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Abstract: A tilt-rotor quadcopter (TRQ) equipped with four tilt-rotors is more agile than its under-
actuated counterpart and can fly at any path while maintaining the desired attitude. To take advantage
of this additional control capability and enhance the quadrotor system’s robustness and capability, we
designed two sliding mode controls (SMCs): the typical SMC exploits the properties of the rotational
dynamics, and the modified SMC avoids undesired chattering. Our simulation studies show that
the proposed SMC scheme can follow the planned flight path and keep the desired attitude in the
presence of variable deviations and external perturbations. We demonstrate from the Lyapunov
stability theorem that the proposed control scheme can guarantee the asymptotic stability of the TRQ
in terms of position and attitude following via control allocation.
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1. Introduction

Due to advancements in microprocessors and sensors, quadrotors have recently received
much attention, playing an increasingly important role in unmanned aerial vehicles (UAVs).
Now, quadrotors can easily hover indoors or outdoors and fly fast with global positioning
system (GPS) devices or tiny cameras. Generally, changing the velocities of rotors [1,2] can
generate lift and steering torque to control the attitude and position of the quadcopter.

Scholars and engineers have proposed several methods to solve the control problem
for a quadrotor. These methods can be divided into: PID control [3–5], feedback lineariza-
tion [6], optimal control [7], back-stepping [8,9], SMC [10–13], robust control [14], neural
control [15,16], and nonlinear control [17]. To handle uncertainty systematically, researchers
have extensively applied SMCs to address the robust control problem of quadrotors.

The super-twist control algorithm [18–20], a second-order SMC, has been studied to
alleviate harmful chattering and maintain the robust capability of first-order SMCs. The
studies in [21–23] demonstrate the stability and finite-time convergence of the super-twist
control algorithm for single-variable systems through a Lyapunov stability analysis. For
instance, Xu et al. [11] studied an adaptive terminal sliding mode for a quadrotor attitude
control with specified capability and input saturation. In addition, Besnard et al. [12]
proposed an observer-based SMC to address model uncertainty and wind perturbation.
The recent work in [24,25] introduced the perturbation observer incorporating enhanced
SMC for application in quadrotor UAV control.

Recently, several control methods have been proposed to solve the localization or
following problem of under-actuated quadrotors, but these methods are still insufficient
and have many shortcomings. For example, if the actuator fails or the rotor is damaged,
the quadrotor will crash due to a lack of actuator redundancy to restore attitude and
position. Tilt-rotor quadrotors [26] can increase the degree of control freedom and provide
control redundancy. Compared with under-actuated quadrotors, full-drive quadrotors
have more flexibility than under-actuated quadrotors and have recently attracted the
research community’s attention. Ryll et al. [27] proposed a modeling approach for an

Appl. Sci. 2022, 12, 11088. https://doi.org/10.3390/app122111088 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122111088
https://doi.org/10.3390/app122111088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122111088
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122111088?type=check_update&version=2


Appl. Sci. 2022, 12, 11088 2 of 17

overdrive quadrotor UAV. They provide a dynamic linearization control that uses higher-
order derivatives of the measured output. Hua et al. [28] studied the control of vertical
take-off and landing (VTOL) vehicles with bank thrust angle limitation. The proposed
control can achieve the primary and secondary goals of asymptotically stabilizing position
and direction. Recently, Rashad et al. [29] reviewed various UAV designs with fully actuated
multi-rotors, in the literature. They introduced the control allocation matrix to categorize
the proposed hardware framework and discussed the criteria for optimizing the UAV
design. Zheng et al. [30] introduced the hardware design of an experimental tilt-rotor drone
that uses linear servo motors to control the tilt mechanism. The authors also implemented
and tested their PD-based translation and attitude control scheme on the fully actuated
prototype quadrotor. To control the hovering and fixed-wing flight of a tilt-rotor UAV and
the transition between them, Willis et al. [31] proposed a control scheme, which includes a
low-level angular rate controller and a variable mixer, and an LQR following control

We propose a TRQ model based on translational and rotational dynamics, perturbation,
and model uncertainty. Note that the SMC presented for an under-actuated quadrotor
cannot be directly applied to a tilt-rotor quadrotor. We propose an SMC scheme with
control allocation, exploiting the structural features of rotational dynamics and avoiding
chattering in translational dynamics to further enhance the robustness and capability of
TRQ systems.

The paper is organized as follows: Section 2 discusses the TRQ’s dynamics and
various drive modes. Section 3 presents the proposed SMC scheme and control assignment.
Section 4 provides a stability analysis. In Section 5, the proposed SMC scheme is applied to
a TRQ for numerical simulation. Section 6 gives some conclusions.

2. Dynamic Model of a Tilt-Rotor Quadcopter (TRQ) with Various Actuation Modes

This section will establish a dynamic model from the Newton–Euler equation. First, we
present the dynamics of the TRQ (Figure 1). Using the variables defined in the nomenclature,
we propose various actuation modes from over-actuated, to fully actuated, to under-
actuated modes.
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2.1. Rotational and Translational Dynamics

The rotation matrix BRPi
from the ith rotor frame to the body frame is

BRPi
= RZ(βi)RX(αi) (1)

RX(αi) =

1 0 0
0 cos αi − sin αi
0 sin αi cos αi

,

and

RZ(βi) =

cos βi − sin βi 0
sin βi cos βi 0

0 0 1

, βi = (i− 1)
π

2
, i = 1, 2, 3, 4.

The angular velocity is

wPi =
Pi RB wB +

[ .
αi 0 wi

]T (2)

We define

sgn(x) =
{

1 i f x > 0
−1 i f x < 0

where
w1 < 0, w3 < 0 , w2 > 0, w4 > 0

The rotational dynamics of the TRQ can be formulated as:

τB = IB
.

wB + wB × IBwB +
4

∑
i=1

BRPi
τPi (3)

where
τPi = IPi

.
wPi + wPi × IPiwPi − τdi (4)

τdi =
[
0 0 −kmw2

i sgn(wi
)
]T (5)

The force in the rotor frame is

Tpi =
[
0 0 k f w2

i
]T (6)

and the toque in body frame is

τB =
4

∑
i=1

(BOPi
× BRPi

TPi) (7)

The transform between body angular rates to the Euler rates is

.
r = RTwB (8)

where

RT =

1 sφ tan θ cφ tan θ
0 cφ −sφ

0 sφ sec θ cφ sec θ

 (9)

and r =
[
φ θ ψ

]T ∈ R3 is the attitude vector of the roll, the pitch, and the yaw angle.
We denote sqi = sin qi and cqi = cos qi.

Taking the derivative of (8) and ignoring IPi in (4), we have

..
r =

.
RT R−1

T
.
r + RT I−1

B (τB − wB × IBwB +
4

∑
i=1

BRPi
τdi) (10)
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We denote

τ =
4

∑
i=1

(BOPi
× BRPi

TPi) +
4

∑
i=1

BRPi
τdi (11)

Define the transform matrix
Ψ = R−1

T (12)

From (8), we have
wB = Ψ

.
r (13)

It follows from (10) and (12) that

ΨT IBΨ
..
r = −ΨT IB

.
Ψ

.
r−ΨTwB × IBwB + ΨT τ

= −
[
ΨT IB

.
Ψ + ΨT(Ψ .

r× IBΨ
)] .

r + ΨTτ
(14)

Considering the perturbation torque τd, we obtain

H(r)
..
r + C

(
r,

.
r
) .
r = ΨT(τ + τd) (15)

where
H(r) = ΨT IBΨ (16)

C
(
r,

.
r
)
=
[
ΨT IB

.
Ψ + ΨT(Ψ .

r× IBΨ
)]

(17)

Ψ(r) =

1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

 (18)

and H(r) ∈ R3×3 is the inertia matrix, C
(
r,

.
r
) .
r ∈ R3 represents the centrifugal and Coriolis

forces. τ =
[
τφ τθ τψ

]T ∈ R3 is the vector of torques and τd ∈ R3 is the perturbation
torque.

The velocity in Fw is
.
p = W RB VB (19)

The derivative of velocity in FB can be expressed as

.
VB = −wB ×VB + W RT

B
[
0 0 −g

]T
+

f
m

(20)

where

W RB =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ


and

f =
4

∑
i=1

BRPi
TPi (21)

where p =
[
x y z

]T ∈ R3. f =
[

fx fy fz
]T ∈ R3 is the vector of forces.

Taking the derivative of (19), ignoring W
.
RB and using (20), the translational dynamics

becomes
m

..
p = W RB = (−wB ×VB + f )−

[
0 0 mg

]T
+ ud (22)

where ud ∈ R3 is the perturbation force in Fw.
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2.2. Over-Actuated, Fully Actuated, and Under-Actuated Modes

Denote α = [α1 α2 α3 α4]
T ,w = [w1 w2 w3 w4]

T , si = sin αi, and ci = cos αi, one
can arrange (21) and (11) as [

f
τ

]
=

[
K1(α)
K2(α)

]
U(w) (23)

where
U =

[
w2

1 w2
2 w2

3 w2
4
]T

K1(α) =

 0 k f s2 0 −k f s4
−k f s1 0 k f s3 0

k f c1 k f c2 k f c3 k f c4

 (24)

K2(α)

=

 0 Lk f c2 − kms2 0 −Lk f c4 + kms4
−Lk f s1 − kms1 0 Lk f c3 + kms3 0
−Lk f s1 + kmc1 −Lk f s2 − kmc2 −Lk f s3 + kms3 −Lk f s4 − kms4

 (25)

Remark 1. Over-actuated and fully actuated modes.

For over-actuated mode, the vector of tilt angles is

α = [α1 α2 α3 α4]
T

By setting α3 = − α1, α4 = − α2 , the vector of tilt angles for fully actuated mode is

α = [α1 α2 α1 α2]
T

Remark 1. Under-actuated mode.

By setting α =
[
0 0 0 0

]T , the force and the torque in (23) for the under-actuated
mode can be reduced as

fz
τφ

τθ

τψ

 =


k f k f k f k f
0 Lk f 0 −Lk f
−Lk f 0 Lk f 0

km −km km −km

U(w) (26)

3. Sliding Mode Path following and Control Allocation

In this section, we first propose the sliding mode-based attitude and position following
control via torque and force in (23). Then, we present the control allocation from the control
torque and force to the speed and tilt angle of four rotors. Figure 2 illustrates the TRQ
control scheme.
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3.1. Attitude and Position following SMC

Define s1 ∈ R3
.
rr =

.
rd −Λ1(r− rd) (27)

and
s1 =

.
r− .

rr =
.
r− .

rd + Λ1(r− rd) (28)

where rd is the desired attitude and
.
rd is the desired angular velocity.

Now, we propose the following control for attitude following to exploit the structure
of the rotational dynamics:

τ = Ψ−T
[

Ĥ
..
rr + Ĉ

.
rr − K1 SGN(s1)− K3s1 − K4r̃

]
(29)

where r̃ = r − rd and (̂·) denotes the nominal of (·). K1, K3, K4 are positive diagonal
matrices, sgn(·) is the sign function, and

SGN
(
[x1 x2 x3]

T
)
= [sgn(x1) sgn(x2) sgn(x3)]

T (30)

We can now define s2 ∈ R3

s2 =
.
p− .

pd + Λ2(p− pd) (31)

where pd is the desired position and
.
pd is the desired velocity.

The position following control is proposed to alleviate the chattering effects as follows:

f = W R−1
B

u +

 0
0

mg

  (32)

where u is designed as follows:

.
u = −(K2 + Λ2)u + m̂

(
(K2 + Λ2)

..
pd +

...
pd − K2Λ2

( .
p− .

pd
)
−Λ3s2 −Λ4 SGN(s2)) (33)

where K2, Λ2, Λ3, Λ4 are positive diagonal matrices.

3.2. Control Allocation
3.2.1. Fully Actuated Mode

We use the following assumption for the fully actuated quadcopter system

α3 = −α1, α4 = −α2 (34)

Now, we propose the following steps to compute αi and wi:
Step 1: Initially, set the tilt angles ( α1 = α2 = 0).
Step 2: Compute f and τ from (32) and (29).
Step 3: Compute the rotor velocities.

w2
1

w2
2

w2
3

w2
4

 =


k f c1 k f c2 k f c3 k f c4

0 Lk f c2 − kms2 0 −Lk f c4 + kms4
−Lk f c1 − kms1 0 Lk f c3 + kms3 0
−Lk f s1 + kmc1 −Lk f s2 − kmc2 −Lk f s3 + kmc3 −Lk f s4 − kmc4


−1

fz
τφ

τθ

τψ

 (35)

where si = sin αi and ci = cos αi (i = 1, 2, 3, 4).
Step 4: Compute the tilt angles from (23) and (24) using (34) as follows:

α1 = sin−1

(
− fy

k f
(
w2

1 + w2
3
)) = −α3 (36)
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α2 = sin−1

(
fx

k f
(
w2

2 + w2
4
)) = −α4 (37)

Step 5: Go to Step 2 to continue the iteration.

3.2.2. Over-Actuated Mode

We propose the steps to compute αi and wi:
Step 1: Initially, set the tilt angles αi = 0 ( i = 1, 2, 3, 4).
Step 2: Compute f and τ from (32) and (29).
Step 3: Compute the rotor velocities from (35).
Step 4: Compute the tilt angles from (23)–(25) as follows:(

k f s2

)
w2

2 +
(
−k f s4

)
w2

4 = τφ (38)(
Lk f c2 − kms2

)
w2

2 +
(
−Lk f c4 + kms4

)
w2

4 = τφ (39)(
−k f s1

)
w2

1 +
(

k f s3

)
w2

3 = τθ (40)(
−Lk f c1 − kms1

)
w2

1 +
(

Lk f c3 + kms3

)
w2

3 = τθ (41)

where si = sin αi and ci = cos αi(i = 1, 2, 3, 4). Using the triangular identities s2
i + c2

i =
1 (i = 1, 2, 3, 4), one can use the numerical method to solve for αi in the system of
nonlinear equations.

Step 5: Go to Step 2 to continue the iteration.

3.2.3. Under-Actuated Mode

Notice that, due to the lack of control degrees of freedom, the desired attitude φd and
θd is not arbitrary for the under-actuated quadrotor.

One can obtain φd and θd by

φd = sin−1

 uxsψd − uycψd√
u2

x + u2
y + (uz + mg)2

 (42)

θd = tan−1
(uxcψd + uysψd

uz + mg

)
(43)

The vector of w2
i is


w2

1
w2

2
w2

3
w2

4

 =


k f k f k f k f
0 −Lk f 0 Lk f
−Lk f 0 Lk f 0

km −km km −km


−1

f
τφ

τθ

τψ

 (44)

4. Stability Analysis

This section presents the stability analysis of the SMC scheme. Let us use λM(A), λm(A)
for the largest and smallest eigenvalue of a matrix A. We denote the Euclidean norm
for an n × 1 vector x by ‖x‖ =

√
xTx. The inertia matrix is symmetric, positive defi-

nite, and bounded by 0 < λm(H) ≤ ‖H(r)‖ ≤ λM(H). The matrix
.

H(r) − 2C
(
r,

.
r
)

is
skew-symmetric.
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4.1. Sliding Mode Attitude following Control

Theorem 1. Consider the dynamic model described in (15) and the control for attitude following in
(29). The attitude following error dynamics is exponentially stable if the switching gain satisfies the
following condition.

λm(K1) ≥
(
‖H̃‖‖..

rr‖+ ‖C̃‖‖
.
rr‖+ ‖τd‖

)
+ ε1 (45)

where ε1 is a positive constant.

Proof. Ĥ and Ĉ represent the nominal H and C, where H̃ = H − Ĥ and C̃ = C− Ĉ.
The rotational dynamics can be expressed as follows:

Ĥ(q)
..
r + Ĉ

(
r,

.
r
) .
q = ΨT(τ + τd) + h1

(
r,

.
r,

..
r
)

(46)

h1
(
r,

.
r,

..
r
)
= −H̃(r)

..
r− C̃

(
r,

.
r
) .
r

Define
.
rr =

.
rd −Λ1(r− rd) (47)

and
s1 =

.
r− .

rr =
.
r− .

rd + Λ1(r− rd) (48)

It follows from (48) that

.
s1 =

..
r− ..

rr =
..
r− ..

rd + Λ1
( .
r− .

rd
)

(49)

Now, we propose the control

τ = Ψ−T[Ĥ..
rr + Ĉ

.
rr − K1 SGN(s1)− K3s1 − K4r̃

]
(50)

where r̃ = r− rd and K1, K3, and K4 are diagonal matrices. �

Define the Lyapunov function

V1 =
1
2

sT
1 M(r)s1 +

1
2

r̃TK4r̃ (51)

Using (50) and taking derivative of V1 yield

.
V1 = sT

1 H
.
s1 +

1
2

sT
1

.
Hs1 + r̃TK4

.
r̃ (52)

If the switching gain meets the condition as follows

λm(K1) ≥
(
‖H̃‖‖..

rr‖+ ‖C̃‖‖
.
rr‖+ ‖τd‖

)
+ ε1 (53)

where ε1 is a positive constant.
From (52), we have

.
V1 ≤ −ε1 sT

1 SGN(s1)− sT
1 K3s1 − r̃TK4r̃ < 0 , s1 6= 0 (54)

The following adaptation law can replace the switching gain K1

K1 = diag([k1 k2 k3]) (55)

ki(t) = kci|ηi|+ kmi
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where kci > 0, kmi > 0 and ηi is the obtained by filtering the sgn(s1i) using a low-pass
filter

ζi
.
ηi + ηi = sgn(s1i), ηi(0) = 0 (56)

where ζi is a positive constant.

4.2. Sliding Mode Position following Control

Theorem 2. Consider the translational dynamic model described in (21) and the control for position
following in (32)–(33). The position following error dynamics is then asymptotically stable.

Proof. The translational dynamics is

..
p =

1
m

u +
ud
m

(57)

where

u =

ux
uy
uz

 = W RB f −

 0
0

mg

 (58)

The nominal dynamics is
..
p =

1
m̂

u +
ûd
m̂

(59)

where m̂ is the nominal mass and ûd = 0.
The sliding surface s2 ∈ R3 is

s2 =
.
p− .

pd + Λ2(p− pd) (60)

Using (57) yields
.
s2 =

1
m̂

u− ..
pd + Λ2

( .
p− .

pd
)

(61)

and
.
s2 =

1
m̂

.
u−

...
pd + Λ2

( .
s2 −Λ2

( .
p− .

pd
) )

(62)

Define the Lyapunov function

V2 =
1
2

sT
2 Λ3s2 +

1
2

.
sT

2
.
s2 + γABS(s2) (63)

where
γ = [γ1 γ2 γ3]

It follows from (63) that

.
V2 =

.
sT

2
(..
s2 + Λ3s2 + Λ4 SGN(s2)

)
(64)

where Λ4 is a diagonal matrix with diagonal elements [γ1 γ2 γ3].
Then

..
s2 + Λ3s2 + Λ4 SGN(s2) = −K2

.
s2 (65)

and .
V2 =−K2

.
sT

2
.
s2 (66)

Using (62) and (65) yields

.
u = m̂

(
−(K2 + Λ2)

.
s2 −Λ3s2 −Λ4 SGN(s2) +

...
pd + Λ2

2
( .

p− .
pd
)
) (67)
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Substituting
.
s2 from (61) into (64), we have

.
u = −(K2 + Λ2)u + m̂

(
(K2 + Λ2)

..
pd +

...
pd − K2Λ2

( .
p− .

pd
)
−Λ3s2 −Λ4 SGN(s2)) (68)

We can derive from LaSalle-Yoshizawa theorem and (66) that
.
s2 → 0. On the basis

of (62) and the Barbalat’s lemma, one can conclude that
..
s2 → 0 . Therefore, we have the

following from (65)
Λ3s2 = −Λ4 SGN(s2) (69)

which ensures that
s2 = 0 (70)

�

5. Numerical Simulation

To illustrate the proposed control scheme’s design, we give an example of a fully
actuated TRQ.

5.1. Simulation Parameters

Assuming sqi = sin qi, cqi = cos qi, we have

H11 = Ix, H12 = 0, H13 = −Ixsθ

H22 = Iyc2
φ + Izs2

φ, H23 = cθcφsφ

(
Iy − Iz

)
H33 = Ixs2

θ + Iyc2
θs2

φ + Izc2
θc2

φ

The matrix of C
(
r,

.
r
)

is

C11 = 0

C12 = −Ix
.
ψcθ +

(
Iy − Iz

)( .
θsφcφ +

.
ψcθs2

φ −
.
ψcθc2

φ

)
C13 = −Iy

.
ψc2

θsφcφ + Iz
.
ψc2

θsφcφ

C21 = Ix
.
ψcθ −

(
Iy − Iz

)( .
θsφcφ +

.
ψcθs2

φ −
.
ψcθc2

φ

)
C22 = −Iy

.
φsφcφ + Iz

.
φsφcφ

C23 = −Ix
.
ψsθcθ + Iy

.
ψsθcθs2

φ + Iz
.
ψsθcθc2

φ

C31 = −Ix
.
θcθ + Iy

.
ψc2

θsφcφ − Iz
.
ψc2

θsφcφ

C32 = Ix
.
ψsθcθ + (Iz − Iy)

( .
θsθsφcφ +

.
φcθs2

φ −
.
φcθc2

φ

)
− Iy

.
ψsθcθs2

φ − Iz
.
ψsθcθc2

φ

C32 = Ix
.
ψsθcθ + (Iz − Iy)

( .
θsθsφcφ +

.
φcθs2

φ −
.
φcθc2

φ

)
− Iy

.
ψsθcθs2

φ − Iz
.
ψsθcθc2

φ

C33 = Ix
.
θsθcθ + Iy

(
−

.
θsθcθs2

φ +
.
φc2

θsφcφ

)
− Iz

( .
θsθcθc2

φ +
.
φc2

θsφcφ

)
We employ the following variables for simulation:

m = 2kg, L = 0.275m, g = 9.81m/s2,

Ix = 0.025kgm2, Iy = 0.025kgm2, Iz = 0.040kgm2,

km = 2.67·10−7Ns2, k f = 1.5·10−5Nms2.

with initial conditions [
x(0) y(0) z(0)

]
=
[
0 0 0

]
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and the desired positions[
xd

(
t f

)
yd

(
t f

)
zd

(
t f

)]
=
[
20 10 5

]
where t f = 20. The desired attitudes are

φd = 0, θd = 0, ψd = 0

The desired path is defined as

xd(t) = 2.5·10−2 t3 − 1.875·10−3 t4 + 3.75·10−5 t5

yd(t) = 1.25·10−2 t3 − 9.375·10−4 t4 + 1.875·10−5 t5

zd(t) = 6.25·10−3 t3 − 4.6875·10−4 t4 + 9.375·10−6 t5

Now, we use the following control parameters for simulation:

Λ1 = 10 I2 , Λ2 = 4I3, Λ3 = 40 I3, Λ4 = I3, K1 = I3,

K2 = 4I3, K3 = 4I3, K4 = 10I3, kci = 4I3, kmi = 0.1I3, (i = 1, 2, 3).

5.2. Simulation Results

We present the simulation results of the proposed attitude and position following
SMC control in Figures 3–8. Figures 3 and 4 show the attitude and position trajectories of
the quadrotor with variable changes (weights increased to 125%). The simulation results in
Figures 3 and 4 show that the proposed SMC can successfully drive the quadrotor from
the initial position through the desired path to the final destination while maintaining the
desired attitude. Figures 5 and 6 show the lift and steering torque produced by the four
tilt-rotors of the TRQ. Figure 7 shows the path of the tilt angle with parameter deviation.
The corresponding quadrotor speeds are shown in Figure 8.

Because the stability analysis in the previous section demonstrated robustness with
respect to parameter uncertainty and external perturbations, we then further evaluated
the impact of external perturbations on the TRQ. We used perturbation force [sin(4t) −
sin(4t) 2sin(4t)] N and perturbation torque [0.1sin(2t) 0.1sin(2t) 0.1sin(2t)] Nm applied to
TRQ for simulated motion. As shown in Figures 9–14, we can see that the perturbation has
little effect on the capability of the quadcopter because the proposed control and control
assignment can reject the perturbation and return the state variables to the sliding surface.
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Figure 3. The attitude path with variable deviations.
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Figure 9. The attitude path with variable deviations and perturbations.
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Figure 10. The position path with variable deviations and perturbations.
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Figure 11. The propelling force with variable deviations and perturbations.
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Figure 12. The turning torque with variable deviations and perturbations.
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Figure 13. The tilt angle path with variable deviations and perturbations.
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Figure 14. The rotor velocity with variable deviations and perturbations.

In summary, the numerical simulation results clearly show that the proposed SMC
schemes can accomplish the goal of trajectory tracking and counter the parametric variation
and external disturbances in the rotation and translation of TRQ via control allocation.

6. Conclusions

This paper presents the dynamic modeling, path following, and control allocation of a
TRQ. Two types of SMC are proposed to enhance the robustness and capability: one is the
first-order sliding mode for attitude following and the other is the second-order sliding
mode for position following. Considering the parameter changes and external perturbation,
we show the stability analysis based on the Lyapunov theory that the proposed control
scheme can ensure the error dynamics’ asymptotic stability for the position and attitude
following. In the numerical simulation of the fully actuated mode, we demonstrated
that the proposed SMC could achieve path following and attitude regulation goals in the
presence of variable changes and external perturbations. The tilt-rotor quadrotor has more
control degrees of freedom than the under-actuated quadrotor and, therefore, can make
full use of the control redundancy to complete the simultaneous trajectory tracking and
attitude control that a traditional quadrotor cannot do, and thus has a certain degree of
actuator fault tolerance. In the future, we will integrate the sliding mode path following
and control allocation into a fault-tolerant flight control.



Appl. Sci. 2022, 12, 11088 16 of 17

Author Contributions: Conceptualization, C.-C.Y. and S.-J.W.; methodology, C.-C.Y. and S.-J.W.; soft-
ware, S.-J.W.; validation, C.-C.Y. and S.-J.W.; formal analysis, C.-C.Y.; investigation, S.-J.W.; writing—
original draft preparation, C.-C.Y. and S.-J.W.; writing—review and editing, C.-C.Y.; visualization,
S.-J.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

B quadrotor body
Pi propeller i
Fw inerita world frame
FB body frame
FPi ith propeller frame
RT transform matrix from body angular rates to Euler rates
p position of B in Fw
q Euler angle of B in Fw
W RB rotation matrix from FB to Fw
BRPi

rotation matrix from FPi to FB
wi ith propeller spinning velocity about ZPi
wPi the angular velocity in the ith propeller frame
αi ith propeller tilting angle about XPi
TPi the force in the ith propeller frame
wB angular velocity of B in FB
vB velocity of B in FB
τB torque in FB
τPi torque in FPi

τdi ith propeller air drag torque about ZPi
Ti ith propeller thrust along ZPi
τwi motor torque along ZPi
m total quadrotor mass
IPi inertia of the ith propeller Pi
IB inertia of the quadcopter body B
k f propeller thrust coefficient
km propeller drag coefficient
L distance of FPi to FB
g gravity constant
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