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Abstract: Named Entity Recognition (NER) is at the core of natural language understanding. The
quality and amount of datasets determine the performance of deep-learning-based NER models. As
datasets for NER require token-level or word-level labels to be assigned, annotating the datasets is
expensive and time consuming. To alleviate efforts of manual anotation, many prior studies utilized
weak supervision for NER tasks. However, using weak supervision directly would be an obstacle for
training deep networks because the labels automatically annotated contain a a lot of noise. In this
study, we propose a framework to better train the deep model for NER tasks using weakly labeled
data. The proposed framework stems from the idea that mixup, which was recently considered as a
data augmentation strategy, would be an obstacle to deep model training for NER tasks. Inspired
by this idea, we used mixup as a perturbation function for consistency regularization, one of the
semi-supervised learning strategies. To support our idea, we conducted several experiments for NER
benchmarks. Experimental results proved that directly using mixup on NER tasks hinders deep
model training while demonstrating that the proposed framework achieves improved performances
compared to employing only a few human-annotated data.

Keywords: deep learning; named entity recognition; consistency regularization; semi-supervised
learning; mixup

1. Introduction

This paper is an extension of work originally presented in [1]. Named Entity Recog-
nition (NER) is the task of natural language processing that detects mentions of entities
from text and classifies them into predefined entity types such as people, locations, and or-
ganizations. NER has a key role in natural language understanding, such as information
extraction [2], question answering [3], translation systems [4], and automatic summa-
rization systems [5,6]. In particular, the domain-specific NER is more important because
it extracts expertise from domain-specific documents or sentences. For example, when
dealing with a document from Information Technology companies, NER identifies where
Information Technology terms appear and leads the development of task automation or
interactive artificial intelligence, i.e., customer-automated response services (e.g., chatbots).
Recently, various deep learning models have been applied to NER, achieving state-of-the-
art performances, which was possible due to the large amount of datasets labeled strongly
by humans [7–10]. However, as datasets for NER require token-level labels to be assigned,
it is expensive and time consuming to generate them [11–13]. In particular, in terms of
having to deal with specific domain texts, the datasets for specific domain NER are more
expensive [12].

Several studies used the weak supervision for NER work to alleviate the trouble of
manual annotations [11,13–15]. Weak supervision comprises assigning labels to unlabeled
data via an automated process in some way and using them for model training. From the
NER’s point of view, researchers first collect raw corpus and knowledge base (e.g., en-
tity dictionary) related to a specific domain. After that, if a word built according to the
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knowledge base is in the raw corpus’ text, it is assigned as an entity mention (exact string
matching). Finally, the NER model is trained with entity mention labels automatically
assigned with a specific algorithm. However, due to the fact that the model is trained
with automatically generated labels, weak supervision may lead deep networks in the
wrong direction. We can guess that performance is improved by an increment in data
for training. However, the quality of the data is insufficient, which rather hinders model
training. The reason is derived from the characteristics of weakly labeled data. Even with
an enormous knowledge base, the scope is bound to be limited and may not reflect newly
added entities. In addition, some algorithms, such as exact string matching, automatically
assign labels, and they would incorrectly assign some entity mentions as well as non-entity
mentions [12]. Therefore, we should deal with weakly labeled data carefully.

This study can be categorized as a semi-supervised learning study in that the weakly
labeling process uses unlabeled data. A representative strategy of semi-supervised learning
is consistency regularization, which is based on the assumption that the model’s predic-
tion for the data point should be consistent when the data point is given a perturbation.
In other words, the model should generate predictions in which one data point and the
perturbed data point are the same [16]. We noted that the mixup, which has recently been
proposed as a data augmentation strategy in computer vision, is an obstacle to training
in NER tasks. Inspired by this, we propose to use mixup as a strategy of perturbation for
consistency regularization.

In this study, we propose a framework for the appropriate use of weakly labeled data.
In the first step, Stage 1, we generate weakly labeled data using a pre-built knowledge base.
In Stage 2, we train the NER model with strongly labeled data. The trained model then
performs pseudo-labeling on the weakly labeled data. Then, we use the pseudo-label and
the weak label by mixing them up at following stages. In Stage 3, we use both strongly
labeled data and weakly labeled data to train the model. In this framework, weakly labeled
data is perturbed through mixup and used as a means of consistency regularization. We
train the model by repeating Stage 3 until the model converges. We can summarize our
contributions as follows:

• We propose the mixup, which was originally used as a data augmentation method,
as perturbation to implement consistency regularization.

• We propose a framework to train the model for Named Entity Recognition tasks better
using weakly labeled data. The proposed framework is based on semi-supervised
learning combined with pseudo-labeling and consistency regularization by mixup.

• Our experimental results proved that if we directly utilize mixup on NER tasks, we
yield worse performances with respect to deep NER models. Moreover, the results
showed that the proposed framework improves performances compared to using only
a few strongly labeled data.

The rest of this paper consists of the following. Section 2 introduces backgrounds
of this study. Section 3 describes the proposed framework, which is an effective strategy
to use weakly labeled data. In Section 4, we show the experimental results to compare
the performance of the proposed framework, including experiments under low resource
environments. Finally, Section 5 summarizes and concludes the study.

2. Preliminaries

In this section, we describe the tasks to be covered in this study: Named Entity
Recognition. This section is followed Section 2.1, in which we introduce the techniques that
we covered and prior studies. In Section 2.2, we introduce mixup, which is the technique
mainly covered in this study. Lastly, in Section 2.3, we introduce semi-supervised learning,
including how previous studies used semi-supervised learning on NER tasks.

2.1. Named Entity Recognition

Named Entity Recognition is a task that detects mentions of entities from texts and
classifies them into predefined entity types. In other words, for the sentence or text
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x = {x1, . . . , xi, . . . , xn} constructed of n tokens, the NER task is the task that assign a
sequence of label tokens y = {y1, . . . , yi, . . . , yn}. A label token yi ∈ y is one of the
entity tags according to input token xi. The tags are B-E, B-I, and O tags, which mean
beginning, inside, and outside of predefined entity E, respectively. Formally, the strongly
labeled data, D = {(x1, y1), . . . , (xN , yN)}, consist of N pairs. After the weakly labeling
and pseudo-labeling phase, unlabeled texts D′ = {x′1, . . . , x′M} would be weakly labeled
data. Generally, M is greater than N (M� N) because generating strongly labeled data
for NER requires high costs, as mentioned in Section 1.

2.2. Mixup

Mixup is proposed for data augmentation in computer vision [17]. The main idea of
mixup is to generate data points by a linear combination of two labeled data points (x, y)
and (x′, y′):

x̃ =λx + (1− λ)x′

ỹ =λy + (1− λ)y′

λ ∼Beta(α, α)

λ =max(λ, 1− λ)

(1)

where λ ∈ [0, 1] follows a Beta distribution and controls the degree of mixing two data
samples. Here, x is an image, and y is a one-hot label, which represents categorical variables
as binary vectors. For example, as shown in Figure 1, mixing 0.7 of cat images and 0.3
of dog images generates a new data sample. Using the mixup technique on continuous
data structures such as image pixel values works appropriately. However, using the mixup
technique on discrete data structure such as words or tokens does not work appropriately.

Figure 1. Mixup process.

TMix [18] is the mixup technique for natural language data, which mixes hidden
representations of words or tokens. Specifically, TMix inputs two examples into multi-layer
language models such as BERT [19] and then mixes the hidden representations of two
inputs on the k-th layer of the language model consisting of L layers in total (k ∈ [1, L]).
TMix shows that the mixup technique works well on text classification tasks. Unlike text
classification tasks where one example has one label, NER tasks have multiple labels for
one example. Furthermore, these labels are related to each other in a semantic context. NER
examples generated by mixup contain too much noise and would lead model training in
the wrong direction. In previous studies, researchers tried to make improvements to fit
NER tasks, such as performing mixups between two similar sentences [20] or applying
mixup to sentences where the entity’s density is above a certain threshold [21]. Recently,
RegMixup [22] utilized mixup as an additional regularizer on out-of-distribution detection
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tasks. Similarly to our point of view, the authors observed that mixup yields insufficient
performances because mixup makes the task difficult to solve.

2.3. Semi-Supervised Learning

We use the semi-supervised learning strategy when we can use a few labeled data and
a large amount of unlabeled data together.

2.3.1. Pseudo Labeling

Pseudo-labeling, also called self-training, is a strategy for assigning labels to unlabeled
data as a prediction of the model trained with small strongly labeled data. In prior studies
on computer vision, the authors [23] firstly trained teacher models with a few strongly
labeled data. Then, the teacher model generated pseudo-labels that the student model
would train with. Finally, both the teacher and the student model trained recursively
with pseudo-data and labeled data to get better performance of the student model. For
NER tasks, the researchers followed the strategy in which the teacher and student models
recursively trained with pseudo-data and labeled data. In [24], the teacher named Judge
model and the NER model trained by complementing each other in recursive manner.
The authors in [25] focused on the resume text. They tried to find the education section
in resumes. As the labeled data for detecting the education term was limited, they used
the pseudo-labeling strategy by using the dictionary of the institution and degree names.
In [12], the authors focused on product names in the query text of online shopping websites.
They collected user behavior data on the website for weak annotations. They found that
weak labels could contain noise, so they replaced the weak label to the model’s prediction,
which is trained with strongly labeled data. ROSE-NER [26] trained the ROSE-NER base
with labeled data and then obtained pseudo-labels for the unlabeled dataset, which the
ROSE-NER base predicted. Lastly, ROSE-NER is trained with a new dataset, a combination
of pseudo-labeled data and labeled data.

2.3.2. Consistency Regularization

The main idea of consistency regularization is that the model’s prediction for unlabeled
data should be robust to any perturbations. In computer vision, the images consist of
continuous pixel values, and images can easily create novel and realistic-looking augmented
data. So, many studies could implement consistency regularization by applying various
perturbations or augmentations to one example. CutMix [27] is a method for semantic
segmentation. This method used the mixup technique as a perturbation method to force the
consistencies between the model outputs and inputs of mixed examples. Cross-consistency
training (CCT) [28] proposed applying perturbations to the hidden representations of
examples and not the model’s inputs. Moreover, several techniques for injecting noise
such as dropout, adding noise tensors, or masking into features were used as perturbation
techniques. Figure 2 shows that the variance in the decision boundary decreases as training
considers the perturbations on the unlabeled examples [28]. The boundary (a) formed in
a wide range may cause inaccurate predictions for some examples. On the other hand,
boundary (b) separates the categories explicitly.

Unlike the continuous image pixel values, it is difficult to perturb discrete words or
tokens. Thus, many researchers tried to find methods to provide perturbations, which are
necessary for using consistency regularization on natural language data. The studies in [29]
proposed filling input texts with blanks to provide perturbations. It is similar to our study
and [28] in that the data are perturbed. However, it is different in that the perturbation
point is the input level and not the hidden representation level.
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Figure 2. Illustration of the decision boundaries: (a) Decision boundary without the consideration of
perturbation on examples; (b) decision boundary with consideration of perturbation on examples.

2.3.3. Holistic Methods

Holistic methods are strategies that combine mixup, pseudo-labeling, and consistency
regularization. Holistic methods are similar to the proposed method in this study in that
examples are mixed and used for training in a consistency regularization manner. The
studies in [30] proposed a holistic method that constructed several steps, including data
augmentation, label guessing, mixup, and joint training with consistency loss. In [31],
the authors added two new techniques comprising distribution alignment and augmen-
tation anchoring. The distribution alignment forces the distribution of predictions on
unlabeled data and matches the predictions of the labeled data. With the augmentation
anchoring technique, the predictions of weakly augmented data are assigned to the labels
of augmented data. FixMatch [32] implemented the holistic method by subtracting the
mixup technique and combining consistency regularization and pseudo-labeling. Instead,
the authors assigned the label of a strongly augmented input as the model prediction on a
weakly augmented input. Holistic methods have been limited to the studies in computer
vision, where the mixup and data augmentation are freely adopted.

3. Method

In this section, we first demonstrate the background of this study. Then, from
Sections 3.1–3.4, we describe the details of the components and framework with formulas.
In Figure 3, some entity examples with blue-colored edges and marked with red color
points are mislabeled as non-entities. The model trained on these mislabeled examples
would fail to generate the decision boundary correctly. This case would occur frequently in
NER tasks where mislabeled examples are easily found.

Meanwhile, cross-consistency training is a strategy that alleviates variances in the de-
cision boundary by considering perturbations in examples. When we use cross-consistency
training, we need to implement the perturbations of the examples. As shown in Figure 3,
if we use direct supervision from the mixed examples, the model would create an extremely
distorted decision boundary. Inspired by this point, we consider mixed examples as pertur-
bated from weakly labeled examples. By cross-consistency training with mixed examples,
we can alleviate variances in the decision boundary, such as the decision boundary in
Figure 2b, and at the same time separate all examples despite the mislabeled examples.
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Figure 3. The data manifold under the environment to use weakly labeled data. The blue points are
labeled as entities and the red points are labeled as non-entities. The light-colored points are weak
entities or non-entities assigned by the domain-specific knowledge base.

3.1. Model Architecture

For the effective use of weakly labeled data, we propose a new framework that
operates as follows, which is illustrated in Figure 4. (1) We assigned the weak labels of
the unlabeled corpus using the previously collected knowledge base. (2) Then, we first
trained the NER model with strongly labeled data. This NER model is based on BERT [19],
a pretrained language model, and is structured with a fully connected layer at the end of
BERT. This paper aims to alleviate human annotating efforts. With a full understanding
of the purpose, we tried to utilize the generalized structure of the model and the loss
function. (3) Afterwards, we assigned labels to the predictions of the pretrained model for
the unlabeled corpus. That is, we assigned the weak label in Stage 1 and the pseudo-label in
Stage 2 to the unlabeled corpus. Finally, strongly labeled data and weakly labeled data were
used together for model training. We repeated the process of (3) until the model converges.
Here, we used strongly labeled data for training with supervised learning as in previous
studies [10,26], but weakly labeled data were used only for consistency regularization.

Figure 4. Framework definition.

The proposed model architecture, which is illustrated in Figure 4, is composed of three
components. The first is F, a pretrained multi-layer language model. In this study, we use
a variant of BERT that allows mixup to occur between examples in any intermediate k-th
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layer. The next one is a main classifier G, which performs the classification of the entity
type of tokens using language representations of strongly labeled data. The last one is the
auxiliary classifier, Ga, which can be more than one. The representations are mixed at layer
k of F. Morevoer, let us consider K as a set of some k. The number of auxiliary classifiers
would be |K|. In other words, the set of auxiliary classifiers is Ga = {G(k)

a |k ∈ K}. The main
and auxiliary classifiers can be various neural network layers. In this study, every classifier
is stacked in the order of fully connected, tanh, dropout, and fully connected layers.

3.2. Stage 1: Weakly Labeling

First, we obtained a knowledge base of the target domain by collecting raw texts of
the target-specific domain and generating a weak label. We created an entity dictionary by
a greedy-search-based maximum matching algorithm [33] as a method to assign a weak
label. The weakly labeling process converts D′ to D′ = {(x′1, yw

1 ), (x
′
2, yw

2 ), . . . , (x′M, yw
M)}.

3.3. Stage 2: Pretraining

In Stage 2, language model F and main classifier G were trained with strongly labeled
data. In this case, we used Focal Loss [34] as the loss function for training, which was first
proposed in object detection tasks in computer vision. The focal loss is defined as follows:

Focal(pt) = −α(1− pt)
γ log(pt) (2)

where pt is prediction probability, and γ(γ ≥ 0) is the focus parameter. The focus parameter
adjusts how much the model focuses on difficult samples. α ∈ [0, 1] is the weighting factor,
which acts the same way as focus parameters. In this study, we used γ = 2, α = 1.

This is known to be effective when the number of samples per class or the distribution
of samples is imbalanced in the classification tasks, and NER tasks follow similar tendency.
This is because the number of non-entity mentions is generally greater than the number of
entity mentions. In such cases, the use of the common cross-entropy loss function would
overwhelm the effects for simple samples that are easy to classify.

3.4. Stage 3: Pseudo-Labeling and Joint Training
3.4.1. Pseudo labeling

The next stage assigns pseudo-label yp for D′ for the model prediction trained in
Section 3.3 (D′ = {(x′1, yw

1 , yp
1 ), (x

′
2, yw

2 , yp
2 ), . . . , (x′M, yw

M, yp
M)}). The pseudo-label, which is

generated to obtain the diversity of the target label that has undergone the label mix process,
used the softmax probability of the model without an argmax operation. The distribution
of the target label would be simplified if the pseudo-label would be a one-hot format. We
believed that the model trained with the soft label would be more robust to noise than the
model trained with a one-hot label as in a prior study [15].

3.4.2. Joint Training

In this process, strongly labeled data and weakly labeled data are used together
for training. For the strongly labeled data, we calculate the loss function as shown in
Equation (2). We calculated losses Lu and Lw, which contribute to the training of language
model F and auxiliary classifiers Ga, from the weakly labeled data.

Firstly, we sample the data from D′, which is twice the batch size. Then, the labels
of the samples were sampled by pseudo-labels for one half and weak labels for the other
half, which are represented as (x′, yp) and (x′′, yw), respectively. Then, F receives sampled
sentences and generates hidden representations. The hidden representations for sentence x,
x′, and x′′ from the l-th layer of F, which has L layers, are defined as follows:

hl =Fl(hl−1; θ), l ∈ [1, k]

h′l =Fl(h
′
l−1; θ), l ∈ [1, k]

h′′l =Fl(h
′′
l−1; θ), l ∈ [1, k]

(3)
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where Fl refers to a l-th layer of F having θ as parameters. h0 is the word embedding for
the tokens of sentence x, and hl = {h1, h2, . . . , hn} is the l-th hidden representation of the
sentence x. Then, the intermediate representations continue forward passing to the upper
layers in three different ways.

The first is hL to calculate the loss on strongly labeled data. hL is the result of passing
through all remaining F layers without mixing up even after the k-th layer. hL is defined
as follows.

h̃l =Fl(h̃l−1; θ), l ∈ [k + 1, L]

hL =FL(h̃L−1; θ)
(4)

The second is hmix
L , which is linearly interpolated with h′k and h′′k via the mixup. h′k

and h′′k refer to k-th representations of the language model from Equation (3). and then
continues forward to the remaining layers of F:

h̃mix
k =λh′k + (1− λ)h′′k

h̃mix
l =Fl(h̃

mix
l−1; θ), l ∈ [k + 1, L]

hmix
L =FL(h̃mix

L−1; θ)

(5)

where λ is the same as Equation (1). In this study, λ follows Beta(0.75, 0.75). The last one is
h′L from h′l , which is a result of passing through the remaining layers of F without mixup.

h̃′l =Fl(h̃
′
l−1; θ), l ∈ [k + 1, L]

h′L =FL(h̃′L−1; θ)
(6)

In training, models F and G are supervised by strongly labeled data in Stage 2. The su-
pervised loss for the strongly labeled data is defined as Ls.

p = G(hL) = G · F(x)
Ls = Focal(y, p)

(7)

For weakly labeled data, F and Ga are supervised. We use the same loss function
as mentioned above. Note that we use mixed labels that are linearly interpolated with
pseudo-labels and the weak label. The loss, Lw, for the auxiliary classifier is defined
as follows:

pmix(k) = G(k)
a (hmix(k)

L )

Lw = ∑
k∈K

Focal(ỹ, pmix(k))
(8)

where upper subscript (k) denotes the language model that mixes up examples in the k-th
layer. ỹ = λyp + (1− λ)yw refers to the mixed label. Note that yp and yw do not belong to
the same sentence. We visualized the entire mixup process in Figure 5.

F and Ga also use supervision from consistency regularization. With various mixup
settings, we can obtain |K| perturbed versions of hmix(k)

L . Moreover, auxiliary classifiers
output predictions from various hidden representations. Consistency loss Lu calculates
the consistencies between prediction from the main classifier and the auxiliary classifier.
By doing so, we can make F robust to the perturbations on the same example:

p′ = G(h′L) = G · F(x′)

Lu = ∑
k∈K

MSE(p′, pmix(k)) (9)

where MSE denotes the mean squared error. We do not backpropagate Lu to the main
classifier so that the main classifier leads the auxiliary classifier. Lastly, the final loss is a
sum of the losses mentioned above.
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L = Ls + Lw + Lu (10)

Since the first pseudo-labeling only reflects the supervision for strongly labeled data,
we assumed that the pseudo-label generated by only strong supervision would provide
the biased pseudo-label for the small strongly labeled data. Therefore, during training, we
repeated the pseudo-labeling process periodically. That is, we performed pseudo-labeling
once, and we performed joint training φ times until the model reached convergence. In
testing, the proposed model outputs the prediction of sample x∗ from the main classifier,
i.e., G · F(x∗).

Figure 5. Illustration of the mixup process. We use the TMix [18] strategy to mix text examples.

4. Experiments

We show the effectiveness of the proposed method by using the results of experiments
on the biomedical domain NER and tech domain NER.

4.1. Datasets

For biomedical NERs, we used BC5CDR-chem, BC5CDR-disease, and NCBI-disease,
which are broadly used as benchmark datasets in the biomedical NER task. These datasets
consist of PubMed articles and have single entity-type mentions: disease or chemical.
The NCBI-disease [35] is a collection of PubMed articles with human-annotated mentions.
We split BC5CDR [36], which is proposed for disease mention recognition and chemically
induced disease relation-extraction tasks into chemical and disease entity recognition
datasets. We collected unlabeled raw texts from the PubMed 2021 baseline and used
a combination of the MeSH database and CTD chemical and disease vocabulary as a
knowledge base to generate weak labels. For the tech NER, we used LaptopReview [37].
LaptopReview consists of English product reviews that are annotated on laptop domains.
It has a single entity type, AspectTerm, at the sentence level. The raw text for the tech
term NER is the laptop subset of Amazon Reviews [38]. It also contains review texts about
laptop products obtained from Amazon websites. The statistics of the datasets after weakly
labeling process are shown in Table 1.
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Table 1. The statistical results on experimental datasets.

Dataset The Number of Examples
Train Dev Test Weak

BC5CDR-chem 4560 4581 4797 107,827 1

BC5CDR-disease 4560 4581 4797 67,182 1

NCBI-disease 5424 923 940 67,182 1

LaptopReview 2436 609 800 28,063 2

1 PubMed corpus + the combination of MeSH and CTD dictionary. 2 Subset laptop of Amazon Reviews + Tech
terms crawled on public website.

4.2. Experimental Setup

In the experiments conducted in this study, the weight of BERT varies depending on
the dataset. Biomedical NER used the weights of BioBERT [39] pretrained on biomedical
corpus, while tech term NER used “bert-base-cased” weights. When using only strongly
labeled data, we trained the models for one epoch with a batch size of 128, while we used a
batch size of 32 for one epoch for the models using both strongly labeled data and weakly
labeled data (16 for strong and 16 for weak). For a fair comparison, we evaluate Dev and
Test set using batch size 16 for all experiments. We used a maximum sentence length of
256 tokens in all experiments. The learning rate is fixed on 5× 10−5 in the pretraining
stage. In contrast, for iterative Stage 3, we conducted pseudo-labeling after performing
joint training 5 times (φ = 5). And during Stage 3, we used learning rate schedule with the
warm-up in 10% of steps, peaked at 5× 10−5, and cool-down in 90% of steps. The Adam
optimizer was used for optimization. Following the studies in [18,40], we mixed hidden
representations at the 7-th, 9-th, and 12-th layers, which have the most representation
power of the language model, i.e., K = {7, 9, 12}.

We compared the proposed framework with the following options to evaluate the
proposed framework:

• BERT baseline: A supervised learning baseline. We construct the representative base-
line model for NER. The BERT baseline is structured with the multi-layer pretrained
model BERT and some fully connected layers. That is, we stacked the main classifier
on top of the language model.

• Mixup baseline: A baseline to show the effect of mixup on the NER task. The mixup
baseline has the same structure as the BERT baseline. However, it is trained with
examples generated by mixup as well as strongly labeled data.

• Mixup-CCT: The method proposed in [1]. CCT means cross-consistency training.
The architecture is the same as the one proposed in this paper. There is no pseudo-
labeling; instead, it gradually increases the affection of the loss Lw and Lu.

• Proposed: It performs consistency regularization from mixed examples generated
from the pseudo-label and weak label, while mixup-CCT is mixed by strongly labeled
and weakly labeled data.

For every method except mixup-CCT, we used the focal loss for supervision on strongly
labeled data. The results of mixup-CCT were derived from [1].

We used span-level Precision, Recall, and F1-score as evaluation metrics, which are
the most significant metrics for classification tasks. First of all, we obtained results with
respect to True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN) for each span in sentences. Then, using their notions, we calculated Precision, Recall,
and F1-score as follows.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2 · Precision · Recall
Precision + Recall

(11)
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4.3. Results

Table 2 presents the experimental results. Weakly labeled data, which have undergone
automatic assignment of labels, contain noise that hinders training [12]. Therefore, rather
than directly using weakly labeled data for training, it seemed to be a convincing alternative
to create and use new data by mixing weakly and strongly labeled data. Interestingly,
despite using more data than the BERT baseline, the mixup baseline had the lowest per-
formance in F1-scores on all benchmark datasets. The results support our assumption
that the mixup technique for data augmentation in NER tasks worsens the model’s per-
formance if it is used inappropriately. The proposed framework performed the overall
best F1-score on BC5CDR-chem, NCBI-disease, and LaptopReview. For BC5CDR-disease,
mixup-CCT performed better with F1-score while the proposed performed better with
Recall. On the other hand, for BC5CDR-chem and LaptopReview, we observed that the
proposed method achieved the best score for all evaluation metrics. Moreover, the proposed
showed the smallest difference between Precision and Recall except for BC5CDR-disease,
which suggests that training has been conducted stably without being biased on one metric.

Table 2. Results of the test set’s span-level Precision/Recall/F1-score when the F1-score for the Dev
set was the highest during training. The best performance is bolded. Pre, rec, and F1 mean a Precision,
Recall, and F1-score, respectively.

Method BC5CDR-Chem BC5CDR-Disease NCBI-Disease LaptopReview
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

BERT baseline 90.88 92.08 91.38 83.44 85.40 84.32 83.69 90.91 86.86 79.76 79.74 79.72
mixup baseline 90.95 92.49 91.21 83.65 85.53 84.11 85.94 87.76 86.60 80.56 77.49 78.54

mixup-CCT 91.98 92.78 92.19 86.69 85.46 85.86 88.64 89.23 88.82 83.40 78.09 80.46
proposed 92.12 93.14 92.23 84.19 86.81 85.03 87.98 90.25 88.92 84.85 80.90 82.24

4.4. Low Resource Environments

To demonstrate that the proposed framework is robust to the size of strongly labeled
data, we test the performance with the sub-split of 20%, 40%, 60%, and 80% of strongly
labeled data. For a fair comparison between experiments, we used the same sample indices
when splitting datasets.

As shown in Figure 6, the proposed framework demonstrated better performance than
the BERT baseline on all experiments. Particularly for NCBI-disease and LaptopReview,
while the performance of BERT baseline dramatically decreased on 20% of the sub-sampled
strongly labeled dataset, the proposed framework relatively maintained stable perfor-
mances. Furthermore, we also observed that as the strongly labeled data size decreases,
the performance decline decreases. Based on experimental results under low-resource
environments, the proposed framework showed similar performances to environments
where sufficient datasets are available, even with limited datasets. This demonstrates that
the proposed framework would save the cost of assigning datasets for domain-specific
NER tasks.
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Figure 6. The trends of the test set’s span-level F1-score according to the size of the strongly labeled
dataset. We described detailed numbers in Appendix A.

4.5. Comparison of Embedding Vectors

Because we exploited shallow classifiers, such as two fully connected layers, as the
main classifier and auxiliary classifiers, the embedding extracted from the language model
is important for classifying entity labels. When the language model learns the entity
embedding space better, well-projected embeddings make classifiers assign entity mentions
more [41]. To demonstrate that the language model in the proposed framework finds the
appropriate embedding for classifiers to find entity mentions, we projected span-level
representations obtained from the language model. Figure 7 presents the visualization
results onto a two-dimensional space using t-SNE [42] on the BC5CDR-chem test sets. As
shown in Figure 7, some B and I embeddings were projected in the O cluster. We even
found the embedding of the entity mention located in the middle of the O cluster. It can
be assumed that some incorrectly located embeddings make it difficult for the classifier to
assign appropriate labels to them. On the other hand, the proposed framework projected
each entity and non-entity mention in the embedding space quite appropriately. Along with
the experimental results shown in Table 2, this supports our argument that the proposed
framework better conducts NER tasks than the BERT baseline.

Figure 7. t-SNE visualization of BC5CDR-chem. The representations are extracted from language
model F. (a) shows the result of the BERT baseline, and (b) shows the result of the proposed framework.

5. Conclusions

Mixup, which generates a new data point from mixing two different data points,
was proposed as a data augmentation technique in computer vision. Although several
prior studies showed the effectiveness of mixup, it would lead to the NER model training
in an undesirable direction if we use it directly on NER examples. Based on the hinder-
ence this mixup results in when applied on NER examples, we thought mixup could be
a perturbation on NER examples and used it as a perturbation function for consistency
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regularization. In this study, we proposed a novel framework that uses the mixup based
the consistency regularization technique for Named Entity Recognition tasks. To validate
our proposed framework, we conducted experiments on domain-specific NER benchmark
datasets. The experimental results demonstrated that the mixup for weakly labeled data
would act as a perturbation function for NER examples, especially on low-resource environ-
ments. We expect that the proposed framework can mitigate efforts for building datasets
for domain-specific NER tasks.
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Appendix A

Here, we demonstrate detailed numbers in Figure 6.

Table A1. Table of performance according to the size of strongly labeled data. Pre, rec, and f1 denote
Precision, Recall, and F1-score, respectively.

Dataset Method 20% 40% 60% 80%
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

BC5CDR-chem BERT baseline 87.86 89.31 88.20 89.48 90.66 89.99 89.31 91.72 90.43 91.15 92.05 91.52
proposed 88.91 91.31 89.60 90.77 91.55 90.74 90.65 92.36 90.98 92.27 93.08 92.25

BC5CDR-disease BERT baseline 75.86 78.99 77.30 77.88 81.27 79.46 80.05 83.55 81.68 81.43 83.96 82.60
proposed 79.65 80.59 79.52 81.09 82.59 81.24 83.18 84.99 83.58 83.87 85.76 84.37

NCBI-disease BERT baseline 73.10 83.97 78.12 80.85 89.05 84.72 84.36 87.28 85.75 84.26 89.06 86.56
proposed 82.80 86.20 84.23 85.66 86.85 86.03 86.03 89.62 87.63 86.22 89.35 87.56

LaptopReview BERT baseline 68.46 67.84 68.12 75.07 79.79 77.32 74.81 74.63 74.72 76.04 78.45 77.17
proposed 80.73 80.24 80.16 83.95 82.13 82.63 82.96 83.56 82.89 81.77 82.46 81.66

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://ftp.ncbi.nlm.nih.gov/pubmed/
https://ftp.ncbi.nlm.nih.gov/pubmed/
https://www.nlm.nih.gov/databases/download/mesh.html
https://www.nlm.nih.gov/databases/download/mesh.html
http://ctdbase.org/downloads/
https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
https://www.computerhope.com/jargon.htm
http://jmcauley.ucsd.edu/data/amazon/index_2014.html
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