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Abstract: The Internet of Things is attracting attention as a solution to rural sustainability crises,
such as slowing income, exports, and growth rates due to the aging of industries. To develop a
high‑performance IoT platform, we designed and implemented an IoT cloud platformusing pub/sub
technologies. This design reduces the difficulty of overhead for management and communication,
despite the harsh IoT environment. In this study, we achieved high performance by applying the
pub/sub platformwith two different characteristics. As the size and frequency of data acquired from
IoT nodes increase, we improved performance through MQTT and Kafka protocols and multiple
server architecture. MQTT was applied for fast processing of small data, and Kafka was applied for
reliable processing of large data. We alsomounted various sensors and actuators tomeasure the data
of growth for each device using the protocol. For example, DHT11, MAX30102, WK‑ADB‑K07‑19,
SG‑90, and so on. As a result of performance evaluation, the MQTT Kafka platform implemented in
this research was found to be effective for use in environments where network bandwidth is limited
or a large amount of data is continuously transmitted and received. We realized the performance
as follows: the response time for user requests was measured to be within 100 ms on average, data
transmission order verification for more than 13 million requests, data processing performance per
second on an average of 113,134.89 record/s, and 64,313 requests per second were performed for
requests that occurred simultaneously from multiple clients.

Keywords: cloud computing; pub/sub; IoT; MQTT; Kafka

1. Introduction
Most Internet of Things (IoT) companies incorporate various IoT framework technolo‑

gies to transmit and receive real‑time data from sensors and manage them. They can be
used to assess and control variables such as temperature, humidity, vibrations, or shocks
during product transport [1]. Therefore, the application of the IoT in various sectors, espe‑
cially in the manufacturing execution system field, can impact resource efficiency and sig‑
nificantly improve production capacity. However, several challenges need to be addressed
to adopt IoT [2]. One of the challenges is processing and analyzing vast amounts of data
coming from heterogeneous devices [3]. Furthermore, processing all these collected data
directly to a central server is inefficient and sometimes impractical due to limited comput‑
ing, communication, and storage resources, overall energy and cost, and unreliable latency.
To address these challenges, herewe introduce the concept of an IoT cloud platform, where
data processing tasks are pushed to the IoT Cloud. There are two major elements of the
platform implemented in this research: Message Queueing Telemetry Transport (MQTT)
and Apache Kafka. The MQTT broker is responsible for exchanging messages between
various sensors and actuators in the IoT. Kafka reliably sends large amounts of data gener‑
ated in the IoT to consumers. In this work, we used MQTT and Kafka together to take full
advantage of the different characteristics of these platforms. To transmit small data with
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high latency, we usedMQTT. The Kafka platformwas used to transmit images and videos
captured by cameras such as CCTV installed in IoT facilities.

The rest of the paper is structured as follows. In Section 2, we discuss background and
related work in this field. In Section 3, we present the proposedmethodology. In Section 4,
we describe the performance evaluation of the proposed system. Finally, we present the
conclusions of our research in Section 5.

2. Background and Related Works
MQTT is an Organization for the Advancement of Structured Information Standards

(OASIS) standard messaging protocol for the Internet of Things (IoT) [4]. It is designed
as an extremely lightweight publish/subscribe messaging transport that is ideal for con‑
necting remote devices with a small code footprint and minimal network bandwidth. The
MQTT is a protocol to publish/subscribe messaging transport protocols designed to be
open, simple, and easy for clients to implement. These characteristics are used in many
contexts, including limited environments such as machine‑to‑machine (M2M) communi‑
cations and the Internet of Things (IoT) [5]. Today, MQTT is used in a wide variety of
industries, such as automotives, manufacturing, telecommunications, oil, gas, etc. [6].

Apache Kafka is an open‑source distributed event streaming platform for high‑per‑
formance data pipelines, streaming analytics, data integration, and mission‑critical appli‑
cations. It provides a publish/subscribe messaging model for data production and con‑
sumption and supports the ability to access data in real‑time for stream processing by al‑
lowing long‑term storage of data [7,8]. Kafkawas designed from the ground up to provide
long‑term data storage and data replay. Apache Kafka has a unique approach to data per‑
sistence, fault tolerance, and replay [9]. Therefore, this can be seen in how it handles scal‑
ability by allowing data access using cross‑partition data sharing, topics/partitions, data
offsets, and consumer group names for data replication persistence in clusters, increased
data volume, and load. Apache Kafka is also well suited for real‑time stream processing
applications because it is designed to act as a communication layer for real‑time log pro‑
cessing. This makes Apache Kafka suitable for applications running on communications
infrastructure that process large amounts of data in real‑time.

Reliability of message delivery is important for many IoT use cases [10]. Therefore,
MQTT has three defined quality of service (QoS) levels: 0—at most once, 1—at least once,
and 2—exactly once. The QoS refers to a level that guarantees the quality of service. An
appropriate QoS level should be selected according to the type of service. In this study,
the QoS level was set to 0 because speed is prioritized over the reliability of data generated
by sensors.

Our research work is based on the IoT cloud‑based framework structure. In the pro‑
cess of designing the system structure, we gained considerable insight from the overall
concept and structure presented in the review paper [11–13]. The paper focuses on pro‑
viding a comprehensive overview of what the IoT cloud is as well as the most relevant use
cases, tradeoffs, and implementation considerations.

3. Computing Platform Using MQTT and Kafka
3.1. Overall System Architecture

The overall system architecture mainly consisted of several elements, as shown in
Figure 1. First, the sensor installed on the IoT node and the cloud/cluster application re‑
sponsible for the sensor device are required. Second, an MQTT broker collects data ac‑
quired from an IoT node and transmits it to the computing platform. Based on the pub‑
lish/subscribe model, an MQTT broker maintains multiple subscribers, each of which is
subscribed to a particular topic, and forwards the data as they are received. Third, the
cloud platform in this research served to connect the MQTT and Kafka protocols.
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Figure 1. Overall system architecture.

It plays a key role in reducing the burden on IoT devices in charge of sensors by plac‑
ing the device serving as the corresponding platform physically close to the IoT. The fourth
is the Kafka cluster. Kafka clusters communicate using the Kafka protocol. Like MQTT,
it uses a pub/sub model and serves to stream large amounts of continuous data from sen‑
sors based on events. Finally, a web frontend visualizing the Kafka data is implemented
using ThingsBoard [12], which is basically an IoT dashboard platform but was customized
in this research. During data processing, we used MongoDB to store data. MongoDB is
a document‑based database engine that can store and retrieve unstructured data without
schema as it is in JSON format, so it is very conveniently used in web‑related fields. Since
we initially created the data in JSON format in this project, we applied it for convenience.

The whole system consists of an IoT cloud with multiple MQTT clients and multiple
nodes, as shown in Figure 2. Each client connects to the IoT cloud platform to send and
receive data. The IoT cloud node is mainly composed of two components: the MQTT
component and the Kafka server. The MQTT component is a broker and subscriber to the
MQTT protocol. This allows for immediate data transfer as well as other operations after
receiving the data. In this research, specific data is sent to Kafka after receiving data from
a component for reliable data storage and transmission. The data generated by the sensor
is processed by Node‑MCU and sent to the MQTT broker. The broker then sends it to an
IoT cloud platform with multiple subscribers. The platform internally switches from the
MQTT protocol to the Kafka protocol and sends it to the Kafka cluster. After receiving
data from the Kafka cluster, it forwards the received data to multiple consumers.
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Figure 3 depicts the interaction sequence among the components that make up this
system. We achieved reliable and high‑performance machine‑independent interactions
using pub/sub technology and the REST API, providing services to multiple users at the
same time by managing sessions for each user.
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In order to make a highly scalable structure designed to respond to numerous user re‑
quests, we applied a scalable computing architecture, including elastic computing nodes,
distributed storage, and load balancing, such as ALB and ELB. All peer nodes are respon‑
sible for the storage of transactions, smart contracts, and various states, and there is a ten‑
dency to waste in terms of costs such as storage space required for continuous operation.

In terms of the data acquisition approach, we tried to simulate an IoT cloud platform
implemented using some IoT elements. Most IoT applications use the Raspberry Pi series
because of its cheapness and powerful performance. So, we also used aRaspberry Pi to con‑
figure the IoT cloud node in this research. It is designed to lower the barrier to entry when
applied in real agriculture using the Raspberry. The MLX90614 is an infrared thermome‑
ter for non‑contact temperature measurements. Both the IR‑sensitive thermopile detector
chip and the signal conditioning ASIC are integrated [12]. MLX90614 is a low‑noise am‑
plifier, 17‑bit ADC, powerful DSP unit, and achieves a high accuracy and resolution of the
thermometer. The address for accessing information about a certain device is shown in
Table 1. Ta is the ambient temperature of the object. TOBJ1 and TOBJ2 are the temperatures
of the objects. The result has a resolution of 0.02C and is available in RAM.

The temperature information obtained from the MLX90614 accumulates the informa‑
tion in a database and is communicated to multiple users of that temperature through an
IoT cloud platform. Real‑time temperature information is displayed to the web service
user, and the actuator operates according to the temperature.

In practice, several types of actuators are used. The role of this actuator is assumed to
be an SG90 servo motor. The SG90 is a tiny and lightweight server motor with high output
power [13]. The servo motor can rotate approximately 180 degrees (90 in each direction)
and works just like the standard kinds, but is smaller. Servo motors provide feedback on
whether the data obtained from the sensor is being processed properly.
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Table 1. Device configurations for input and output.

Name Address Read Access

Melexis reserved 0x00 Yes

. . . . . . . . .

Melexis reserved 0x03 Yes

Raw data IR channel 1 0x04

Raw data IR channel 2 0x05

TA 0x06 Yes

TOBJ1 0x07 Yes

TOBJ2 0x08 Yes

Melexis reserved 0x09 Yes

. . . . . . . . .

Melexis reserved 0x1f Yes

Each piece of hardware introduced above operates on an independent IoT device and
communicates with IoT nodes using the MQTT protocol, which is relatively lightweight com‑
pared to HTTP. Each piece of hardware interacts with the IoT cloud platform and exchanges
large amounts of data. Each sensor is not interconnected and operates through the platform.
This means that data can be processed efficiently without unnecessary communication.

3.2. Data Processing Based on Publish and Subscribe Architecture
The MQTT protocol provides a lightweight method of carrying out messaging using

a publish/subscribe model. This makes it suitable for Internet of Things messaging, such
as with low‑power sensors or mobile devices, such as phones, embedded computers, or
microcontrollers [14]. Based on the publish/subscribe model, an MQTT broker remem‑
bers multiple components subscribed to a particular topic and forwards the data as it is
received. The IoT cloud platform makes use of the MQTT and Kafka protocols. It plays
a key role in reducing the burden on IoT devices. This is because the devices only serve
the corresponding platform that is physically close to the IoT. Kafka clusters communicate
using the Kafka protocol. Like MQTT, it uses a publish/subscribe model and serves to
stream large amounts of continuous data from sensors. In this research, we provide a web‑
based dashboard platform for monitoring data configured using “ThingsBoard” [15,16].
The ThingsBoard is an open‑source IoT dashboard [17] platform designed to store data in
MongoDB [18,19].

After we collect sensor data generated from the sensor module located in AREA 1, the
data are published to subscribers through the IoT cloudplatform, as shown in Figure 4. The
data are classified as an MQTT component by topic (classified by temperature, sunlight,
rainfall, etc.).
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Figure 5 shows that TOPIC‑partitioneddata is transmitted to theKAFKAcluster server
and replicated to each broker in the cluster (each partition of the server). Every partition
has one server that acts as the leader for all read/write operations within the server, and
the other server acts as a follower of this leader. If a leader goes down or fails, by default,
one of the followers on the other server is chosen as the new leader. Producers can gener‑
ate specific messages going to selected partitions within a topic. Consumers can consume
publishedmessages based on topics. Messages are delivered to consumer instances within
the subscribing consumer group.
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In Figure 6, the TOPIC‑partitioned data is transmitted to the server (KAFKA Cluster)
and replicated to each broker in the cluster (each partition of the server). Afterward, at
the request of the consumer group, each broker in the KAFKA cluster designed a system
capable of distributing data and transmitting large amounts of data.
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Data is increasingly produced at the level of the network. Therefore, it would bemore
efficient to also process the data at the level of the network. The IoT cloud platform elimi‑
nates bottlenecks and potential points of failure and enables rapid recovery from failures.
The server in the IoT cloud performs functions for analysis and visualization of the col‑
lected time series data. In this way, the load on the server is reduced by dividing the roles
according to the characteristics. It makes the server perform reliably in operation. For this
reason, our platform aimed to reduce response time or latency by caching content [11]. The
IoT cloud platform can be used wherever computing is used, such as location‑based, Inter‑
net of Things (IoT), data caching, big data, and sensor monitoring activity spaces, mobile
cloud, and others.
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3.3. System Implementation
We created the dashboards for real‑time data visualization and remote device control

using thewebsocket‑based framework [17]. Using our customizedwidgets, we established
our IoT dashboards. These collect and store telemetry data in a scalable and fault‑tolerant
way and visualize data with built‑in or custom widgets and flexible dashboards. They
also define data processing rule chains, transforming and normalizing device data and
raising alarms on incoming telemetry events, attribute updates, device inactivity, and user
actions. Figure 7 represents various sensors and actuators that were used in this research,
and the figure below shows how data are transmitted among many system components in
this system.
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Table 2 shows the versions of the usedmodules in this research. The runtime inwhich
the server runs is composed of Node.js based on the JavaScript language, and a package
suitable for Node.js is configured so that the server can work well.

Table 2. Libraries and modules for system implementation.

Modules Version

Run time Node.js v14.17.3
Webserver ThingsBoard v3.3.1
MQTT client mqtt.js v0.46.1
MQTT broker aedes.js v4.2.8
Database MongoDB v4.4.6
Database client mongodb.js v4.1.1
Kafka server Apache Kafka v2.8.0
Framework Spring Boot v2.3.3
Web frontend React v1613.1
Kafka client kafka.js v1.15.0

When a sensor publishes data on a specific topic, the MQTT component receives it
and classifies it into direct processing data and data processing through Kafka. After an
MQTT client establishes a connection to an MQTT broker, it is set up to send sensor data
connected to that IoT node every 100 ms. By maintaining the established connection be‑
tween the client and the broker, the burden on the expensive part of the network connection
is reduced. Figure 8 shows the actual payload data transmitted through the publish and
subscribe architecture in this work.
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Many sensor data take constant values, except under special circumstances where it
exhibits unusual values. In this case, it is important to reliably transfer the desired data
between successive sets of data. Kafkawithin our platformdoes this. InKafka, the received
data is shared on the IoT cloud platform, and the data is shared with multiple consumers
who consume the data. The server processing data is sent to different services.

Whendata is sent throughKafka, consumers of such as databases andweb servers con‑
sume the data immediately and proceed as follows: After receiving data from the Kafka
cluster, data is accumulated through the MongoDB connector. The query result in Mon‑
goDB that processes the data received from the Kafka cluster is as follows. The left‑side of
Figure 8 shows the temperature and humidity values printed at every datapoint received,
and the right‑side of Figure 9 represents our user interface screen, which depicts the tem‑
perature and humidity values graphically.

We also store the value in a database management platform, especially MongoDB.
MongoDB is a cross‑platform document‑oriented database system. Classified as a NoSQL
database,MongoDB avoids the use of traditional table‑based relational database structures
in favor of JSON‑like, dynamic schema‑type documents. This makes data integration for
specific kinds of applications easier and faster. Since we make use of the Node.js platform,
using communication with a JSON‑based DB for development is more efficient. It is easy
to store data by utilizing these document‑oriented JSON. Our platform visualizes the data
through the graph tool on the web using ThingsBoard. The dashboard shows the status
of the IoT, which is being checked instantly. Figures 10 and 11 are the dashboard imple‑



Appl. Sci. 2022, 12, 11009 9 of 20

mentations in this research. They show a time‑series graph according to the access time.
Location information can also be managed as longitude and latitude values and displayed
on a map based on these values. The criteria for the alarm function can be set by the user,
so if the criteria are out of range, an alarm is automatically displayed on the dashboard.
They can also operate connected actuators via the RPC API provided by ThingsBoard.
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” means “average” in English).

The upper left knob in Figure 10 is used by the administrator to adjust the temperature
of the IoT facility. When you turn this knob on the dashboard, the temperature set value is
transmitted to the IoT node to drive a heater or fan. The power switch is used to turn on/off
the operation of this system. The upper right corner of Figure 10 is a screen showing the
time series of measured values in the system as a line graph with respect to temperature
andwattage. The lower left of Figure 10 is a screen that provides the user with information
on major events/alarms that occur.

The upper left of Figure 11 provides the name of each sensor node registered in our
system and the information collected from that node in real time. It also provides the
latitude and longitude of where the node is installed. The right side of Figure 11 shows the
location where the sensor node is installed on the map. Therefore, if the IoT facility that



Appl. Sci. 2022, 12, 11009 10 of 20

the manager wants to monitor is distributed over multiple regions, it is easy to visually
check which region the data is coming from.
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4. Performance Analysis
In this paper, we conducted a performance evaluation for our high‑performance IoT

cloud computing framework. In this section, we conducted an evaluation of the following
four items: concurrent client connections per server, pub/sub data transmission order guar‑
antee, pub/sub data processing performance, and temperature/humidity measurement in‑
formation analysis performance. Figure 12 shows the overall system architecture for per‑
formance evaluation.
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As in Table 3, we used Apache JMeter version 5.4.1. Apache JMeter is an open‑source
Java application designed to load functional behavior and measure performance. It pro‑
vides extended functionality, from its original purpose of testing web applications to other
testing capabilities. Plugins supporting various protocols have additionally been config‑
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ured to use the IoT cloud computing platform. In the case of the Kafka client, the con‑
sumer creation functionwas insufficient, so itwas additionally configuredusing the JSR223
script. In Kafka, multiple partitions can be configured in one topic to improve performance
through distributed processing. Kafka can have multiple producers on a topic, and multi‑
ple consumers can subscribe to it.

Table 3. System components for evaluation.

Type Purpose

MQTT server Server for processing sensor data

Kafka server cluster Cluster server for image data processing and Kafka server stability

Apache JMeter Create a virtual client for testing on the MQTT Kafka server

4.1. Response Time
After the request is sent from the smartphone, the time until the server completes

processing and returns a response was measured. To do this, we repeated the same exper‑
iment 10 times and calculated the average. The system design and experiments to check
how many client requests could be processed simultaneously by the server application
were as follows.

(1) After running Postman, send a POST request to obtain a JWT token using Table 4, as
shown in Figure 13.

Table 4. Configuration parameters for requesting JWT token.

Address 172.17.x.xx/api/auth/login

Header
Content‑Type application/json
Accept application/json

Body

{
”username”:”xxxxxx@thingsboard.org”,
”password”:”xxxxxx”
}
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(2) Run JMeter as an administrator after acquiring JWT token
(3) File ‑> Open and load the test data jmx file
(4) Input variables corresponding to user defined variables using Table 5



Appl. Sci. 2022, 12, 11009 12 of 20

Table 5. Configuration for server request.

HTTP_HOST 172.17.XX.XXX
HTTP_PORT 8080
NUMBER_OF_USERS 1

TOKEN JWT token you get from our server through
POSTMAN

entityType DEVICE
entityId 24b14a40‑7ff0‑11ec‑88a7‑2d9d3861528f
scope ANY

(5) Press Ctrl + R to run the performance evaluation
(6) Repeat No. 5 ten times with Table 6 parameters, measure the time until a response

arrives ten times, and take the average value to calculate the processing time in ms.

Table 6. Test results during ten times of repetition.

Test Result (Processing Time, ms)

1 88
2 100
3 103
4 104
5 103
6 98
7 99
8 99
9 99
10 101

average 99.4

Table 6 shows a comparison of the average response time described above, accord‑
ing to the execution time. We can see that the response times for MQTT disconnects and
publishes were more or less than 100 ms. Since MQTT and Kafka are both TCP‑based pro‑
tocols, the initial response time was a little bit higher due to the initial connection setup
of socket communication. After that, a difference of about 400 ms continuously occurred
during data transmission and reception. Based on this, the MQTT Kafka platform imple‑
mented in this research can be considered effective for use in environments where network
bandwidth is limited or a large amount of data is continuously transmitted and received.

In Figures 14 and 15, we can see the overall information of the performance evaluation
performed by JMeter. The figure provides the number of responses, average value, min‑
imum value, maximum value, standard deviation, error rate, bandwidth, received data
size, transmitted data size, and average data size.
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4.2. Concurrent Client Connections per Server
We carried out a performance evaluation of how many client requests a server ap‑

plication can handle simultaneously. In order to check whether requests generated from
numerous IoT devices can be simultaneously processed, the number of requests that could
be connected to one server at the same time was measured. To this end, we evaluated the
number of connectable clients per second using a certified benchmark simulation tool. At
that time, we checked whether 50 or more clients could process more than 10,000 requests
in 1 min by making 200 requests each at the same time, thereby evaluating whether the
server could handle more than 10,000 requests per minute.

(1) Run Apache JMeter using Table 7.

Table 7. Test results during 10 times of repetition.

MQTT_HOST 172.xx.xx.xx
MQTT_PORT 1884
TOPIC Test
NUMBER_OF_USERS 50
NUMBER_OF_DATA_TRANSFERS 200
USER_NAME xxxx
PASSWORD xxxxxx

(2) Add mqtt‑xmeter‑2.0.2‑jar‑with‑dependencies.jar and jmeter‑plugins‑graphs‑basic‑2.
0.jar libraries to JMeter for test evaluation of the MQTT protocol.

(3) Set the following variables in the user‑defined variables of Apache JMeter.
(4) Execute Apache JMeter evaluation.
(5) Run (4) for 1 min and judge the result by the average. We obtained the result shown

in Table 8.

Table 8. Test results during 10 times of repetition.

Throughput (req./s) Unit Time (s) Throughput (req./min)

64,313.1 60 3,858,786
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Figure 16 shows the processing performance per second of the system built in this
study. We assumed a scenario in which 50 clients issuing 200 messages were run con‑
currently. Each client operated in the following order: MQTT connection, 200 messages
issued, and MQTT connection termination.
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We established pub/sub clients for performance analysis in the following environ‑
ment. We conducted the evaluation as in Figure 17 to assume simultaneous connection
of MQTT and Kafka clients. Assuming one IoT client, 200 iteration evaluations per thread
were performed. We did one client connection and termination for each thread, 50 MQTT
publishes, and one consumer creation and termination. Plugins and extensions were re‑
quired to handle MQTT and Kafka clients in JMeter. For MQTT, connect, terminate, and
publish were provided independently. However, for Kafka, this comes with a producer
and consumer pair with integrated connection and termination capabilities. In the case
of the consumer, to use the necessary functions, a script had to be created using JSR223
for script support in Java. Therefore, considering this environment, in the case of MQTT,
connect, publish, and terminate were recognized as one work process and compared with
the Kafka consumer.
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4.3. Server‑Client Data Processing Performance
In our pub/sub messaging structure, we evaluated the data processing performance

per second for one topic. In the pub/sub messaging structure, the data processing perfor‑
mance per second for one topic was evaluated to determine whether processing of more
than 58,000 datapoints per second was possible. In order to evaluate the data processing
performance per second for one topic in theMQTT KAFKAmessaging structure, an exper‑
iment was conducted for MQTT KAFKA data processing performance verification.

We conducted the test several times by varying the number of client connection pat‑
terns and topics. As the time increased, the number of transactions processed was con‑
tinuously maintained at over 100,000 messages per second. It was suitable for processing
and transmitting measurement data occurring continuously in the real environment. As a
result of a total of 10 repeated experiments, a minimum of 107,369.2 datapoints could be
processed per second, and a maximum of 117,603.6 datapoints per second could be pro‑
cessed. Figure 6 shows part of the experimental result log.
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(1) Connect to the MQTT KAFKA configuration server.
(2) Enter the following command in Table 9 to create a topic.

Table 9. Commands to prepare the performance test.

/usr/local/kafka/bin/kafka‑topics.sh \
–create \
–partitions 1 \
–replication‑factor 1 \
–topic throughput‑test \
–bootstrap‑server 172.17.XX.XXX:9092,172.17.XX.XXX:9092,172.17.XX.XXX:9092

(3) Input the test code in Table 10 and check the output result.

Table 10. Commands to start the Kafka performance test as a producer.

/usr/local/kafka/bin/kafka‑producer‑perf‑test.sh \–topic throughput‑test \–throughput –1
\–num‑records 20000000 –record‑size 512 –producer‑
propsbootstrap.servers=172.17.XX.XXX:9092,172.17.XX.XXX:9092,172.17.XX.XXX:9092

(4) Check the data processing performance per second through the log output from the
performance evaluation program.

Table 11 and Figure 18 outline the experiment to evaluate the transmission rate accord‑
ing to the data size. In this experiment, performance evaluation was performed with a to‑
tal of 10 million records. The maximum performance was achieved at 117,693.6 record/ms.
When transmitting data, it is desirable to divide data into predetermined sized data with
the maximum data rate and transmit them when transmitting large data on the MQTT
Kafka platform.

Table 11. Test results during 10 times repeat.

Test Result (record/ms)

1 114,948.2
2 117,603.6
3 116,698.6
4 107,369.2
5 116,661.0
6 111,039.0
7 112,493.6
8 113,449.4
9 111,433.2
10 109,653.1

Average 113,134.89
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Since two or more partitions were configured in parallel on different brokers to dis‑
tribute the load of requests, the performance can be naturally improved. The test was con‑
ducted by varying the number of messages and message size options to be transmitted to
topics with one to three partitions. Table 12 shows the results of experiments to measure
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the message processing performance of this system. Table 12 shows information on the
number of messages processed according to a change in the size of a transmitted message
and the amount of message processing per unit time.

Table 12. Test results during ten times of repetition.

Test Result (Transmission Time, ms)

1 199.5
2 196.0
3 299.0
4 283.0
5 196.4
6 213.3
7 204.8
8 211.0
9 252.4
10 223.8

227.92

4.4. Actual Data Acquisition Performance Measurement
In order to verify that the system built through the previous experiments can operate

normally even with actual sensor data, an information transfer experiment was conducted
within 1500 ms to the server through the GPIO input of the temperature and humidity
sensors. As a result of the experiment, a total of 10 repeated experiments were conducted,
as shown in Table 12. Information transmission was completed in a minimum of 196 ms
and a maximum of 299 ms. The average value of 10 experiments was 227.92 ms, as in
Table 12 and Figure 19.
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4.5. In‑Order Data Transmission
In the data transmission order guarantee experiment to verify the stability mainte‑

nance between data transmissions, about 3000 bytes of data were transmitted using the
MQTT protocol, and the loss and order guarantee of the transmitted data were observed.
At this time, in order to evaluate the data transmission guaranteed performance, the fol‑
lowing performance evaluation calculation method was applied.

(1) Run IntelliJ IDEA Community Edition and add Spring‑Kafka and Apache’s Kafka‑
clients library to evaluate whether the data transmission order is guaranteed when
transmitting 3000 bytes of data for a specific topic or single partition.

(2) The Kafka producer program source code is in Figure 19.
(3) Kafka consumer program code in Figure 20.
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The example program for this performance evaluation was developed using Spring
Boot. Therefore, since this program should be executed through the spring server, we exe‑
cuted themain program in Figure 21 by creating objects for producer and consumer classes
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to run the server. Later, when a user request arrives at the server, the server dispatches it
and executes it.
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(4) Run src ‑> main ‑> kotlin ‑> com.example.kafkatoy‑> kafkaToyApplication.kt file.

(5) Run Postman, enter the address to send the GET request to as Figure 22, and send.
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(6) Request GET against the Spring Framework (POSTMAN).
(7) Check whether Offset is guaranteed in order through the log output to the IntelliJ

IDEA console.

As a result of the experiment, the data transmission order according to all data trans‑
mission times was maintained correctly for more than 13 million requests. We confirmed
the following as a result of the test. Our system 100% satisfied the data transfer order of
3000 bytes for a specific topic single partition. That is, for 100% of the transmitted data, we
confirmed that all data transmission orders were guaranteed without any loss. Table 13
shows part of the actual data transfer log from lines 13,671,130 to 13,671,229, confirming
that the data transfer order was guaranteed.
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Table 13. Test results for actual data log from lines 13,671,130 to 13,671,229.

Produce data from kafka: Offset = 13,671,130, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,131, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,132, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,133, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,134, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,135, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,136, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,137, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,138, Size = 3000 bytes
Produce data from kafka: Offset = 13,671,139, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,140, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,141, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,142, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,143, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,144, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,145, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,146, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,147, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,148, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,149, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,150, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,151, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,152, Size = 3001 bytes
Produce data from kafka: Offset = 13,671,153, Size = 3001 bytes

Consume data from kafka: Offset = 13,671,206, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,207, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,208, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,209, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,210, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,211, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,212, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,213, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,214, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,215, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,216, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,217, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,218, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,219, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,220, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,221, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,222, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,223, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,224, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,225, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,226, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,227, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,228, Size = 3001 bytes
Consume data from kafka: Offset = 13,671,229, Size = 3002 bytes

5. Conclusions
Recently, research and development on indoor smart farm facilities has become pop‑

ular. To develop the IoT facility, we designed and implemented an IoT cloud platform
using a publish and subscribe architecture. As a result of the experiment, the average re‑
sponse time for user requests was measured to be within 100 ms on average, and 64,313
requests per secondwere performed for requests that occurred simultaneously frommulti‑
ple clients. In addition, in the data transmission order guarantee verification experiment to
verify the safety maintenance between data transmissions, the order was guaranteed with‑
out loss of information, even for more than 13 million requests. Finally, using real sensor
data, information transmission was completed stably within an average of 227 ms. These
results showed superior performance, when compared with previous studies [12,13], of
the MQTT protocol for processing large amounts of data. Of course, it is difficult to make
an absolute comparison because the server environment and network environment were
not the same, but it is meaningful in that we exceeded the limits of data processing speed
and throughput of previous studies. Through this study, it was possible to improve the
processing speed of large‑capacity data and ensure the stability of transmission orders in
the MQTT protocol‑based system. We conducted research on whether it guarantees safety
and reliability.

√We realized a high‑performance IoT cloud platform architecture which is for data inter‑
working between each node, and this system also provides the ability to record key facts.
√ As a result of performance evaluation, our system is effective for use in environments
where network bandwidth is limited or a large amount of data is continuously transmitted
and received.

As a result, the pub/sub platform implemented in this research is to maintain and ver‑
ify the data collected from the planting and harvesting phases in a safe and secure manner.
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