in Section 2, we elaborate on
the dataset used and describe our proposed approach in detail. In Section 3, we present
the experimental setup and results and elaborate on the effectiveness and limitations of
our proposed model. Finally, in Section 4, we present our conclusions and directions for
future research.

2. Materials and Methods

In this section, we introduce the dataset and the architecture of our proposed graph
neural network-based classification model for drug–drug interaction extraction, where,
given a sentence containing drug mentions, each drug pair is classified into one of the
five possible interaction categories. It consists of three main parts, which are the DDI
Knowledge Graph, the BERT-based language model and the GNN-based classification
module as shown in Figure 1. Specifically, a knowledge graph based on our proposed
DDI task related schema is created where a domain-adapted BERT-based language model
is then applied to generate meaningful word representations. This knowledge is then
integrated into a selected part of the graph, where a GNN is trained to classify the drug
pair relationship.

2.1. Dataset

The DDI–Extraction 2013 corpus [6] is a collection of biomedical texts containing
sentences from the DrugBank database and MedLine abstracts. The DrugBank database
focuses on providing information on medicinal substances, while MedLine is a more
general database of scientific publications from health-related sectors. The corpus has been
manually annotated by two expert annotators and is considered the benchmark dataset for
the text-based DDI extraction task which includes the recognition of drug named entities
and the interaction classification of the drug pairs.
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Figure 1. An overview of our proposed architecture for the classification of DDIs.

The dataset contains separate XML files where each one constitutes a document, which
is further separated into its individual sentences. For each sentence, the drugs (entity)
it mentions are listed and, for each possible pair of them, an interaction pair (relation
pair) is defined. Therefore, n drugs define n(n− 1)/2 pairs of interactions. Highlighted
elements are characterized by unique identifiers (id) that reveal their position in the XML
tree hierarchy. The corpus is split into a single training set and two separate test sets for
both drug recognition and interaction classification tasks. Table 1 provides a summary of
the corpus’s main features and statistics for the predefined train and test datasets splits.

Drug entities and interactions are classified into categories (types) based on the context
of the sentence they are mentioned in. In the majority of them, the named entities concern
drugs intended for human use and are classified as “drug”, “brand” and “group” types,
while other substances are classified as “drug_n”. Similarly, the interaction types between
two drugs when administered simultaneously are categorized as follows:

• Effect: These are changes in the effect of a substance on the body, such as the appear-
ance of symptoms and clinical findings.; The results of such effects are also referred to
as pharmacodynamic properties of drugs.

• Mechanism: Refers to modifications in the absorption, distribution, metabolism and
excretion of drugs, characteristics that constitute their pharmacokinetic properties. In
other words, it concerns how the concentration of a substance in the body is affected
by the presence of the other substances;

• Advice: Refers to descriptions containing recommendations or advice regarding the
simultaneous use of two drugs;

• Int: Assigned in the case where the existence of an association between two drugs is
mentioned, without any additional information indicating its type;

• Negative: It refers to the absence of interaction between two substances.

2.2. DDI Knowledge Graph

In order to model the DDI-specific Knowledge Graph, we used the RDF standard to
create the proposed schema for representing the corpus knowledge. Figure 2 provides an
overview of the DDI Knowledge Graph.

According to the RDF principles, the base of a knowledge graph is composed of a set
of <Subject, Predicate, Object> statements, with the Subject and Object resources being
respectively the initial and terminal nodes of a directed edge. The Predicate resource
is considered the label of the edge in question, which is a property that associates the
individual resources or serves to assign a value (Object) to some attribute of the Subject.
This basic model is extended by defining classes into which the objects of the world belong.
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Table 1. The DDI-Extraction 2013 corpus statistics.

Training Set Test Set

DNER RC

Documents 714 112 191
Sentences 6976 665 1299

Drug Entities

Drug 9425 351 1864
Group 3399 155 667
Brand 1437 59 369
Drug_n 504 120 140

DDIs

Mechanism 1322 - 303
Effect 1700 - 363
Advice 827 - 222
Int 188 - 96
Negative 23,771 - 4737

In the DDI corpus, all drug entities are annotated by providing the exact drug name
and the location in the context of the specific sentence they are found in. Initially, each
sentence of a document becomes an instance of the Sentence class, with its text preserved
intact in the graph as an attribute of the specific node. Additionally, a sentence refers to
a set of drugs that are modeled by the Token class, which is associated with the Sentence
through the contains_token property. This property has a minimum cardinality of 2, filtering
sentences that mention less than two drug entities (i.e., do not contain at least one drug pair).
Furthermore, the set of unique drug entities in the collection is described by the Drug_Class
class and its subclasses are the four types of drugs, which are mutually exclusive.

Finally, the concept of interaction (relationship between two drugs) is also modeled
through classes. Typically an RDF statement represents a binary relationship between
two resources in the form of a triplet. However, it may be necessary to add additional
information regarding the statement resulting in an n–ary relationship. Each possible
drug pair of a particular sentence is represented by an Interaction helper node. Thus, the
information defining an interaction is composed centered on this node, through properties
that associate it with other entities (e.g., 1 Sentence instance, 2 Drug_Class, 2 Token). Similar
to the Drug_Class, its subclasses are based on the five predefined interaction types.

Collectively, a drug entity (Drug_Class), referred to as (found_as) Token in a particular
sentence (Sentence), participates (interaction_found) in some pairs of interactions (Inter-
action). The sentence contains (contains_interaction) the interacting pair, while the Token
reference participates (in_interaction) in it.

2.3. Modeling the DDI Relation Classification Task

In order to model the drug–drug interaction classification task and utilize DDI Knowl-
edge Graph representations, a subgraph G = (V, E, X, K, R) of the complete graph is
selected. V and K denote the sets of nodes and the classes they belong to, with class
instances denoted as k defining a subset of Vk. X constitutes an accompanying matrix of
node characteristics (node feature vector), dimension |V| × dBERT , where dBERT denotes
the dimension of the BERT-based LM vector representation. Finally, R refers to the types
of edges (properties) that associate the nodes, while E is the set of edges of the graph
expressed in the form of a coordinate list (coordinate list format—COO).

Each interaction node is associated with a pair of specific drug mentions occur-
ring in a sentence. Figure 3 shows the schema of the subgraph resulting from K =
{Interaction(I), Token(T), Sentence(S)} and R = {in_interaction, contains_interaction}.
Therefore, the target is to classify the Interaction nodes VI , or otherwise to determine the
object of each triplet < vI , rdf:type, cvI >, where cvI is a subclass of Interaction, from the
three elements (i.e., the two tokens and the sentence) that determine its type.
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Figure 2. The DDI Knowledge Graph overview based on an example sentence. (Left) drug sub-graph;
(Right) sentence sub-graph.

Figure 3. The schema of subgraph G which models the classification of an Interaction node.

2.4. Negative Instance Filtering

The extraction of DDIs from biomedical text is a multi-class classification problem,
with Advice, Effect, Int and Mechanism being the positive classes and Negative being the
negative class. The dataset statistics in Table 1 show the highly imbalanced nature of the
corpus, in terms of both the positive and negative class distribution and within the four
positive classes as well. In particular, the instances of the negative class exceed the positive
classes with a ratio of 1:5.9 in the training set. It can be observed that only a part of the pairs
labeled as negative explicitly express the knowledge that there is no interaction between
the substances (drugs). Conversely, in the vast majority, the negative instances follow the
same pattern where a number of drug–pair interactions were labeled in the same sentence,
without clarifying the relationship between them. Consequently, the following set of rules
was defined to detect them, as such cases can be dismissed.
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• Consistent with the assumption that a substance does not interact with itself, pairs
involving the same or synonymous drugs are rejected;

• There are sentences in the form of “drug1 [:-]. . . drug1 . . . drug2. . . ” which provide con-
flicting knowledge about the type of interaction between two drug entities. Therefore,
any pair involving the first occurrence of drug1 will be removed;

• Regular expressions identify patterns, such as quoting a list of drugs or referring to a
sub-case, broader category or abbreviation. Additionally, consecutive or overlapping
matches are merged to combine regular expressions. Finally, any pairs found within a
match are discarded.

The above rule set leads to the rejection of 44.5% and 0.94% of the negative and positive
examples in the training set, respectively, with the ratio changing to 1:3.3. Finally, as the
corresponding Interaction nodes are not taken into account, they are excluded in the results
during the evaluation of our proposed system.

2.5. Language Model-Based Transfer Learning

BERT [19] is an extensively pre-trained, Transformer-based language model, capable
of state-of-the-art performance in NLP tasks. The increased ability to understand the
conceptual framework that characterizes it is due to the self-attention mechanism, through
which the token-level importance is assigned based on the associations between the in-
dividual words (tokens) of the sentence. Additionally, due to the training as a masked
language model, it is able to perceive the information of the text in a bidirectional manner,
allowing the LM to produce vector representations that reflect the syntactic, semantic and
grammatical relationships between words.

BERT’s architecture is composed of a number of Nenc consecutive encoder units with
dBERT hidden vector dimension, where Nenc = 12, dBERT = 768 for the base version
and Nenc = 24, dBERT = 1024 for the large version. Furthermore, multiple BERT-based
variations pre-trained on specific domains have been developed which achieve better
performance in domain-specific tasks compared to BERT. As an example, BioBERT [20] and
SciBERT [21] are two popular variations of BERT, pre-trained on large text corpora from
the biomedical and scientific field, respectively.

2.5.1. Embedding Generation

In the DDI classification task, knowledge about the interaction type of a drug pair is
expressed through text. The sentence text t is an associated element of the Sentence node,
or otherwise contained in < vS, sentence_text, t > triplets. By applying a BERT-based LM
to t, it becomes possible to reduce the text to a suitable vector representation, in addition to
sharing information among the individual nodes of the subgraph G.

The preparation of t involves the addition of the special tokens [CLS] and [SEP], which
mark the beginning and end of the sentence, respectively. Then, each drug in the sentence is
replaced by drugi, where i is a number. Finally, WordPiece tokenization is applied, through
which words outside the BERT vocabulary are broken into individual pieces (subwords)
that belong to it.

Furthermore, the LM is used to initially generate word embeddings xvS (sentence
embeddings) for the entire sentence and a set of xvTj

(token embeddings) where each one is
a representation of a Tokenj contained within the sentence. These vectors are assigned to
the respective nodes vS and vTj , constituting their feature vectors.

2.5.2. Sentence and Token Nodes Feature Generation

Each sentence contains words that reveal or indicate the type of interaction between
two drugs. For example, expressions such as “should (not) be administered”, “caution
should be used” and “is (not) recommended”, are associated with suggestions (advice)
when taking more than one drug simultaneously. Therefore, although the expressions
show some variety, they are characterized by a high semantic similarity and are expected
to correspond to nearby points in the embeddings vector space.
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When generating the sentence embeddings xvS , it is important for the LM to focus
on the above type of information and therefore any reference to any drug is replaced by
“drug0” (i.e., i = 0). Because of the repeated occurrences, the string loses its meaning within
the sentence, with the BERT-based LM giving an appropriate weight. Finally, the [CLS]
token embedding is chosen for xvS , which is a centralized representation of the sentence
and is often used in classification tasks. However, since a sentence most likely contains
more than one drug pair, the interaction classification can not be performed solely on
the basis of xvS , consequently requiring the feature generation for each drug mention in
the sentence.

Furthermore, the interaction type does not depend on the specific drug names in
the potential drug pair, but on their position within the sentence. In line with previous
studies [7], their replacement is expected to aid in noise reduction when generating the
Token embeddings, increasing the classification performance. To this end, each unique
drug entity in the sentence is assigned a sequence number i, according to the order of
appearance of its first mention within the sentence. Thus, Tokenj references that participate
in < Drug_Class, f ound_as, Token_j > triplets with a common subject are replaced by
drugi with a common i. The final feature vector of each node vTj is obtained by pooling the
embeddings of the subwords that compose it. That is, xvTj

= pooling{Bdrug##, B##x}, where
the pooling method is the average, and Bw is the BERT output for the input w.

2.6. GNN-Based Classification Module

KGs are a complex and dynamic data structure where the notion of fixed ordering
does not apply. However, by implementing a message passing framework, GNNs are
able to better utilize the KG’s underlying graph structure as well as any initially available
data for its nodes, compared to other approaches [27]. Specifically, each layer first applies
a transformation function on the node feature vectors. The generated messages from
each node’s neighbors, as well as its own message, are then aggregated to produce a new
embedding that encodes additional semantic information provided by the defined relation
types. These embeddings can finally be used to perform predictions for the nodes.

Given a selected subgraph G, the classification takes place on one of three types of
nodes, namely the set VI . As a sentence defines a maximum number of pairs according to
the contained drug mentions, applying a BERT-based LM for their embedding generation
may not be ideal. Instead, word embeddings were generated at the token level, as well as
aggregated for the entire sentence that contains them. However, utilizing a GNN allows for
the feature generation for each Interaction node.

The vector representation of these nodes is initialized with a null (zero) vector
h0

vI = xvI = 0, indicating no initial characterization for the Interaction nodes. However,
GNNs pay special attention to the current hl−1

v representation of a node when generating hl
v

from layer l. Therefore, when applying a GNN layer, its new embedding results exclusively
from the topology of the graph around it, i.e., through transformation and aggregation of
xvS and xvT from the one neighboring Sentence and the two Tokens nodes, respectively.

As the subgraph G is a heterogeneous graph, the use of a Relational GNN (RGNN)
is required. The management of the heterogeneity is based on the logic of parameter
distribution according to the type r of the edge that connects to the Interaction node
(i.e., relation-specific transformations) [28]. Therefore, the embedding results from the
following equation:

h1
vI = aggrr∈R{GNNl=1;r(h0

vI , {h0
u, u ∈ Nr(vI)})}, (1)

where aggr is an aggregation function, R the set of edge types and Nr(vI) the set of
neighbors of vI according to the triplets < u, r, vI >.

The modeling capability of GNNs is determined by the expressive power of the
message aggregation functions, making the choice of the appropriate GNN architecture
critical to the performance of this shallow network. Therefore, with the utilization of a
Graph Isomorphism Network (GIN), the architecture’s deep layers are encapsulated within
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the single layer GNN. Using the sum as the aggregator operation, the above relation is
formulated as:

h1
vI = ∑

r∈R
MLPl=1;r(h0

vI + ∑
u∈Nr(vI)

h0
u) (2)

The architecture’s main RGNN element is surrounded by MLP modules, which are de-
fined according to the node classes. Specifically, through the integration of the MLP prepro-
cessing layers, the initial representation of each node is obtained by
h0

vk
= MLPk

pre
(

xvk

)
, k ∈ K. Similarly, the final vector representation of the Interaction

nodes is defined by zvI = MLPI
post

(
h1

vI

)
.

Conclusively, the system is now able to classify each node vI into one of the |C| = 5 in-
teraction classes. First, the probability distribution of the classes is calculated as
y′vI

= so f tmax(zvI W
T + b), where W and b are the trainable weights and biases parame-

ters, respectively. The dimensions of matrix W are |C| × dGNN , with the hyperparameter
dGNN = dim (zvI ) constituting the dimension of the vector space defined by the network.
The final classification during the inference is obtained by cvI = argmaxc∈C{y′vI

}.

3. Results and Discussion
3.1. Experimental Setup

Training is performed in a supervised manner on the labels of the Interaction nodes,
resulting from the provided training set by merging the MedLine and DrugBank subsets.
This amounts to a total of 17,176 training examples, derived from 3395 sentences and
608 documents after the construction of the knowledge graph. Similarly, the evaluation is
performed on the RE task test set, where a separate graph with 3057 Interaction nodes and
604 sentences from 159 documents is created. The domain-adaption of the LMs is trained
either on the training set sentences (Sentence Level Domain Adaption—SLDA) or training
set paragraphs (Document Level Domain Adaption—DLDA) only, in a self-supervised
manner using the Masked Language Modeling task.

Our proposed approach requires the definition of the two main elements of the ar-
chitecture, the underlying BERT-based LM that will generate the word embeddings and
the GNN-based classification module. First, different pre-trained BERT variants were
compared, such as the base version of the general domain BERT, the scientific domain
SciBERT and the biomedical domain BioBERT. Furthermore, BioBERT, the pre-training of
which is in alignment with the DDI domain, was tested on both base and large versions.
Additionally, since recent studies show that domain-adapting a LM by pre-training it on the
downstream task can potentially offer large gains in the task performance [29], we aligned
both SciBERT and BioBERT base to the DDI task corpus and compared their performance.

Having the features of the nodes generated by the BERT-based LMs, it is then necessary
to define and train the classification unit. GIN [30] was chosen as the GNN framework,
with node embeddings dimensions dGNN = 256 for dBERT = 768 and dGNN = 512 for
dBERT = 1024, with the internal MLP unit consisting of lGIN = 3 consecutive layers. Its
performance is also compared to the mean GraphSAGE framework [31]. Additionally, the
contribution of a single-level MLPpre of size dGNN and two-level MLPpost of sizes dGNN/2
and dGNN/4 with a drop-rate of 0.4 and ReLU activations are evaluated.

Adam was chosen as the optimizer with a learning rate and weight decay equal to
5× 10−5 and 5× 10−4, respectively. Furthermore, the mini-batch training approach is
followed, where the Interaction nodes of the training set are divided into 53 batches of
size 324, while the number of epochs is equal to 170. Finally, the cross entropy loss function
is used in the context of the multi-class classification problem.

The experiments were conducted on a computer with a single RTX 3090 24 GB graphics
card an a 24-core Intel CPU and the LM domain-adaption on a computer with two RTX
A6000 48 GB graphics cards and were implemented using the Pytorch library and the
Python programming language.
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3.2. Evaluation Metrics

Similar to the related studies, the performance of the system was evaluated based on
the Precision (P), Recall (R) and micro F1-score (F1mirco) metrics on the test set with the four
positive classification targets C+. The ratio of correctly classified instances c to all instances
that were classified as c or actually belong to c constitutes the Precision and Recall of class
c, respectively. The micro F1-score, which is the harmonic mean of P and R, provides an
overall picture of the system without focusing on the individual performance of each class.
The metrics are defined by the following formulas, where the number of corresponding
cases is denoted by the combination of T (true) or F (false) and P (positive) or N (negative):

Pmicro = ∑c∈C +TP
∑c∈C +(TPc+FPc)

Rmicro = ∑c∈C +TP
∑c∈C +(TPc+FNc)

F1micro = 2×Pmicro×Rmicro
Pmicro+Rmicro

3.3. Overall Comparison

In Table 2, we show the results of our method in comparison to baseline and state-
of-the-art DDI classification approaches which reported their overall performance metric
based on the four positive classes. These approaches are trained on the same training
set and evaluated on the same test set provided by the DDI corpus and follow the same
experimental setting without the inclusion of external information. These approaches can
effectively be divided into two categories: traditional methods that utilize extensive feature
engineering and state-of-the-art neural network-based approaches that aim to learn feature
representations automatically based on different architectures. We compare our proposed
approach to the traditional method “FBK-irst” presented in [32], which used linear features,
path-enclosed tree kernels and linguistic features. For the NN-based approaches, we
compared our approach to the following methods:

• “SCNN” [10]—CNN-based architecture with manually designed features;
• “MCCNN” [8]—CNN with multichannel word embeddings;
• “ASDP-LSTM” [13]—Hierarchical RNNs with shortest dependency paths;
• “PM-BLSTM” [14]—Bidirectional LSTM with position-aware attention;
• “GCNN-DDI” [25]—Bidirectional LSTM with GNN that utilized entire dependen-

cy graphs;
• “DREAM” [26]—Bidirectional LSTM with GNN that utilized PageRank enhanced

dependency graphs.

The experimental results show that our Knowledge Graph-based approach that uti-
lized BioBERT LM achieves the best overall performance for the classification of DDIs. The
proposed KG schema with the domain-adapted pre-trained weights and the non-message
passing MLPs are the main contributing factors, which will be analyzed in the following
subsections. In the four positive classes, our approach achieves the best results in the
Advice, Effect and Mechanism classes and a similar score in the Int class. In the following
sections, we additionally analyze and discuss the various components of our method and
their contribution to the overall performance.

Table 2. Overall performance comparison of our proposed method. All values are F1 scores (%) and
‘-’ denotes the value was not provided in the published paper. F1micro denotes the overall score on
the four positive classes. The highest values are shown in bold.

Method System Advice Effect Int Mechanism F1Micro

SVM FBK-irst 69.20 62.80 54.70 67.90 65.10
CNN SCNN - - - - 68.60
CNN MCCNN 78.20 68.20 51.00 72.20 70.21
LSTM ASDP-LSTM 80.30 71.80 54.30 74.00 72.90
LSTM PM-BLSTM 81.60 71.28 48.57 74.42 72.99
GNN GCNN-DDI 83.50 75.80 51.40 79.40 77.00
GNN DREAM 84.80 76.10 55.10 81.60 78.30

Our method BioBERT-GIN 86.45 78.46 54.80 82.27 79.14
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3.4. The Importance of the Pre-Trained Language Model Domain

The initially generated graph node features are inextricably linked to the performance
of the GNN [33]. Accordingly, we evaluated the effects of the various BERT-based LMs for
the task of relationship classification from biomedical text, by comparing the models that
are trained with their respective BERT variant word embeddings, as shown in Table 3.

Based on the overall performance metrics, we define BERT (M9.1), SciBERT (M6.1)
and BioBERT (M2.1) as the three baseline approaches with BioBERT (M2.1) achieving
the best baseline results. This further validates the fact that domain-specific LMs tend
to outperform general-domain LMs on the domain-specific task. However, the general-
domain BERT achieves significantly better performance in the underrepresented class Int.
As a reminder, sentences that contain the interactions of type Int indicate that there is a
relationship between two drugs but no additional information about the relation type. In
this context, the performance increase of general-domain BERT can be attributed to the use
of non-scientific language when describing these types of interactions.

The best performing model is M3.3, which makes use of the SLDA BioBERT base and
the GIN framework surrounded by pre- and post-processing MLPs. Furthermore, it is the
only one that achieves Rmicro and F1micro scores greater than 75 in addition to the maximum
value of Pmicro among all the models. Moreover, it achieves the best F1 scores in most of the
classes (4 out of 5), unlike other models that usually excel in just one class (M9.1-3).

At the same time, M8.2 that utilized DLDA SciBERT achieves a comparable score in
Rmicro and F1micro to the best performing models and surpasses 70% of the models in Pmicro
but significantly underperforms on the Int class. We observe an improvement over the
SciBERT baseline approach (M6.1-3) proving that domain-adapting SciBERT to the DDI
domain leads to a performance gain in the relationship classification task. Similarly, the
performance improved significantly when domain-adapting BioBERT (M3.1-3) to the same
task with SLDA, indicating that the biomedical-domain pre-trained LM model may benefit
from adapting to other tasks in the same domain. Conversely, adapting same LM with
DLDA (M4.1-3), a significant performance degradation can be observed, suggesting that
the LM benefits mostly from the context of individual sentences and not larger paragraphs.

The overall results show the effectiveness of the biomedical-domain pre-trained
BioBERT base LM, especially compared to the general-domain BERT. Furthermore, aligning
the BioBERT to the DDI corpus did yield significant improvement and led to performance
increase. Similarly, domain-adapting SciBERT with DLDA produced improved task per-
formance. Noticeably, BioBERT large (M5.1-3) performs worse than its base counterparts,
especially in the Int class, which warrants further investigation as no interpretable patterns
could be found. However, recent findings [34] suggest that fine-tuning noise increases
with model size and that instance-level accuracy has momentum leading to larger models
having higher variance due to the fine-tuning seed.

3.5. Effectiveness of the GIN Message Aggregation Function Layers

A basic hyperparameter of the GIN module is the number of layers of the internal MLP
network (lGIN). Figure 4 shows the system’s behavior on the test set as a function of the
MLP network depth (number of layers). For lGIN = 1, GIN shows comparable performance
to GraphSAGE (M1.1—Table 3), which is significantly lower than the best performing
model, validating the limiting factor of shallow aggregation functions. However, as lGIN
increases beyond four layers, the F1micro score displays a sharp decrease as it detects a
higher percentage of existing interactions, combined with an increase in false positives,
evidenced by the significant difference in the recall–precision curve slopes.

Therefore, the intermediate values lGIN = 2 and 3 are compared. The change in F1micro
is negligible, while the recall improvement and precision drop is approximately 4% when
increasing the layer depth by one. However, at lGIN = 3, a better compromise is made
between the two metrics, with a difference of only 1.7%, compared to the corresponding
9.6% for lGIN = 2. Moreover, considering the risk of not being able to detect an existing



Appl. Sci. 2022, 12, 10987 13 of 21

interaction, the behavior of the system with the best recall is considered more appropriate
for the current task.

Table 3. Performance comparison of the pre-trained LM. SAGE denotes the models that utilize
the GraphSAGE framework. SLDA and DLDA denote the Sentence and Document Level Domain
Adaption, respectively, and x denotes the inclusion of the corresponding pre/post-processing MLP
unit. The highest values are shown in bold.

Model MLP Metrics per Classification Target Overall Metrics

M BERT-Based LM Pre Post Advice Effect Int Mech. Pmicro Rmicro F1micro

1.1
SAGE BioBERT base

70.51 67.04 48.21 58.39 71.59 57.37 63.70
1.2 x 74.78 72.92 51.61 70.72 72.42 69.47 70.92
1.3 x x 65.59 70.02 50.00 68.69 75.00 60.39 66.90

2.1
BioBERT base

75.00 74.96 52.71 71.56 72.91 71.18 72.04
2.2 x 76.84 76.09 52.71 71.49 73.16 72.58 72.87
2.3 x x 82.45 73.46 52.80 74.27 73.42 74.87 74.14

3.1
BioBERT SLDA

79.14 76.19 52.71 71.46 72.81 71.28 72.04
3.2 x 84.45 75.46 53.80 76.27 75.81 74.13 74.96
3.3 x x 86.45 78.46 54.80 82.27 84.33 75.55 79.14

4.1
BioBERT DLDA

72.30 73.14 40.88 67.94 66.67 70.53 68.54
4.2 x 72.53 73.36 40.88 70.02 66.91 71.84 69.29
4.3 x x 71.94 70.43 39.37 69.22 63.78 72.76 67.98

5.1
BioBERT large

69.23 67.83 15.50 70.66 62.97 66.45 64.66
5.2 x 70.86 69.54 20.97 71.52 65.48 67.63 66.54
5.3 x x 66.67 67.19 12.17 71.85 62.58 66.45 64.45

6.1
SciBERT

72.48 71.68 51.24 73.00 70.51 70.79 70.65
6.2 x 73.51 72.82 52.31 73.75 70.03 73.16 71.56
6.3 x x 73.63 69.86 50.38 70.25 66.67 72.11 69.28

7.1
SciBERT SLDA

80.12 69.43 47.06 67.11 67.16 71.32 69.18
7.2 x 77.35 69.18 43.94 68.60 68.45 69.08 68.76
7.3 x x 79.06 67.15 40.35 67.10 70.55 65.26 67.81

8.1
SciBERT DLDA

78.86 73.24 51.91 70.46 72.52 71.18 71.85
8.2 x 80.89 74.15 47.93 73.28 72.74 74.08 73.40
8.3 x x 77.97 71.26 46.55 73.94 72.70 70.79 71.73

9.1
BERT base

73.24 68.23 58.06 67.24 69.19 67.37 68.27
9.2 x 72.24 67.62 60.00 70.74 68.25 69.87 69.05
9.3 x x 68.15 68.42 55.74 68.91 64.25 71.18 67.54

3.6. Effectiveness of Non–Message Passing Units

In addition to adopting the GIN framework to increase the expressiveness of the
shallow GNN network, it has been further proposed to incorporate non-message passing
units MLPpre and MLPpost into the architecture [35]. The contribution of increased model
complexity to the performance is confirmed by the significant improvement in the otherwise
underperforming GraphSAGE (M1.1). Although not as pronounced, GIN models also
appear to benefit.

The performance metrics in Table 3 show the advantage of including the MLPpost unit
in the M1-9.2 models over the basic M1-9.1 models. Adding the unit yields an average
increase of 0.9% in each metric, with eight models achieving better Pmicro, Rmicro scores,
and seven models achieving better F1micro scores. At the same time, the rest of the mod-
els where either precision or recall is affected, the opposite metric (Pmicro ⇐⇒ Rmicro)
shows an improvement in the order of 2.6% on average, which is always superior to the
corresponding drop.
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Figure 4. GIN MLP performance compared to the number of aggregation layers using the baseline
BioBERT and no additional MLP units.

Conclusively, the three best performing models (M2.3, M3.3 and M8.2) include this unit.
Each presents an improvement over its base version (M2.1, M3.1 and M8.1, respectively),
while improving on the individual class level as well. Particularly, in at least three of the
five classes, there is a clear improvement or at least some stability (decrease ≤ 0.08). This
behavior is partially confirmed by the other (underperforming) GIN models, although
not universally.

In contrast, the effect of the combination of the two units appears to be negative in
the vast majority of models. Through MLPpre, the word embeddings xv produced by the
BERT-based LMs (dBERT) are projected into a smaller dimensional space dGNN before the
execution of message passing by GNN. This results in reduced performance in at least
two instances. However, obvious exceptions are the models which make use of the BioBERT
base architecture. Especially in combination with GIN, the models M2-3.3 outperform their
M2-3.1-2 counterparts in every metric, with the exception of the F1E f f ect metric.

3.7. Effectiveness of Preprocessing

Focusing on the best performing model and its base (M3.3 and M8.2 respectively), the
contribution of the preprocessing steps to the data was studied. Particularly, Figure 5 shows
the effects of Drug Name Replacement (DNR, Figure 5a,b) and Negative Instance Filtering
(NIF, Figure 5c,d) on the F1 metric of each positive class and the overall F1micro score.

First, reducing imbalance greatly benefits the Advice and Int classes in both models.
Especially in M3.3 (Table 3), applying NIF improved the Recall by 7.6% and 10.9%, re-
spectively, and the Precision by 3.4% and 6.2% respectively. Simultaneously, a relative
robustness is demonstrated in the Effect class when restoring the rejected pairs; however,
their inclusion appears to favor the Mechanism class. Conclusively, the overall F1micro is
improved in each case through the rejection of trivial negative instances; however, M3.3
maintains a better balance between Recall and Precision than M8.2, where although no
class is perceptibly affected, their removal leads to an increase in false positives.
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(a) (b) (c) (d)
Figure 5. Performance comparison based on Drug Name Replacement (DNR) and Negative Instance
Filtering (NIF), (a) M3.3 with DNR, (b) M8.2 with DNR, (c) M3.3 with NIF, (d) M8.2 with NIF.

In contrast, the use of drugi over the original drug names provides a clear performance
improvement when generating word embeddings with BERT-based LM. This fact confirms
the hypothesis that the type of interaction is determined by their syntactic role within the
sentence and its content and not by specific substances’ names. This method of replacing
drug names, also known as entity blinding or entity masking, supports the generalization
of the model. Therefore, through these preprocessing steps, noise is reduced in the feature
vectors of the Token nodes.

3.8. Error Analysis

To analyze the advantages and limitations of our proposed approach, we compare and
analyze the classification results of the best performing model (M3.3) on a few indicative
cases (Table 4). Figure 6 shows the confusion matrix, with a total of 330 errors that were
made, representing 11% of the 3057 test cases. In addition, 273 (83%) originate from the
DrugBank instances and the remaining 57 (17%) from MedLine abstracts, corresponding to
9.8% and 20% of the total interactions of their respective collection.

Figure 6. Confusion matrix of our proposed model.

First, misclassifying an existing interaction is the least common type of error, account-
ing for 20% of the total errors. Furthermore, 48% of these correspond to the case where
instances of Int are classified as Effect, which makes this the main source of confusion in
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this category. The contributing drug pairs were found in only five sentences, with one
of them giving 28 of the total 32. This is S1, where although the system can recognize
the existence of interactions in the long list of drugs, it fails to predict the types. This is
probably due to the presence of “enhance”, a word regularly associated with drug pairs
with the interaction type Effect. Furthermore, 42% of the errors involve false positive pairs
that can occur due to the following cases:

• The possibility of an annotation error is not excluded. Indicatively, in S2, every
pair containing e0 is of type Effect, as predicted by the model. However, any such
relationship other than (e0, e1) is marked as negative in the data set.

• A substance appears multiple times in the sentence, such as mebendazole in S3. The
pairs e0, e1 and e0, e2 are the Mechanism and Negative types, respectively, but both
are predicted as Mechanism. An attempt was made to limit these occurrences when
rejecting cases, but, as S3 indicates, they do not follow a specific pattern that can
be expressed.

• Similar to the case of S1, confusion is caused when the description is made with
expressions that refer to another type. In S4, e0 is the subject of the sentence and
declares the simultaneous administration of the mentioned drugs as safe, since they
do not interact. However, due to the wording, the system perceives the relationships
as Advice.

• Cases where drug mentions are listed and are not covered by regular expressions. e.g.,
in S5, the existence of “the” excludes the match and makes it impossible to locate the
negative pairs (e0, ei), i = 1, . . . , 5. However, as a large number of instances has been dis-
carded from the corpus, the model is unable to handle these underrepresented patterns.

However, the most serious form of error concerns the inability to detect existing
interactions, or else the existence of false negatives. An obvious source of error is the
particularly long sentences, where descriptions are highly complex. The same applies
to long sentences that could have been separated into smaller sentences, occurring in
53 related instances. We define sentences as long when they have a length of ≥ 40 tokens
(the number of words separated by a space, having replaced drugs with “drug”). S6 is an
example of a sentence with a length of 40, where three interactions of the Mechanism type
were not detected.

However, there are several instances where misclassification can be attributed to
system errors. For example, the interaction in S7 is not found, even though the sentence
contains characteristic expressions that suggest that an interaction is being described and
does not include any redundant information that might cause any confusion. The existence
of such phenomena causes difficulty in the holistic interpretation of the results.

3.9. Data Uncertainty

The main point of uncertainty that may arise in our proposed approach, that is shared
with all related works using the DDI corpus, is input-dependent data uncertainty. In this
case, the observation noise varies based on the input and is commonly introduced during
the data generation process [36]. In order to address this issue, we attempt to deal with the
observed inconsistencies during the the pre-processing stage.

Initially, simple entity name transformations are applied by changing the plural form
to the singular form when the same substance is referenced and both cases are found in the
the Drug_Class set (e.g., “penicillin” and “penicillins”). Consequently, this leads to a total
of 122 cases of identified cases.

An additional point of uncertainty concerns the classification of drugs into the four
classes as each drug mention generally belongs to a single class. However, cases were
observed where the same drug was labeled with different classes throughout the instances
found in the dataset. Although the percentage of entities in which this is observed is
relatively small, the drug mentions in question participate in a large number of interaction
pairs. Specifically, 6023 pairs are identified in which at least one entity with multiple types
is found.
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Table 4. Indicative cases of misclassified instances. Drug names are denoted in bold and underlined
words describe the interaction in the sentence. Subscripts denote the drug name (entity) index in
the sentence.

Sentence

S1 Other drugs which may enhance the neuromuscular blocking action of nondepolarizing
agents such as MIVACRON include certain antibiotics e.g., antibiotics_group).

S2 Thalidomidee0 has been reported to enhance the sedative activity of barbituratese1,
alcohole2, chlorpromazinee3, and reserpinee4.

S3 Preliminary evidence suggests that cimetidinee0 inhibits mebendazolee1 metabolism and
may result in an increase in plasma concentrations of mebendazolee2.

S4 Pyrimethaminee0 may be used with sulfonamidese1, quininee2 and other antimalarialse3,
and with other antibioticse4.

S5
Dopamine antagonistse0, such as the neurolepticse1 (phenothiazinese2,

butyrophenonese3, thioxanthinese4) or metoclopramidee5, ordinarily should not be
administered concurrently with Permaxe6 (a dopamine agoniste7)

S6
The bioavailability of SKELIDe0 is decreased 80% by calciume1, when calciume2 and

SKELIDe3 are administered at the same time, and 60% by some aluminume4- or
magnesiume5-containing antacidse6, when administered 1 hour before SKELIDe7.

S7 Anticholinergicse0 antagonize the effects of antiglaucoma agentse1.

Thus, the management of differentiation is sought without rejecting them. For example,
in the case of “corticosteroid” where the vast majority of occurrences belong to a specific
class, the assumption can be made that all instances should be labeled based on the majority
class. In contrast, in the case of “tetracycline”, where the class distribution is not clearly
in favor of a single class, no such assumption can be made without introducing more
uncertainty in the dataset.

The class of a drug entity is defined by a <drug-name, rdf:type, drug-class> triplet,
where the object takes its value from the set of the four positive drug classes which should
be unique for each instance of the Drug_Class class. However, a small amount of drug
names cannot be classified to a single class. Moreover, each individual case is characterized
by the name of the drug, as well as the set of the additional classes it was labeled in its
various occurrences in the dataset. Therefore, for each one of these classes c, a blank node
<_:substance-name_c> and a statement in the form of <_:substance-name_c, rdf:type, c>
are included in the KG. Furthermore, in order to emphasize that those individual entities
are not independent, the property name is defined which participates in <_:substance-
name_c, name, substance-name> triplets. Therefore, entities that share the same value in
this attribute are referring to the same substance.

An example of how our proposed approach performs on instances that contain uncer-
tainties can be seen in the example sentence S2 (Table 4) in Section 3.8.

4. Conclusions

In this paper, we propose a Knowledge Graph schema in a Graph Neural Network-
based architecture for the classification of Drug–Drug Interactions from biomedical liter-
ature, which achieves state-of-the-art performance. Specifically, we presented a Graph
Isomorphism Network-based architecture with message passing and non-message passing
units that leverage the proposed DDI-specific graph structure that models the knowledge
(drug identifiers, names, types and interactions) from the DDI corpus. Token and sentence
embeddings are generated for the drug named entities and sentences, respectively, and are
passed to the graph, populating the Token and Sentence nodes, taking advantage of the
underlying BERT-based LM.

Although our approach achieves state-of-the-art performance in the DDI classification
task, the experimental results show that the individual class scores are greatly affected by
the underlying LM, indicating that further improvements can be achieved. Based on the
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results, future work could be directed towards exploring a combination of general and
domain-specific corpora to pre-train or domain-adapt a LM to further improve the perfor-
mance of each positive class. Another direction for future work is to extend our approach
with multi-task learning for extracting the entities in combination with interactions that
could potentially improve generalization by using the domain information contained in
the training signals of the related tasks as an inductive bias.
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GRU Gated Recurrent Unit
DGF Dependency Graph Features
XML Extensible Markup Language
LM Language Model
SLDA Sentence Level Domain Adapted
DLDA Document Level Domain Adapted
GIN Graph Isomorphism Network
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Appendix A

Table A1. Comparative analysis of related studies and our proposed approach. NIF and DNR denote Negative Instance Filtering and Drug Name Replacement,
respectively. Values that are not reported in the published work are denoted with ‘-’. DGF denotes Dependency Graph Features. Y and N denote Yes and No,
respectively.

Reference Method Embeddings Emb. dim. Features NIF DNR Highlights Review

Liu et al. [7] CNN Order 300 Position Y Y Position embeddings improve
performance

Dependent on position distributions of
the input

Quan et al. [8] CNN CBOW 200 Position N Y Multiple embeddings capture better
representations Errors in long sentences

Liu et al. [9] CNN Order 300 Position, DGF N Y Syntactic features for long distance
dependencies

Only a small set of large sentences parsed
correctly

Zhao et al. [10] CNN Word2Vec - Position, PoS, DGF Y N Dependency features and position
embeddings

Filtering rules lead to limited
generalization ability

Wang et al. [11] LSTM Word2Vec 100 Distance, DGF Y Y Captures distance and
dependency-based features Low performance on long sentences

Yi et al. [12] RNN GloVe 100 Position N Y Multiple attention layers to capture better
representations

Semantic ambiguity leads to
misclassifications

Zhang et al. [13] LSTM Word2Vec 200 PoS, DGF N N
Integration of sentence sequences,

shortest dependency paths and attention
layers

Errors in long sentences

Zhou et al. [14] LSTM Word2Vec 300 Position Y Y Additional position embeddings to
generate the attention weights

Misclassification of instances containing
multiple drug mentions

Salman et al. [15] LSTM Word2Vec 100 Position, DGF N N Task expansion to sentiment-based
severity prediction

Word positions in the sentences are not
taken into account

Mondal [22] BERT-VAE BioBERT 300 Chemical Structures N N Utilizes chemical structure
representations of drugs

Information loss in longer sentences due
to low representation dimensionality

Xiong et al. [25] LSTM- GCNN Word2Vec 200 PoS, DGF Y N Dependency features with graph neural
network

Complex graph structures impact
performance

Shi et al. [26] LSTM-GCNN Word2Vec 200 PoS, DGF, PageRank Y N Dependency features with graph neural
network and PageRank

Added complexity with feature
generation from complex graph

structures

Our approach BERT-GIN BioBERT 512 KG, DAPT Y Y

Novel DDI task-based Knowledge Graph
leveraged by a graph neural network

without relying on manual feature
engineering

Nodes are initialized with
domain-adapted representations to better

capture sentence context
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