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Abstract: When tailoring porous absorbers in acoustic applications, an appropriate acoustic material
model, as well as the relationship between the material model parameters and the microscale geom-
etry of the material, is indispensable. This relationship can be evaluated analytically only for few
simple material geometries. Machine-learning models can close this gap for complex materials, but
due to their black-box nature, the interpretability of obtained inferences is rather low. Therefore, an
existing neural network model that predicts the acoustic properties of a porous material based on
the microscale geometry is subject to statistics-based sensitivity analysis. This is conducted to gain
insights into the relationship between the microscale geometry and the acoustic material parameters
of a generic bar-lattice design porous material. Although it is a common approach in the field of
explainable artificial intelligence research, this has not been widely investigated for porous materials
yet. By deriving statistics-based sensitivity measures from the neural network model, the explainabil-
ity and interpretability is increased and insights into the relationship of the acoustic properties and
their microscale geometry of the porous specimen can be obtained. The results appear plausible and
comparable to existing studies available in the literature, showing if and how the bar-lattice geometry
influences the acoustic material parameters. Moreover, it could be shown that the applied global
sensitivity analysis method allows us to not only derive a one-to-one parameter impact relation, but
also reveals interdependencies that are important to address during a material tailoring process.

Keywords: porous materials; explainable machine learning; neural network; global sensitivity
analysis; absorption coefficient; material models; Johnson–Champoux–Allard; inverse parameter
identification

1. Introduction

In recent years, machine-learning-based modeling in engineering applications has
taken advantage of the ability to create large amounts of data on the system under in-
vestigation using both experimental and numerical approaches. This availability of data
allows us to model highly complex systems even without specific knowledge about the
underlying physical relations by means of machine-learning approaches; see, e.g., [1]. We
state “physical” relations here, since the scope of this paper is on modeling physical systems.
However, the statement also applies to every other modeling domain, e.g., social-economic
or biological models. Indeed, special approaches also exist that aim to incorporate physical
knowledge into machine-learning models, e.g., physics-informed neural networks (PINNs);
see, e.g., [2]. Nonetheless, in contrast to physics-based modeling (e.g., applying partial
differential equations (PDEs) and solving these numerically), the amount of knowledge
about the system under investigation required by machine-learning models is rather low.
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1.1. Porous Materials; Applications and Engineering Models

Within this contribution, we focus on the investigation of generic porous materials and
their behavior as acoustic absorbers. Porous materials are a well-known measure used to
reduce acoustic energy, e.g., as sound absorbers in room acoustics and environmental noise
applications [3–5], porous liners in aircraft engines and airframe [6–8] and the reduction
of trailing edge noise [9–11], to name a few. Moreover, porous materials can be employed
to generate meta-structures and meta-materials. The construction of meta-structures by
embedding inclusions into a porous base material is a promising approach to improve the
acoustic properties of the base material, as shown in [12,13]. A comprehensive summary of
similarities and differences between porous materials and meta-materials is given in [14].
Further recent examples of meta-materials are shown in [15–17]. The widespread applica-
tions of porous materials motivates the aim to incorporate them in acoustic simulations.
Therefore, material models are required. The material models describing the acoustic
behavior of porous materials are hereafter referred to as acoustic models.

In the past, many acoustic models of different complexity for porous materials have
been proposed. Starting from the fully empirical models proposed by Delany & Bazley [18]
and the subsequent improvement by Miki [19], a range of models based on the idealization
of a homogenized material have been established. Therefore, the Biot model [20,21] is the
most complex one and is accepted as the reference [22]. The Biot model considers three types
of traveling waves in the material: one pressure wave in the fluid phase and one pressure
and one shear wave in the solid phase. Accordingly, both the fluid phase and the solid
phase (skeleton) of the porous material are assumed to be elastic. Based on the Biot model,
several subsequent models have been proposed that assume the solid phase to be rigid,
i.e., modeling only one pressure wave in an equivalent fluid. Therefore, the properties of the
equivalent fluid also account for the influence of the skeleton on the wave propagation in
the fluid phase. These models are accordingly named equivalent fluid models. Well-known
models are the Miki model [23], the model of Champoux–Allard [24] and its extensions,
the Johnson–Champoux–Allard (JCA) model [25] the Johnson-Champoux–Allard–Lafarge
(JCAL) model [26] and the Johnson–Champoux–Pride–Allard–Lafarge (JCPAL) model [27].
All the aforementioned models require a number of model parameters; for the class of
equivalent fluid models, these are (a subset of, depending on the specific model) the flow
resistivity Ξ, the porosity Φ, the tortuosity α∞, the thermal and viscous characteristic
lengths Λ, Λ′, respectively and the static thermal permeability and tortuosity, k′0 and α′0,
respectively. It should be noted that in most literature, the flow resistivity is denoted with
the symbol σ. For the sake of consistency with our last publications, we choose the letter
Ξ here. Additionally, the Biot model requires the elastic parameters of the skeleton phase
as well.

1.2. Characterization and Design of Porous Materials

Common to all porous media material models is the aforementioned homogenization.
Thus, the models assume a material specimen that is large (in a geometrical sense) in com-
parison to the material’s structure on the microscale. Moreover, the microscale geometry
needs to be small compared to the acoustic wavelength [28]. Accordingly, the microscale
geometry and, in general, its influence on the parameters of the acoustic model, is taken into
account only implicitly when modeling the material. However, this is a major drawback
for the goal of tailoring a material to specific needs. Here, tailoring a material is understood
as designing and manufacturing a material that exhibits a prescribed behavior, e.g., an
absorption coefficient or surface impedance. For tailoring a material, two prerequisites
are required: first, the acoustic model parameters and a description of the microscale (for
manufacturing purposes) are needed; second, the relationship between these quantities
needs to be understood.

The acoustic model parameters can either be measured or obtained by means of inverse
parameter identification. The direct measurement is, to the best of the author’s knowledge,
possible only for the flow resistivity, the porosity and (for electrically non-conductive materi-
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als) the tortuosity [28]. By means of inverse parameter identification, the aforementioned pa-
rameters, as well as other parameters, can be obtained. Therefore, the material is modeled
and, given a specific cost function, e.g., a specified absorption coefficient, the parameters of
interest are inversely computed, if required using an optimization algorithm, e.g., see [29–31].
A method capable of recovering all six parameters of the JCAL model from impedance
tube measurements is introduced in [32]. On the other side, the microscale geometry of
a given porous material can be obtained, e.g., by means of computer tomography (CT)
scans, as shown in [33,34]. Additionally, CT scans can support the identification of porous
material model parameters when combined with a pore-resolved flow simulation, as shown
in [35]. Therefore, a flow simulation of the fluid flow in the pores is conducted using the
Lattice-Boltzmann method allowing for a direct computation of flow resistivity, tortuosity
and the characteristic lengths. In summation, several approaches exist that allow us to
obtain a dataset of the microscale geometry and acoustic model parameters of porous
materials, i.e., the first prerequisite for tailoring a porous material.

The second prerequisite, i.e., the relationship between the microscale geometry and
the acoustic model parameters, is more challenging. For special microscale geometries,
e.g., (slanted) cylindrical pores, the flow resistivity and tortuosity can be derived analyt-
ically, as shown in [23]. However, to the best of the author’s knowledge, no models
exist in the literature that allow us to infer the acoustic model parameters of a given or
desired material based on the microscale geometrical parameters for a general material.
To circumvent this issue, in a preceding study, we show the application of a machine-
learning based approach to model the relation between the microscale geometrical parame-
ters and the acoustic model parameter of a generic porous material [36]. To do so, generic
porous material specimens were produced using additive manufacturing, and two different
machine-learning models were trained to predict the acoustic model parameters of the JCAL
model based on geometrical parameters describing the microscale geometry. The acoustic
model parameters were obtained using an inverse parameter identification procedure and
the geometrical parameters were known because the materials were manufactured before-
hand using additive manufacturing. The resulting machine-learning models were used to
close an optimization loop to generate specimens with a desired absorption coefficient.

1.3. Applications of Machine-Learning Methods to Porous Materials

Recently, many approaches have been presented in the literature that employ machine-
learning techniques to porous media modeling. Some examples are presented here. In [37],
an approach is presented to design an acoustic sink, i.e., a duct-shaped structure filled
with porous material, with desired acoustic behavior using a convolutional neural network
in an encoder–decoder setting. The acoustic sink is modeled using a combination of
transfer matrix method and the JCA model. The authors show that the obtained model
is able to derive the geometrical parameters of the acoustic sink for a given absorption
spectra, and can predict the absorption spectra for a given set of geometry parameters.
In [38], a deep-learning approach is pursued to estimate the parameters for water-saturated
porous material from ultrasound tomography data. The authors show the accuracy of
the approach, even for a wide range of material parameters. A direct prediction of the
absorption coefficient of a layered porous material sample by means of a neural network is
shown in [39]. Therefore, the neural network requires only the density and flow resistivity
of the porous materials and macroscale geometrical parameters, such as thickness and
sequence of the layers. The authors obtain a good agreement with measured absorption
coefficients. A similar approach with a sparse amount of input data is presented in [40].
The authors show the use of neural networks to predict the absorption coefficient and
surface impedance of porous materials based only on the frequency and the flow resistivity.
Although obtaining good results, the authors note that the developed models only suffice
for a given class of materials, and do not necessarily have the ability to generalize for
other material classes. An application of neural networks for predicting the absorption
coefficient of natural fibers is presented in [41]. The authors model the porous material
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using a phenomenological approach and with a neural network, and verify better prediction
quality of the neural network. An approach concerned with the characterization of porous
materials with inclusions using a Gaussian-process-based machine-learning approach is
presented in [42,43]. The authors model the porous material using both the model of
Delany & Bazley (with the Miki improvement) and the JCA model. It is shown that the
improvement introduced by using the JCA model compared to the Delany & Bazley model
allows the machine-learning model to reach a better prediction quality along with less
training effort. The resulting models are used for predicting the acoustic behavior with
regard to the transmission loss.

1.4. Scope, Contribution and Hypothesis of the Study

Although the greatest strength of machine-learning models is to yield system descrip-
tions based on data only, this is another major drawback. Machine-learning models are
most often treated as black-box systems. Thus, the rationale behind the obtained predic-
tions remains unclear, and the explainability and interpretability are rather limited [44,45].
This challenge is also apparent for the models obtained in our preceding work [36]. In that
study, we produced machine-learning-based models that predicted the acoustic model pa-
rameters of the JCAL model for a generic porous material based on the microscale geometry
parameters. Although the obtained models appeared to yield acceptable predictions for the
acoustic material parameters from the microscale of the porous materials, an interpretation
of which microscale parameters affects which acoustic model parameter, and how and why
such interaction is observed, could hardly be drawn. In order to further investigate the
credibility of the machine-learning models obtained in the preceding study, and to derive
insights into the underlying physics that are coded in the machine-learning models, here,
the machine-learning models are subjected to a thorough sensitivity analysis. This approach
is common in the field of explainable artificial intelligence (’XAI’) [46] and, although testing
the sensitivity of the prediction rather than the prediction itself is a limitation, the approach
is accepted to support the understanding of the inferences of black-box machine-learning
models [45,47,48].

As mentioned in the previous section, machine-learning is already quite common
in acoustics in general, and specifically in modeling porous materials. However, to the
best of the authors’ knowledge, no attempts to increase the explainability of machine-
leaning models applied to porous materials are available in the literature. Thus, the
scope of this contribution is the explainability of machine-learning models for porous
materials. Building on the preceding study by the authors [36], the goal of this study is
to derive insights into the underlying physics of generic porous materials coded in the
machine-learning models. Therefore, the sensitivity of the outputs of the machine-learning
models, i.e., the acoustic model parameters, with respect to the inputs, i.e., the microscale
geometry of the porous material, is investigated. The hypothesis of this contribution is as
follows: the relationships of the acoustic model parameters and the material’s microscale
can be modeled using machine-learning approaches, and can be investigated by applying
statistics-based sensitivity analysis to the resulting machine-learning model.

The presented study should be viewed as a natural follow-up of our previous paper
on designing generic porous materials using machine-learning approaches [36]. Moreover,
the presented paper is an extension of a prior conference contribution (German only) [49].

1.5. Outline of the Paper

The outline of the paper is as follows: in Section 2, the tools used within this study are
presented. The investigated generic porous specimens are presented in Section 2.1. The
inverse parameter identification approach for obtaining the acoustic model parameters is
summarized in Section 2.2. The neural network model is presented in Section 2.3 together
with an overview of its performance. The approach of the global sensitivity analysis used to
derive the insights into the behavior of the neural network model is outlined in Section 2.4.
The results of the study are presented in Section 3 with the results for the first-order
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and total sensitivity measures in Section 3.1 and for the the second-order coefficients in
Section 3.2. The results are discussed and compared to results in the literature in Section 4.
A brief summary is given in Section 5.

2. Materials and Methods

Within this section, the investigated generic porous materials are described, as well as
the experimental and numerical tools for their characterization. Moreover, the statistical
methods and the machine-learning model used to investigate the relations between the
model parameters and the material’s microscale geometry are presented. This contribution
is a follow-up of a preceding paper [36]; thus, for the sake of completeness, Section 2.1
summarizes the generation of the generic porous media investigated here and Section 2.2
summarizes the inverse parameter identification process. Although these sections contain
results, the content is not largely different from the former study [36]: therefore, the content
is placed here within this “Materials and Methods“ section in order to not confuse it with
the findings of this present study. In the following sections, the methods specific to this
study are presented; these are the application of an artificial neural network used to model
the relationship between geometry variables and acoustic model parameters, as described
in Section 2.3. It should be noted here that in the preceding study, a neural network model
was employed as well, but the model used here is slightly improved in structure and
accuracy, and thus is presented here again. Finally, the approach of the global sensitivity
analysis is described in Section 2.4.

2.1. Design of Generic Porous Media Samples

Within this contribution, generic porous media are investigated that are designed
using a simple bar-lattice design. The general design is shown in Figure 1a. The speci-
men have a circular shape with a diameter of 30 mm. The specimen thickness l is 15 mm.
These quantities are kept constant within this contribution. The inner geometry is deter-
mined by a certain number of layers stacked upon each other, each layer consisting of a
lattice of parallel bars. The geometry of each bar is determined by the bar width d and
the bar height h. The bars of each layer are spaced by the bar spacing s. Moreover, from
one layer to the next (direction bottom-up), each bar lattice is turned by the plane angle ϕ.
The variables d, h, s, ϕ are hereafter referred to as design variables, since they fully deter-
mine the microscale geometry of the specimen. A photograph of one sample is shown
in Figure 1b. The specimens are produced using additive manufacturing (also known as
3D-printing). A more detailed description on the manufacturing of the specimen can be
found in [36].

height h
width d

plane angle ϕ

spacing s
l

(a) (b)

Figure 1. Photograph and schematic design of the generic porous media samples. (a) Design variables
used to parameterize the material properties [36]. (b) Photograph of a printed generic porous media
sample [36].

In order to allow for a machine-learning-based modeling of the relation between
the specimen microscale and the resulting porous media model parameters, a Latin-
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Hypercube Sampling (LHS) of the design variables is conducted using the parameter
ranges given in Table 1.

Table 1. Parameter ranges of the design variables for the LHS [36].

Bar Width (d) Bar Spacing (s) Bar Height (h) Plane Angle (ϕ)

0.10–0.50 mm 0.10–1.00 mm 0.05–0.20 mm 0–90◦

Based on the LHS-procedure and the parameter ranges given in Table 1, a set of
50 specimens is produced. These fill the parameter space, and thus exhibit various acoustic
properties. In order to generate the input data required for the inverse parameter identifica-
tion described in Section 2.2, the parameters flow resistivity Ξ and absorption coefficient α
of all specimens are measured. The flow resistivity is measured using the alternating flow
method based on ISO 9053-2 [50], and the absorption coefficient is measured using the
two-microphone technique in an impedance tube based on ISO 10543-2 [51] in the frequency
range of 900–6600 Hz. For more details on the measurement, the reader is asked to refer to
our preceding contribution [36]. Figure 2 shows the measured flow resistivity (Figure 2a)
and the measured absorption coefficient (Figure 2b) of all specimen.

0 10 20 30 40 50

103

104

105

Specimen No.

Ξ
in

Pa
s/

m
2

(a)

2000 4000 6000

0.0

0.5

1.0

Frequency in Hz

A
bs

or
pt

io
n

co
ef

fic
ie

nt

(b)

Figure 2. Measurement results of all 50 test specimen. The specimen with the highest mean absorption
coefficient is marked in orange. The specimen with the lowest mean absorption coefficient is marked
in blue. (a) Flow resistivity measurement results of all specimen. The flow resistivity was measured
using the alternating flow method [36]. (b) Absorption coefficient measurement results of all spec-
imen. The absorption coefficient was measured in an impedance tube using the two-microphone
technique [36].

In Figure 2, the measurement results of all specimens are shown in gray color, while
two are colored separately. The sample with the highest mean absorption coefficient is
marked in orange (specimen no. 2, counting 0–49); the sample with the lowest mean absorp-
tion coefficient (specimen no. 39) is marked in blue. These samples are seen as somewhat
extreme samples regarding the absorption coefficient. However, it can be verified from the
results of the flow resistivity that these specimens do not show extreme values for this quan-
tity. Thus, the flow resistivity cannot serve as the only explanatory variable for the general
behavior of the material with regard to the absorption coefficient. This finding motivates
the approach to model the relation between the model parameters and the microscale
geometry using machine-learning. It is expected that a machine-learning model—here,
specifically, a neural network—can model the (expected) nonlinear relationship between
the microscale geometry and the acoustic model parameters and can be trained based on
the available experimental data. Therefore, an inverse parameter identification procedure
is pursued to extract the acoustic model parameters based on the measured quantities flow
resistivity and absorption coefficient. This is described in the following section.
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2.2. Inverse Parameter Identification of the Acoustic Model Parameters

For the modeling of the porous material within this study, the JCA model is used.
It is a five-parameter model, with the model parameters flow resistivity Ξ, porosity Φ,
the tortuosity α∞ and the viscous and thermal characteristic lengths Λ, Λ′. Within the
preceding study, the Johnson–Champoux–Allard–Lafarge (JCAL) model was used that
adds the static thermal permeability k′0 as a sixth parameter. However, during preliminary
tests for this contribution it was observed that the JCA model reaches an acceptable rep-
resentation of the measurements results as well. Moreover, in another study available in
the literature, this model is applied for a very similar generic and additively manufactured
porous material as well [52]. However, the three-parameter Miki model was observed
to not reach an acceptable representation of the material behavior. Therefore, here, the
(compared to the JCAL model) slightly simpler JCA model is used. Since the model param-
eters cannot be measured directly (with the methods available to the authors), an inverse
parameter identification procedure is used to determine the parameters Φ, α∞ and Λ, Λ′.
The flow resistivity Ξ is measured, and can thus be used as an input parameter to the
inverse procedure.

As already mentioned, the procedure is completely described in the preceding con-
tribution [36], and thus is summarized here. The inverse procedure is based on modeling
the effect of the porous material as an equivalent fluid using the JCA model in front
of an impervious and rigid wall under plane wave loading. This setting resembles the
measurement of the absorption coefficient in the impedance tube. Using this model, the
absorption coefficient for a given set of model parameters can be predicted. A genetic
algorithm is used to adjust the model parameters, such that the error between the mea-
sured absorption coefficient (see Figure 2b) and the absorption coefficient predicted by
the model is minimized. Therefore, the differences for all measured/predicted frequen-
cies are weighted equally, and the error is reported as the sum of squared differences.
The flow resistivity, as obtained from the measurement, remains unchanged during the
optimization process. Finally, the model parameters that fit the measurement best are ob-
tained. This procedure is undergone ten times for each specimen. Since the genetic al-
gorithm that is used for the parameter identification is of stochastic nature, the obtained
results differ slightly from run to run. Thus, data augmentation is achieved, since for
all inputs (the geometry parameters), a set of ten slightly different model parameters are
obtained. In total, a dataset comprising 500 pairs of geometry values and JCA model
parameters is obtained. However, it should be noted that these parameters only represent
a best fit, and therefore are not necessarily physically correct. In order to investigate the
general validity of the resulting parameters, a plausibility check for the porosity is shown
in the preceding study [36]. For the investigated generic porous specimens, the porosity
can be calculated approximately based on the bar geometry by Φ ≈ s

s+d . These results
are compared to the parameter values resulting from the optimization process, and are in
reasonable agreement with the analytic prediction. Thus, it is assumed that the parameter
values resulting from the optimization process are a reasonable estimate of the correct
physical values.

2.3. Modeling the Relation of JCA Model Parameters and Microscale Geometry Using an Artificial
Neural Network

After the inverse parameter identification, for each specimen, the geometry param-
eters (from manufacturing) and the corresponding JCA model parameters are known.
Between these sets, a model f , mapping the four geometry parameters X to the five model
parameters Y , is built:

Y = f (X)

f : R4 → R5 .
(1)

The model f is built within this contribution using an artificial neural network (ANN),
using the keras/tensorflow library [53]. A ”classic” structure as a densely connected feed-
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forward neural network with three hidden layers is used. All layers use the Rectified
Linear Unit (ReLU) activation function. The input data are scaled to the unit interval before
being presented to the network. The final structure of the network is found in a trial-and-
error approach. Since the resulting network is very similar to the one presented in [36],
the reader is referred to that study for more details on the network. The network has a total
of 1,111,721 parameters and is trained using the Adam algorithm and the “mean squared
error” error measure. The results are reported using the coefficient of determination R2.
The model can be seen schematically in Figure 3.

Input Layer ∈ R4

1. Hidden Layer ∈ R2000

(not to scale)

2. Hidden Layer ∈ R500

(not to scale)

3. Hidden Layer ∈ R200

(not to scale)

Output Layer ∈ R5

Figure 3. The artificial neural network used within this contribution. The size of the hidden layers is
not to scale.

The available dataset is split into three parts, namely the training set, the validation
set and the test set. The test dataset amounts to 20 % of the data, and is not used for the
training and model generation. The remaining 80 % of the data are used in a threefold
cross-validation. Thus, the model is trained using two-thirds of the data (the training
dataset) and is tested against the remaining one-third (validation dataset). This training
procedure is repeated using different model structures. The best results have been obtained
with the model shown in Figure 3.

Hereafter, a short overview of the model performance is given. Since no general
changes are made and only slight accuracy improvements are achieved compared to the
preceding study, the results of the performance evaluation are shown in this section. The
training score of this model is R2 = 0.83± 0.12, whereas the reported uncertainty accounts
for twice the standard deviation (≈95 % confidence interval) and is computed over the three
cross-validation runs. The model is finally evaluated using the (yet unseen) test dataset,
resulting in a test score of R2 = 0.93. The increase in the test score relative to the training
score here results from an increase in available training data, as the model is retrained using
the entire training and validation dataset before computing the test score. The ability of
the model to predict the JCA model parameters from the geometry values is shown using
correlation plots in Figure 4. In the plots, the prediction of the ANN with the geometry
values from the test dataset as input is shown in the vertical axis. The horizontal axis shows
the correct model parameter that corresponds to the geometry parameter taken by the
ANN. It can be seen that the correlation is good for the flow resistivity and acceptable for
the remaining parameters.
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Figure 4. Correlations of correct model parameters (input to the ANN) and the prediction of the ANN.
The data shown are the test dataset only (unseen data during training). The correlation is measured
using Pearson’s correlation coefficient ρ. Greek letters denote the JCA model parameters, i.e., Ξ: flow
resistivity, Φ: porosity, α∞: tortuosity, Λ, Λ′: viscous and thermal characteristic length, respectively.

2.4. Global Sensitivity Analysis

The machine-learning model introduced in Section 2.3 is used to model the relation
of the JCA model parameters and the microscale geometry of the additively manufac-
tured specimens—here, the design variables. In order to gain insight about the under-
lying physics, the machine-learning model is analyzed using global sensitivity analysis
(GSA). Within this section, a summary of the mathematical descriptions of the sensitivity
measures is given. In-depth information about GSA can be found in various literature;
here, mainly the textbook [54] should be mentioned. All the following information on
GSA is based on this reference.

The sensitivity ci of an arbitrary function g regarding its inputs Z = {z1, . . . , zi, . . . , zn}
can be seen as its derivatives with regard to the inputs, i.e.,:

ci =
∂ g
∂ zi

∣∣∣∣
zi

. (2)

This procedure is often referred to as one-factor or one-at-a-time sensitivity analysis,
and is based on the first-order second moment approach [55]. The partial derivative in
Equation (2) can be computed in a non-intrusive way using a parameter variation and
applying finite differences. However, the procedure has (at least) two major drawbacks.
Being a first-order method, the relation for the sensitivity given in Equation (2) is a linear
approximation. Thus, for general (nonlinear) functions g, the resulting sensitivity mea-
sure is only valid in the proximity of the nominal value of zi. Another drawback is that
interdependencies of the input variables for not purely additive functions g cannot be
accounted for.

A more general and realistic sensitivity measure can be computed using the ap-
proach of the GSA. Thereby, the sensitivity is measured by the amount of variance in the
output quantity that is caused by the variance of each input quantity. Since the input
variance is a global measure in the sense that the amount of variance accounts for the
entire input range that each zi can take, the value of the output variance is also accounting
for the entire input range, and thus, sensitivity measures valid for the entire parameter
range are obtained. Additionally, the influence of interdependencies of the inputs can be
measured to some extend.

In order to evaluate the sensitivity of the model output regarding its inputs, a statistical
approach is used. Following a Monte Carlo Simulation of the model, the variance of the
output V(Y) and the variance of the conditional expectation of the model with regard to
the input V(E(Y|Xi)) are measured. With these quantities, the sensitivity coefficient of the
model regarding its i-th input can be computed using:

Si =
V(E(Y|Xi))

V(Y) . (3)
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The sensitivity coefficients Si are referred to as first-order effects, and measure the
main effect of the i-th input quantity on the model output. It should be noted that, for
purely additive models, all first-order effects add up to one, i.e.,:

∑
i

Si = 1. (4)

The first-order effects account for the direct (main) effect of the i-th input quantity on
the model output. However, there can be interaction effects: for example, simultaneous
changes of two input quantities may compensate or amplify each other. Such effects cannot
be accounted for by a simple one-at-a-time sensitivity analysis. However, the framework
of the GSA allows for the measurement of such effects using the interaction effects Sij.
To account for the influence of interactions, the variance of the output quantity V(Y) is
decomposed into the contributions of its inputs and their combinations:

V(Y) = ∑
i
V(Xi) + ∑

i
∑
j>i

V
(
Xi, Xj

)
+ . . . +V(X123...k). (5)

Thus, the variance of the model is accounted for as the sum of the variance contribu-
tions of single inputs (main effects, first term in Equation (5)) and the variance cause by
higher-order effects. The variance due to second-order effects V

(
Xi, Xj

)
then reads

Vij = V
(
Xi, Xj

)
= V

(
E
(
Y|Xi, Xj

))
−V(E(Y|Xi))−V

(
E
(
Y|Xj

))
, (6)

and by dividing Equation (6) by the overall variance of the model V(Y), the second-order

effect Sij =
Vij
V can be computed:

Sij =
V
(
E
(
Y|Xi, Xj

))
V(Y) − Si − Sj. (7)

Whereas Equation (4) holds only for purely additive models (i.e., those that have
no interaction effects), a similar relation can be written for general models by dividing
Equation (5) by the overall variance V(Y):

1 = ∑
i

Si + ∑
i

∑
j>i

Sij + . . . + S123...k, (8)

implying that for a general model, all main and interaction effects add up to one. Next to
the main and interaction effects, the so-called total effects can be computed, which combine
the main effect and all interaction effects for each input quantity Xi. To compute the total
effect for each input quantity, the idea is to compute the amount of variance in the model
output that cannot be attributed to the input quantity under investigation and compared
to the overall variance with all inputs. This yields the following form for the i-th total
sensitivity index STi :

STi = 1− V(E(Y|X∼i))

V(Y) (9)

with E(Y|X∼i) denoting the conditional expectation of the output given all inputs except
from the i-th input quantity. It should be noted that generally ∑i STi ≥ 1, since here,
the interaction effects of all inputs are counted multiple times, i.e., in all corresponding
interactions. An efficient method to compute the aforementioned sensitivity indices is
presented e.g., in [56].

Within this study, the SALib implementation in python is used [57] for the necessary
computations with respect to the GSA. The underlying Monte Carlo procedure employs a
Quasi Monte Carlo approach with a Sobol sequence [58] for equal sampling of the parameter
space. A total of 1 · 106 Monte Carlo runs is performed. Since the used python framework
assumes a scalar valued model output, the analysis is performed for each output separately.
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However, since all inputs are processed in parallel, this is assumed to not limit the applied
method. The parameter bounds for all inputs X used according to Table 1 and scaled to a
uniform distribution X ∼ U (0, 1).

3. Results

The results of the GSA with all inputs and for all outputs are shown below. In
Section 3.1 the results for the main effect and total effect of all inputs are shown; the results
for the second-order effect are shown in Section 3.2.

3.1. First Order and Total Sensitivity Coefficients

The GSA results for the main effects and total effects are shown in Figure 5. In Figure 5a
the first-order effects of the four design variables bar width d, bar height h, bar spacing s
and plane angle ϕ are plotted for all output quantities. It can be seen that even the
highest effect (bar width d on tortuosity α∞) is rather low (less than 0.50). This indi-
cates that strong interaction effects are present and that the underlying model function
found by the ANN is nonlinear.

Bar
W

id
th

Bar
Heig

ht

Bar
Sp

ac
in

g

Plan
e Angle

0.0

0.2

0.4

0.6

0.8

1s
to

rd
er

Se
ns

it
iv

it
y

C
oe

f.

Ξ
Φ
α∞

Λ
Λ′

(a)

Bar
W

id
th

Bar
Heig

ht

Bar
Sp

ac
in

g

Plan
e Angle

0.0

0.2

0.4

0.6

0.8

To
ta

lS
en

si
ti

vi
ty

C
oe

f.

Ξ
Φ
α∞

Λ
Λ′

(b)

Figure 5. First order and total sensitivity coefficients of the microscale geometry parameters of the
porous material with respect to the JCA model parameters. Results reported after 1 · 106 Monte Carlo
runs (Quasi Monte Carlo with Sobol sequence). The Greek letters denote the JCA model parameters,
i.e., Ξ: flow resistivity, Φ: porosity, α∞: tortuosity, Λ, Λ′: viscous and thermal characteristic length,
respectively. (a) First-order sensitivity coefficients. (b) Total sensitivity coefficients.

Apart from the finding of an expected nonlinearity, the results in Figure 5a are not
easy to interpret. However, it can be stated that the bar width and bar spacing have the
largest influence on the flow resistivity, and the bar width has a strong effect on tortuosity.
Both findings seem reasonable: the influence of the bar width and bar spacing on the flow
resistivity can be explained with a blocking of the open area, thus blocking the fluid that
flows through the material. An increase in bar width should increase the flow resistivity,
while an increase in the spacing should reduce the flow resistivity. However, both effects
might compensate each other when happening simultaneously. This interaction indeed is
found using the second-order effects and is discussed in the following Section 3.2. Moreover,
the main effect of the bar width on tortuosity seems explainable, too: as the bar width
increases while the other geometry parameters remain unchanged (first order effect), the
streamline of a fluid particle becomes longer in contrast with a small bar width. This is
illustrated in Figure 6.

Figure 6 schematically shows a cut through two specimen with different bar widths.
The specimens are cut perpendicular to the bars in the first, third and fifth layer (accordingly:
parallel to the bars in the second and fourth layer). A plane angle of 90° is assumed,
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i.e., the bars are perpendicular from one layer to the next. The bar spacing and bar height
are identical in Figure 6a,b, respectively. In blue, a possible fluid streamline is shown. It
can be seen that the path is longer in Figure 6a; thus, an increase in the bar width increases
the tortuosity. A similar description can be found in [59]. There, the authors conduct flow
computations using the Lattice–Boltzmann method on several generic porous structures,
including a U-shaped channel. From the computed flow fields, the tortuosity is estimated.
The authors show that the tortuosity of such U-shaped channel scales approximately with
α∞ ∼ 1 + 2 b

L with b denoting the depth of the U-shape and L being the overall length
of the channel in the flow direction. Since in this study, the sensitivity is investigated, a
comparison between the cases should employ the derivative of the given formula with
respect to b, i.e., ∂α∞

∂b ∼
2
L . Thus, the tortuosity scales positively and linearly with the depth

of the U-shaped channel. Applying the geometry description used in this study, the depth
of the U-shaped b is the analogue to the bar width d, the length of the channel L in the
direction of propagation is analogue to the bar height h. Thus, an increase in bar width d
results in an increased tortuosity. In summary, the observed influence of the bar width on
the tortuosity seems plausible.

d

h
long streamline

s

(a)

d

h
short streamline

s

(b)

Figure 6. An illustration of how the bar width could effect tortuosity. The bar width d is changed;
bar height h and spacing s remain unchanged. The blue arrows show a possible streamline of a fluid
particle. The length of the streamline positively correlates with the apparent tortuosity. (a) Fluid
streamline for a large bar width and thus rather long streamline. (b) Fluid streamline for a small bar
width, and thus, rather short streamline.

Similar to the first-order effects, the total sensitivity coefficients are shown in Figure 5b.
The magnitude of the sensitivity values is generally larger than the first-order sensitivity
coefficients. This is reasonable, since the total sensitivity coefficients account for both the
first-order effect, as well as the higher-order (interaction) effects. Here, the bar width also
has the largest effect on most parameters; these are the flow resistivity, the tortuosity and
the viscous characteristic length. Large effects are also observed for the bar spacing. This
is similar to the findings for the first-order sensitivity coefficients. The lowest effects (on
average) are shown for the plane angle.

In summary, an analysis of the first-order and total sensitivity coefficients offers an
important insight into the effects of the microscale geometry on the model parameters.
Moreover, the relations found seem reasonable. However, these findings only show the
effects of single parameters. Interdependencies, if apparent, cannot be found, or are only
implicitly contained in the total effects. For the case shown here, rather large differences
between first-order and total sensitivity coefficients are apparent, indicating that strong
interaction effects influence the behavior. Therefore, an analysis of the second-order effects
can help us to investigate the behavior further. This is shown in the next section.

3.2. Second-Order Effects

A deeper insight into the dependencies between the different design variables can
be gained by evaluating the second-order effects. The second-order effects measure the
combined influence of two input quantities which are not explainable by one quantity
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alone. Figure 7 shows the computed second-order effects for each output quantity in matrix
form. Bright colors indicate a large effect, while dark colors indicate a small effect.

The leftmost matrix shows the interaction effects for the flow resistivity Ξ. By in-
specting the colorbar, it can be seen that the effects are generally smaller than the main
effects (compare Figure 5a), as the largest value is approx. 0.20 for the d-s (bar width–bar
spacing) interaction. This interaction effect seems intuitive, as both quantities are found to
have an effect on the flow resistivity on their own; see Figure 5a. Moreover, they exhibit
an interaction effect that is similarly large as the effect of the bar spacing alone. This can
be explained as follows: an increase in the bar width increases the flow resistivity, while
an increase in the bar spacing decreases the flow resistivity when both parameters are
investigated on their own. Both effects together can either compensate or amplify each
other; thus, the interaction effect is important, too. The remaining interaction effects are
rather low compared to the s-d-interaction, and thus are not discussed any further here.

The second left plot shows the interaction effects on the porosity. In general, it can be
verified that the magnitude is lower than the one for the flow resistivity, with a maximum
of approx. 0.10. Here, the bar width d and bar height h together have the largest effect. This
result is counter-intuitive for the following reason. As mentioned before, the porosity of
the generic specimen can be roughly estimated by Φ = s

s+d ; thus, the bar height is not
expected to have a major influence on the porosity. However, the mentioned formula does
not account for the effect that an increased bar height reduces the total number of bar planes
in the specimen. This might influence the apparent tortuosity for the entire specimen as
well. Therefore, this observed interaction effect does not seem implausible.
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Figure 7. Second-order sensitivity coefficients of the porous material. The letters denote the geometry
parameters as: d: bar width, h: bar height, s: bar spacing, ϕ: plane angle.

The matrix shown in the middle of Figure 7 displays the second-order effects for
the tortuosity. Generally, it can be seen that the magnitude of the effects for this model
parameter are the lowest of all investigated parameters. The most important interaction
effect is found for the parameters bar width d and plane angle ϕ. This could be explained
as follows: for the first-order sensitivity index for the bar width d, a large impact on the
tortuosity could be already verified and explained, cf. Figure 6, for a plane angle ϕ of 90°.
For other plane angles smaller than 90°, the bars perpendicular to the drawing plane in
Figure 6 become slanted. Thus, the path segment for the fluid particle with horizontal
movement in Figure 6 is even longer; thus, the tortuosity should be smallest for a plane
angle of 90°. This results in a compensating effect when the bar width is increased but
the plane angle decreases. Thus, the d–ϕ second-order effect accounts for this interaction.
With the d-ϕ interaction having the largest effect, other interaction effects can be verified
in this plot as well, e.g., s− h, s− ϕ with an impact of approx. 0.037 and s− d width and
approximate value of 0.035.

The fourth and fifth matrix plots in Figure 7 show the interaction effects for the
viscous and thermal characteristic lengths, Λ, Λ′, respectively. The interaction effects for
these parameters are of similar magnitude and show one salient interaction each. This
is the interaction of the bar height h and the bar spacing s for the viscous characteristic
length and the interaction between the bar width d and the bar height h for the thermal
characteristic length. Although specific interactions of the geometric parameters relevant
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for the characteristic length can be verified, no clear explanation can be given here. For
instance, in [24] the definition for the thermal characteristic length is given as

Λ′ = 2

∫
V dV∫
A dA

, (10)

with the pore volume V and the pore surface A. Based on the simple approximation that
the pores in each bar plane are the voids between two adjacent bars, the volume and
surface of these voids depend on the bar spacing s and the bar height h. However, the bar
spacing does not appear to be relevant in the interaction found for the thermal characteristic
length, which is d–h. Rather, this interaction effect is verified for the viscous characteristic
length. This could be explained as follows: in [28] the relation Λ′ = 2Λ is given for fibrous
materials with a porosity close to one. Thus, both lengths depend linearly on each other,
and thus, similar interaction effect might occur for both lengths. However, it should be
noted that the porosity assumption mentioned in [28] is not verified here (the porosity of
the generic specimen is at the magnitude of 0.50) and that the underlying physical relations
for these lengths might be somewhat different. Thus, to properly explain the interactions
observed for both, the viscous thermal characteristic lengths, a more complex model for
the apparent pore geometry seems to be required.

4. Discussion

In Section 3.1 the results for the first-order and total sensitivity coefficients for the
microscale geometry parameters (bar width d, bar spacing s, bar height h, plane angle ϕ)
with respect to the acoustic model parameters (flow resistivity Ξ, porosity Φ, tortuosity α∞,
viscous and thermal characteristic lengths Λ, Λ′) are presented. The results for the second-
order effects are shown in Section 3.2. Generally, the observed direct impacts of the
geometrical parameters on the acoustic model parameters as well as interaction effects seem
plausible. Next, the findings shown in Section 3 shall be compared to similar investigations
available in the literature.

Although, to the best of the author’s knowledge, GSA has not been applied yet to
explain machine-learning models that model porous materials, it has been applied in [60]
to pore-network model descriptions of a complex polyurethane (PU) foam. In that study,
the authors describe the foam on the microscale by a set of geometric parameters, among
which the mean pore radius Rp, the mean throat radius Rt and the mean frame thickness Tf
appear to be most comparable to geometry descriptions used in the study presented here.
The acoustic properties of the PU foam are described using the JCA model. The authors
report the first-order sensitivity index for all JCA model parameters with respect to the
microscale geometry of the foam. Although the PU foam is far more complex in shape and
random in the geometric distribution, comparable findings to the study presented here are
reported by the authors. For instance, the flow resistivity of the PU foam is most influenced
by the throat radius and pore radius. Assume that the throat radius, i.e., the radius of the
small interconnections between pores of the PU foam, is comparable to the bar spacing,
and the pore radius is comparable to the sum of bar spacing and half of the bar width.
This analogue is used in a similar way in [61]. With this assumption, it can be verified in
Figure 5a that these quantities are the most influential parameters for the flow resistivity in
our generic porous materials. However, the relative influence is inverted. For the foam, the
pore size has the largest influence and the throat radius ranks second. Here, the bar width
has the highest influence and the bar spacing ranks second. This inversion of the influence
is probably due to the rather different geometrical nature of the foam and the generic
material presented here. Another comparable finding can be verified for the porosity. The
most influencial first-order effect regarding the porosity in Figure 5a is the bar spacing.
In [60] the authors show that for the PU foam, the porosity is equally influenced by both
the throat radius (that is assumed here to be comparable with the bar spacing) and the
mean frame thickness. The frame thickness has no direct analogue in our generic material.
However, the comparable influence of the bar spacing/the throat thickness on the porosity
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can be verified in both studies. A third similarity is the generally large influence of the
throat thickness on all studied acoustic model parameters of the PU foam except from the
tortuosity. This can be verified for our material as well, as the bar spacing appears to have
an impact on all model parameters.

Although not based on sensitivity analysis, from [52], comparable findings can be
drawn as well. The authors investigate a generic additively manufactured material very
similar to the material we investigated. They also model the material based on the JCA
model and derive the JCA model parameters using inverse parameter identification similar
to the approach we applied in [30,36]. The authors vary the overall dimensions of the
printed specimens measured by the size of the representative elementary volume (REV).
Thereby, they simultaneously vary Infill Line Distance (ILD, comparable to the bar spacing)
and the Infill Layer Thickness (ILT). Since the authors also use a fused deposition-modeling-
based additive manufacturing process, and thus the strands are of nearly circular cross-
sectional shape, the ILT is comparable to both the bar width and bar height. The authors
report a strong relationship between the size of the REV and both the tortuosity and the flow
resistivity. Moreover, a rather weak relationship between the porosity and the REV size is
reported. Comparable results can be verified in Figure 5a for the bar width that is similar to
the ILT. Here, a strong relation between the bar width and both the flow resistivity and the
tortuosity can be verified. Additionally, a relevant influence of the bar spacing, which is
similar to the ILD, can be verified. Although the GSA approach used in this study hinders
the evaluation of the direction of the influences, the inverse behavior of the flow resistivity
and the bar spacing/ILD already presumed in Section 3.1 is verified by the results reported
in [52].

In summary, it can be said that the results found in this study are plausible and
comparable to other studies available in the literature. The approach of modeling the
acoustic model parameters of a generic porous material based on the microscale geometry
by means of a machine-learning approach seems feasible. Moreover, the application of
sensitivity analysis on the machine-learning model allows the inferences obtained from
the machine-learning model to be explained to some extent. To this end, more efficient
tailoring of materials might become possible by restricting the parameter optimization
to the most physically influential geometry parameters. The approach using the GSA is
assumed to be superior over the use of derivative-based sensitivity measures since the
entire relevant parameter range is accounted for and deviations due to nonlinearities in
the model function are included in the results. Moreover, insights into interaction effects
can be gained. Here, the ongoing research in the field of “explainable AI” (AI: artificial
intelligence) and its application to porous materials might allow more deep and justified
insights into the underlying physics, and thus might allow even more efficient tailoring
of materials.

5. Conclusions

Based on an existing machine-learning model that maps the relationship between the
microscale geometry and acoustic model parameters of a generic porous material, in this
contribution, a statistical analysis of the resulting machine-learning model is conducted.
By means of a global sensitivity analysis approach, the major impacts of all geometry vari-
ables on the acoustic model parameters are investigated. It is shown that such an approach
allows the impacts to be measured quantitatively and ranked. Moreover, parameter in-
terdependencies can be revealed by the employed method. Most observed impacts seem
plausible and can be explained; thus, the approach is assumed to deliver reliable results.
Comparisons to existing similar approaches in the literature support the validity of the ap-
proach. Based on the approach shown here, insights into the behavior of machine-learning
models can be gained, and information for their application can be drawn. For the special
case of the porous media investigated here, the investigation shows which parameters
are most influential for the acoustic model parameters and thus need to be retained for
efficiently designing the material, whereas weakly influential parameter might be neglected.
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Moreover, interaction effects can be verified. This information could help to further opti-
mize porous materials during a tailoring process, since apparent interdependencies might
rule out some optimization procedures and knowledge about highly influential parameters
raises the awareness for a required accurate manufacturing process. However, further
research is required, since the application of machine-learning models that are solely based
on data suffer from the limited explainability of the obtained predictions. Thus, under-
lying physical effects can be studied only to a limited extent. Methods from the field of
explainable artificial intelligence may be able to close this gap.
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LHS Latin Hypercube Sampling.
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