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Abstract: This study investigates methods for autonomous navigation of a deep-space spacecraft
where one-way radiometric and on-board optical information are fused to create a fully informed state
estimate. The specific focus is on using filter bank methods (i.e., Multiple Model Estimation [MME]
and Mixture of Experts [MoE]) to detect when measurement and/or dynamical mis-modeling occurs.
We develop a new x2-based gating network for a filter bank that may be used to identify poorly
performing filters (i.e., those with low weights), which may be used as a signal for mis-modeling in
the system. In addition to defining and deriving this new weighting scheme, numerical simulations
based on NASA's InSight mission demonstrate this new algorithm’s performance with and without

measurement and dynamical mis-modeling present.

Keywords: spacecraft navigation; anomaly detection; Multiple Model Estimation; filter bank;

autonomous navigation

1. Introduction

Deep-space spacecraft navigation, as it currently stands, is a fairly manual process that
involves a team of navigators that process measurements from a dispersed set of sensors
with optimal state estimation algorithms, while this method has been shown to be effective
for many missions, there is a desire to explore autonomous solutions to the problem of
deep-space navigation. Autonomous algorithms would move the measurement processing
to be chiefly on-board the satellite. This would reduce the needed navigation resources on
the ground while also allowing for mission scenarios that require near real-time estimation—
an impossibility for ground-based navigation for missions with large light travel times
between the Earth and the satellite. Autonomy also facilitates flying smaller payloads, since
it would reduce the investment needed to operate these types of missions in the long-term.

While there are many perceived benefits from autonomous navigation algorithms,
there are also many challenges in developing one for operational usage. A prominent
challenge is the limited computational resources that are available. On the ground, access
to computational resources for processing measurements is effectively limitless, but on-
board the spacecraft resources are finite and possibly quite limited. As a result, autonomous
algorithms need to be adapted to the flight hardware they are flying on while also dealing
with power and data constraints. An autonomous algorithm would also need to be robust
to issues that are typically identified and addressed by navigators on the ground such as
dynamic and/or measurement mis-modeling and measurement outliers. Furthermore,
the autonomous algorithms would also need to be able to fuse together different types of
observables that can occasionally conflict (e.g., optical and radiometric data) while also
identifying when conflicts occur and what the source of the conflict is. This is especially
important as access to one-way radiometric data to support autonomous deep space
navigation is becoming feasible via the Deep Space Atomic Clock (DSAC) [1].

This study will focus on the development of a neural network-based anomaly detection
algorithm for use in radiometric and optical fused autonomous navigation of a spacecraft
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operated in deep-space with a specific focus on cruise and approach mission phases. This
work can be viewed as an extension of Ely et al. [2], who quantified the performance of
radiometric and optical fused autonomous navigation. Our approach to this problem
utilizes filter bank methods (e.g., Multiple Model Estimate [MME] and Mixture of Experts
[MoE])—collections of estimators (i.e., filters) that are each modeled slightly differently,
and each estimator processes the available information to produce an independent state
estimate. On top of the filter bank is a gating network (i.e., weighting scheme) that assigns
a time-variable weight to each filter, which indicates how important that filter is to the
overall solution. This weighting may also be viewed as an indicator of how well the filters
are performing, so it may be used as an indicator of mis-modeling in the system. In this
paper, we develop a new optimal gating network, which focuses on supporting radiometric
and optical fused estimation for autonomously navigated spacecraft. These weights are
used to both identify the presence of mis-modeling in the system as well as characterize the
root cause of the mis-modeling—a graphical example of this process is shown in Figure 1.
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Figure 1. An overview of the anomaly detection and characterization process via filter bank gating
network weights with example errors and filter setups.

The general problem we are addressing in this study (anomaly detection and charac-
terization) has many different approaches beyond the neural-network based method we are
pursuing in this study. Many approaches deal specifically with the problem of maneuver
detection and characterization—i.e., the identification and reconstruction of a dynamic
anomaly while tracking a target. A number of classical methods (e.g., dynamic model
compensation, polynomial acceleration model estimation, etc.) [3-5] and input estimation
techniques [6-8] rely on detecting dynamic anomalies via statistical tests on measurement
residuals, and then characterize the anomaly by estimating dynamic parameters associated
with the anomaly. System identification methods [9-11] are commonly applied to the char-
acterization of mis-modeled systems. These approaches tend to focus on reconstructing a
system by measuring how a system responds to commanded inputs, though some meth-
ods [12,13] do not require direct knowledge of the inputs. However, these methods are
not always generally applicable especially for deep-space spacecraft navigation problems
where there are significant constraints on tracking data and input resources (e.g., power
and fuel). A number of spacecraft focused approaches exist [14-17], though they tend to
focus on on specific applications which are not related to deep-space navigation. Control
distance metrics and related optimal-control-based filtering techniques [18-25] can be used
to both detect anomalies and reconstruct them as optical control policies; however, they
tend to focus on dynamic anomalies alone, while there are many different approaches to
the more general anomaly detection and characterization problem, we are looking for an
approach that accomplishes the following: (1) it is applicable to deep-space navigation
problems, (2) it could feasibly be used in an autonomous navigation system, (3) it can both
detect an anomaly and be used to characterize and diagnose the cause of the anomaly, (4) it
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can deal with many different types of anomalies that impact navigation solutions (e.g.,
mis-modeled dynamics, measurement biasing, issues with sensor fusion, over-confident
uncertainty metrics, etc.), (5) and it can be adapted as necessary to best fit the spacecraft’s
specific mission criteria. Given these requirements, we pursued a filter bank approach for
this research given these methods are naturally adaptable and flexible, so they provide a
good foundation from which to address all of our different requirements for this algorithm.

Application of the filter bank methods (e.g., MME and MoE) to spacecraft navigation
has been covered to some extent in the existing literature. Various studies that use MME-
based methods tend to focus on making algorithms that are robust to model errors [26-30].
Similarly, MoE-based studies tend to focus on developing methods that are robust to
anomalies in the system. This includes the work of Chaer, Bishop, and Ghosh [31], who
provided a comparison of MoE and MME-based methods and how rapidly each could
identify the correct mode of the observed system via gating network weights. Furthermore,
the MME and MoE approaches have been explicitly applied to the problems of anomaly
detection and characterization [32,33], while the existing literature covers a wide range of
applications, they ignore an important component of our presented problem—dealing with
the fused-sensor problem. Specifically, we seek a filter bank-based method that supports
the inclusion of filters in the bank that only process a subset of the available data types (e.g.,
radiometric-only, optical-only, etc.). Beyond this we seek a method that can identify and
characterize when anomalies occur, including when different data types conflict with each
other. This paper will focus on developing an algorithm that meets this description.

Section 2 provides an overview of filter bank methods and their relation to autonomous
navigation of deep-space spacecraft. In Section 3, we define and derive a new weighting
scheme to use with filter banks, which is designed for anomaly detection and charateriza-
tion. Section 4 presents the results and analysis from numerical simulations based on the
InSight spacecraft Mars approach where different weighting schemes for filter banks are
used to identify mis-modelings in the system. Finally, Section 5 provides a summary of this
research and some discussion of possible avenues for future work.

2. Related Work

Filter banks provide a platform to test many different filter models on the same input
data. The filter models can differ from each other in a number of different ways, includ-
ing: measurement model parameters, fidelity of the measurement models, measurement
weightings (i.e., uncertainties), the set of measurements that are processed by the filter,
dynamical model parameters, fidelity of the dynamical model, maneuver models, a priori
state uncertainties, etc. By passing this data through different models, we can better un-
derstand the nature of the underlying true model by determining which filters in the bank
perform best in a given scenario.

The metric for measuring which filters in the bank are the most important is its
weighting, which is obtained through a gating network or weighting schemes. Based on
each filter’s performance (or the properties of the input), it is assigned a weighting between
0 and 1, such that the sum of all weightings is equal to 1. Typically, these weightings are used
to weight the state estimate from each filter in a weighted summation that produces a final
optimal state estimate that is a linear combination from each filter’s output. Alternatively,
the weightings can be used as signals for anomalies and mis-modeling in the system.
For instance, if a sudden bias appeared in the measurements obtained from a certain
camera, then we would expect the weighting for filters that process those measurements to
decrease—an indication of anomalous behavior.

How effectively weights respond to anomalies is a function of several things, including:
the type of gating network that is used, the filter’s sensitivity to the anomaly, and the size of
the anomaly. The type of gating network that is used can often differ based on the type of
filter bank that is being employed. The two types that have been focused on in the existing
literature are the MoE and MME methods.
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The MoE method [34] is a method commonly used within the field of neural networks,
which are often leveraged in applications like machine learning. The MoE method leverages
the idea of divide and conquer, which attempts to break up complicated problems into
many smaller and simpler pieces whose individual results can be combined to solve the
larger problem. Essentially, the bank is trained such that each filter within the bank becomes
an expert that focuses on a specific piece of input (i.e., measurement) state space. When
an input comes into that filter’s area of expertise, it would be ranked highly by the gating
method, thus dominating the final bank’s state estimate. It's important to note two traits of
MOoEs at this point: (1) the gating network values are entirely based on the input values and
parameters that are trained ahead of time (via methods like classification and regression
tree [CART] with the expectation-maximization [EM] approach [34]); and (2) as a result,
the MoE gating network weights do not reflect how the filters are performing, just how
much of an expert the filters are for the given input. We are looking for an algorithm that
tracks how well filters are performing in real-time so we want to make the gating network
focus on filter performance in addition to the input values. This adjustment pushes the
algorithm more into the realm of Multiple Model Estimation, but we still utilize concepts
from the area of MoEs in this research.

MME [35,36] is a form of optimal state estimation where instead of operating a single
filter to process measurements, a bank of filters is used in which each filter has a different
model. The estimators can differ in the dynamical model, the measurement models,
the process noise parameters, the measurements’ uncertainty parameters, the estimation
algorithm, etc. Each estimator is given the same measurement vector, they each process it
with their unique setup, and then a weight is computed for each estimator to reflect how
likely each estimator is to reflect the true model of the system. Typically, the outputs from
each estimator are scaled by their weight, and then they are all linearly combined to form a
final state estimate (Figure 2). Alternatively, the weights can be used to select the estimator
that is indicated to be the most likely model (i.e., highest weight), and then its solution will
be used as the optimal MME solution. Care must be used in both situations since the size
of the estimate vector may vary depending on the estimator’s setup. However, if the user
is only interested in certain parameters for prediction purposes (e.g., target state, dynamics
parameters, etc.), then these may be extracted to form the final estimate vector.
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Figure 2. Multiple Model Estimation (MME) filter bank with gating network.
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As defined, MME is a method that is very similar to the idea of MoE; however, MME
is more focused on estimation problems (whereas MoE is more generally applicable) and
MME gating networks can (and usually are) functions of the filters” outputs. This difference
is significant because it means an MME does not need to be trained in the same way that
an MoE does—though it is still possible to design a gating network that would be trained.
A standard MME gating network relies more on statistical theory and the modeling put
into the estimators as opposed to the MoE, which can be trained to act as desired. This
may tend to mean that an MME is less flexible than an MoE (depending on how many
experts are used), but it may be naturally more robust. To achieve robustness with an MoE,
the operator needs to understand all of the possible failure scenarios, in order to make the
proper adjustments and train the MoE accordingly.

As mentioned, the weights from the standard gating network in the MME algorithm
tend to measure the likelihood that their corresponding filter is the correct model. The orig-
inal metric used by Magill [35] is based on Bayes’ rule. Given a set of N estimators in an
MME ({a1,a, ..., aN}), Magill’s weight quantifies the likelihood that any given model is
the correct one. We compute this as shown in Equation (1).

f(Y = VE|ay) fla = ;)
YN F(Y = Vo) f(a = a)

pi = fla=a;|Vf) = 6)

yij = Vi, Vis1,-- -, Vi1 ¥} @)

In this equation, y{ is the set of all measurements between indices i and j (Equation (2)),
f(Y|a;) is the conditional probability density function expressing the likelihood of receiving
the measurement set ) given estimator «;, and f(«) is the prior distribution describing the
likelihood of a given estimator being the true model. It can be shown that Y | Pki = +1,
and it is required that YN, f(a = a;) = +1. Generally, we assume that the measurements
contain Gaussian error that is zero mean with known covariance (R; being the covariance
for measurement i;). We also assume that the MME estimators have a uniform prior
distribution (f(« = ;) =1/N,i =1,2,...,N).

If we further assume that measurements are statistically independent in time (or at
least over smaller mini-batches), then we can rewrite this weighting scheme in a more
sequential notation as shown in Equation (3).

F(F = Felor) fa = 0 Y1)

i=fla=wa;|Y) =
Pri = S = 8l) = N — el o = a2 T)

®)

In this expression, y}‘ =Y, ¥j+1,-- - Yk—1, ¥k} with j < k. If j > k, then we use our
prior model instead (f (a = txi|y]]f) = f(a = w;), if j > k). This mode of weighting allows
us to sequentially compute our weights at each evaluation point while properly accounting
for previous and current measurement information.

Additionally, if we assume that the inputs are Gaussian, then we can write explicit
equations for computing the MME weights. The multivariate conditional Gaussian prob-
ability density function for measurement jj; € R” as a function of estimator «; with
estimator-dependent modeled covariance matrix R;; € RP*? is given in Equation (4).

L 1 1, _ 1,5 _
fi = Tla) = ————exp | —5 Tk — hix(te, Ti)) S — (b %ip)) | (@)
2 Y

, /(2n)ﬁ‘s,§i>

Sik = Rij + Hx P, HJy

In this definition, %;; and P, are the a priori state estimate vector and covariance
matrix (respectively) for estimator «; at the kth measurement time (t;); h; i (t, %) is the
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function that computes the expected measurement for the kth measurement given the state
of the ith estimator; and H; y is the state vector-derivative of the kth expected measurement
function for the ith estimator.

The Magill gating network, as described, outputs weights that favor filters that produce
measurement residuals that are small relative to the innovations covariance matrix (S; ;) and
that have a small innovations covariance matrix. Because it balances two costs, the estimator
that it selects as best, does not necessarily have to be behaving nominally—it may just
have a very small innovations uncertainty relative to other estimators in the filter bank.
Furthermore, the way these weights are defined does not easily lend itself to supporting
filter banks that have filters that only process a subset of the available measurement data
types. These types of filters will likely have high innovations covariances for the data types
that they do not process, which will lead to the estimator’s weight dropping even if the
filter is behaving nominally. For these reasons, we are motivated to design a new gating
network that will focus on whether the filters in the filter bank are demonstrating nominal
performance independent of the data that they are processing. The development of this
new gating network is detailed in Section 3.

3. Materials and Methods

In this section, we develop a method to compute optimal weightings for the filters
within our filter bank. We start by defining the cost function that defines this optimal
weighting scheme and then derive the analytical solution that minimizes this cost function.
Next, we discuss the practical application of this weighting scheme including its strengths
and weaknesses, and how the method may be adjusted to improve its performance.

3.1. Cost Function Definition and Solution Derivation

The cost function that defines this optimal filter weighting scheme is defined in
Equation (5). This equation uses the following notation: N is the number of filters in the
filter bank, gy is the vector of N filter weightings at the kth weightings update epoch, M is
the number of measurements included in each weightings update batch, W is a symmetric
positive definite weighting matrix that controls how strictly the previous filter weights are
enforced, A is a Lagrange multiplier that enforces the constraint that the filter weightings
sum to unity, and Ty is an N-dimensional vector where all entries are one.

7 LW 1, < 5 T ] s
j(Pk, A; M) = 2 2 Epklizi,]- {Ri,' + Hi,jpi,jHi,]} Z,',]' (5)
i=1j=(k—1)M+1

1. e o ST
+ E(Pk — Br1) W (B — Br) +A<1ZT\ka_ 1)

zij = ¥j — hij(tj, %ij)

N T
Pr=1[r1 P2 -~ PN |
- dhl',]'(t, X)
ij = =

dx (ti%i)

L 1)z
e (1

This first term in this cost function is designed to penalize filters that generate anoma-
lous predicted measurement residuals using a x? statistical metric. The second term ensures
memory is retained within this gating network so that new weights do not differ from
a priori weights by too much (where “too much” is quantified by W). Finally, the third
term in this cost function is a constraint that ensures that the weights from each filter in
the bank sum to unity. It is worth noting, that this constraint does not preclude weights
from becoming negative; however, the cost function’s design should prevent this from
occurring. For instance, the first term uses the square of the updated weights on the x? met-
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rics, so making the weights negative is not beneficial. In fact, this would increase the cost,
because any negative weight implies the other weights must be larger (to ensure that the
constraint is met), which would increase the weighted-x? term. Furthermore, the memory
term disadvantages negative weights, as long as the a priori weights are positive. This cost
function may be written in tensor form as shown in Equation (6).

R 1 .. 1,0 _ 1s = >T
T (P, ;M) = EP[GkPkJr 5 (P — 1) W (B — Pr-1) +/\(11Tvr’k - 1) (6)

Gei O - 0
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0 0 - Gen
kM
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j=(k—1)M+1

_T ~ 5 15T -1 _
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The solution that minimizes this cost function must satisfy the necessary conditions
for optimality as defined in Equation (7).

S dg@AaM)T L1 o - =
Tp = % = Gk + W (B — r—1) + Ay =0 @)
P (o iM)
dj(ﬁ//\/ M) T =
dA Gy

Simplifying these conditions results in the solution that is defined in Equation (8).

_ —1r_ -
e = (Ge+ W) [W By — M| (®)
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Having obtained an analytical solution that minimizes our designed cost function,
we will next focus on this algorithm’s strengths and weaknesses, how it may be slightly
modified to improve its performance in detecting filter mis-modelings, and how it may be
applied practically.

3.2. Discussion

As described, the cost function that defines this optimal gating network was designed
to prefer filters in the bank that were generating predicted measurement residuals that were
not anomalously large relative to the uncertainty associated with the measurements and
state estimates. Among its strengths, are its abilities to analytically generate normalized
weightings for a filter bank with an arbitrary number of filters, automatically identify and
de-weight filters that are producing anomalous results, maintain a memory of how well
each filter in the bank is performing, and be tuned to adjust how strong its memory is.

Though this method has its strengths, it has two notable limitations, which include:

*  Dealing with Biased Measurements: When measurements are biased, a filter that
processes them will generally produce solutions that drift away from truth. This may
or may not be detectable in measurement-residual space. However, the measurement
residuals from a properly functioning filter that does not process the biased measure-
ments will show the bias in its x? residual metrics. Whether it can be detected or not is
based on how large the bias is relative to the filter innovations uncertainty. Essentially
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this means that properly functioning filters are penalized by the presence of biased
measurements even when this filter does not process the biased measurements.

e Preference for Over-Inflated Uncertainty Metrics: When state or measurement uncer-
tainty is inflated (i.e., made to appear more uncertain than the available information
implies), the resulting x? metrics will be smaller than they should be in a statistical
sense, which will make the filter seem like it is performing better than it really is. This
weighting scheme only penalizes residuals when they are too big, not when they are
abnormally small.

To ensure that biased measurements do not disadvantage a filter that does not even
process them, we can modify the optimal weighting scheme by using a mean x? value
for all residual metrics when the associated measurement was not actually processed by
the filter in question. This is accomplished by setting Gy ;; = n; (i.e., the x? distribution
mean) where n i is the dimension of the jth measurement vector and i is in the set Q]-, which
defines all filter indices that do not process the jth measurement vector. All non-processing
filters will be represented as performing nominally, while the remaining filters will be
penalized if the biased measurements degrade their performance.

The second issue, a preference for over-inflated uncertainty metrics, does not have an
obvious solution within the currently defined algorithm. The algorithm’s x? form could be
adjusted to penalize solutions that produce residuals that deviate from a mean or median
estimator, but this would require significant adjustments to the algorithm. We leave this
as an avenue for future development of this algorithm. For now, the user would need to
manually check that the filters are not producing residuals that are statistically too small
too often.

In terms of practical application, the authors provide the following notes:

¢  Gating network a priori weights: When initializing a filter bank with N filters, we gen-
erally assume that the filters are equally weighted (i.e., each has an initial weight
of 1/N).

¢  Gating network batch length: This optimal gating network is designed to work on
batches of data. New weights are computed each time a new set of M measurements
are processed. These M measurements can be a collection of different types (e.g.,
radiometric, optical, etc.). The selected batch length can have a large effect of the
gating network’s performance. A small batch size makes the network more agile,
but it also makes the network less robust to false detections. Generally, it is preferred
that each batch size contains a good mixture of the available data types, but this is not
a requirement. For the simulations in this paper, we use a batch size of 1000 measure-
ments, while we use equal batch sizes in this analysis, there is nothing that requires
this to be the case. Batches can be split up by other means if preferred (e.g., split by
pre-defined data arcs). The only requirement is that the batches are the same for each
filter in the bank—e.g., even if some batches of data in a larger data arc contain zero
optical measurements, optical-only and radiometric-only filters would still produce
weightings for each batch of data in the arc.

¢ Gating network memory: This optimal gating network was designed to retain a
memory of previous weightings in order to make it reflect filter performance over
time rather than at an instance. The W parameter controls the strength of the gating
network’s memory. For the purposes of this analysis we use the following relation:
W = 03, Inxn. This is not a requirement, W is only required to be a symmetric positive
definite matrix. A large value for oy results in a forgetful gating network, which
tends to favor current performance over previous performance. A small value for oy
results in a gating network with a strong memory, which tends to favor filters that
have performed over long spans of the measurement arc. For the simulations in this
analysis we use oy = 0.05.

*  Gating network reset: Periodically, the user may implement gating network resets,
which reset the weights of all the filters to their a priori values. This is normally
performed after an anomaly has been detected, characterized, and addressed or any
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other time that adjustments are made to any of the filters in the filter bank. For the
simulations in this analysis, we do not implement gating network resets.

It is important to note that this gating network algorithm requires no training being an
MME-based algorithm; whereas, training is typically required for MoE-based algorithms.
There are some parameters that can be tuned by the user (e.g., W) to obtain the desired
performance for a given application; however, their selection does not require a formal
automated training algorithm. Similarly, the filters in the filter bank are assumed to be
fully designed by engineers who setup the estimation framework, while the filters could be
trained in MOE style, it is ideal to setup the filters in a way that can isolate common errors
that could occur up in actual operations. For instance, having filters that process all or a
subset of the available measurement types is valuable in identifying and characterizing
sensor-specific mismodeling. It is beyond the scope of this article to identify specific filter
bank setups that should be used as this is a very problem dependent issue; however, it is
left as future work to establish general practices for setting up a filter bank and automating
the process for characterizing the source of anomalies based on the population of filters
that exist within the filter bank. At present this characterization process still requires an
engineer’s intuition.

Given this work is meant to progress the capabilities of autonomous (i.e., on-board)
navigation, it is also important to address the computational impacts of this algorithm.
Being an MME-based algorithm, our algorithm requires measurement processing by vari-
ous filters as part of a filter bank. The number of filters that are a part of that filter bank
will be limited by the computational resources on-board; however the advantage of a
MME-based algorithm is that the number of filters in the bank is completely tunable by
the user and can be adjusted across the mission timeline based on variable computational
capabilities. For deep-space applications, our specific area of interest, there are often long
observation gaps that would enable many different filters to be run as the spacecraft awaits
new measurement information, so this would facilitate more filters in the filter bank. Our
filter bank gating network algorithm, though, does not require significant computations
beyond the filtering algorithms because it is largely based on parameters already computed
in the filters (e.g., predicted measurement residuals). For ideal operation, it would require
some history of how the weights evolve over time, but this can be tunable based on the
allocated computational resources. Our simulations in Section 4 were not produced with
a flight-like code architecture, so we do not provide computational load metrics as this
would not be representative of an actual on-board implementation. This computational
performance is likely to be application-specific too, so it is left as future work to quantify
this for specific applications of interest.

Our algorithm, as designed, is meant to identify the best-performing (in a statistical
sense) filters within a filter bank. These filters will be given the largest weights, while
the poorer performing filters will be assigned lower weightings. If all filters are properly
performing, then we expect that the weights for each filter will be essentially equal. When
this is not the case, we take this as a signal that some anomaly may be occurring within the
system. By investigating which filters are performing best and which are performing worst,
we can generate an informed hypothesis about what caused the anomaly. Examples of how
this gating network may be applied to the problem anomaly detection and characterization
in measurement-fused spacecraft navigation are provided in Section 4.

4. Results

In this section, we demonstrate the performance of the Magill-based gating network
and our optimal gating network in the presence of measurement biasing and dynam-
ical model biasing through numerical simulation that is based on the InSight mission.
Specifically, the simulation focuses on the last 45 days of the trajectory before Mars entry.
The parameters that describe this simulation are defined by Ely et al. [2]. We first sum-
marize the filter bank performance when the system is properly modeled, then address
how the filter bank performs with no biasing, when dealing with radiometric and optical
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measurement biasing, and finally introduce the gating networks to the problem of detecting
dynamical model mis-modeling.

4.1. Simulation Description

Our simulations in this section focus on application of our algorithm to a deep-
space navigation problem where different observables are fused together to form a fully-
informed navigation solution—the primary use-case for which this algorithm was de-
veloped. Spacecraft navigation problems have a unique set of qualities relative to other
navigation problems—mostly related to things like the data-sparse nature of the tracking
data (i.e., long gaps between observation windows are common), the limitations on control-
lability of the system due to power and fuel scarcity, the need for highly precise sensors
and clocks, and the level of dynamical knowledge that is needed to successfully predict the
motion of the spacecraft. Deep-space navigation (i.e., beyond the Earth-moon system) has
its own unique challenges including: even longer delays between observation windows,
long communication delays with the ground and low-signal communications (due to large
Earth-spacecraft distances), highly non-linear dynamics in dynamically unknown systems
(e.g., asteroid proximity operations), and the limited ground communication infrastructure
there is to communicate with all of the currently operating deep-space missions (one of the
major motivations behind autonomous navigation research).

Deep space missions typically rely on Earth-based radiometric data types for track-
ing (e.g., ranging based on light-travel times, Doppler, and differenced one-way ranging
at different receiver locations), but can also use on-board observables from spacecraft-
mounted cameras and light detection and ranging (LIDAR) sensors. Typically, the radio-
metric data is two-way (ground->spacecraft->ground) in order to improve data quality
by removing spacecraft clock errors; however, one-way observables are feasible with a
highly-stable/accurate on-board clock like DSAC. For this analysis, we will focus on one-
way radiometric data and optical data because these better support autonomous spacecraft
navigation, which is a prime use-case for this research. Fusing radiometric and optical data
types into a single navigation solution can often be difficult due to the data types being so
independent with each other. However, this independence is powerful from an information
standpoint, so it is desirable to develop a method for robust autonomous fused navigation.

To test our algorithm in a realistic deep-space navigation problem, we developed a
scenario based on NASA'’s InSight mission—specifically, the final 45 days of the Martian
approach phase. Table 1 defines our nominal filter setup—specifically where it differs from
the model described by Ely et al. [2]. For completeness, our nominal filter setup includes the
following parameters: spacecraft cartesian position and velocity; solar pressure scale factor;
attitude control thruster magnitudes and direction; impulsive burn parameters for trajectory
correction maneuvers; Earth pole motion and universal time (UT1); Tropospheric and
Ionospheric delay terms; spacecraft clock offset and drift terms; ranging biases; gravitational
parameters for the Earth, Moon, and Mars; ephemerides for the Earth, Mars, Deimos,
Phobos, and other optical targets (i.e., asteroids); and deep space network station locations.
In the measurement biasing analysis, we use the same general filter setup for each filter in
the filter bank with only difference being what measurements are being processed by each
filter and bias terms that are specific to specific data types (e.g., removing range bias terms
from the optical-only filter). For the dynamic mis-modeling analysis, we make specific
changes to the attitude thrusting and process noise models in each filter, which are defined
described in Section 4.4.
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Table 1. Nominal Filter Setup Used in Simulations.

Parameter Uncertainty Model Notes
3D Inertial Mars-Relative 100.0 km (diagonal) —

Position

3D Inertial Mars-Relative 0.1 m/s (diagonal) —

Velocity

Solar Pressure
Scale Factor

0.11 (Bias, 1-0)

0.03 (Temporal, 1-0)

1 day (Batch Length)

7 days (Correlation time)

Modeled with a constant
random bias and stochastic
varying component that

is estimated in discrete
batches that are

correlated in time

Attitude Thruster
Acceleration Magnitude

3% (Bias, 1-0)

5% (Temporal, 1-0)

1 day (Batch Length)
No Correlation

Modeled with constant
bias and temporally
varying component that
is estimated in discrete
batches that are

not correlated in time

Attitude Thruster 3.0 deg Modeled with a constant
Orientation random bias
Earth Pole 5.5 x 107° deg (Bias, 1-0) Modeled with a constant
Motion 5.5 x 107® deg (Temporal, 1-¢)  random bias and stochastic
1 h (Batch Length) varying component that
2 days (Correlation time) is estimated in discrete
batches that are
correlated in time
Earth UT1 3.0 x 1073 deg (Bias, 1-0) Modeled with a constant
3.0 x 1073 deg (Temporal, 1-¢)  random bias and stochastic
1 h (Batch Length) varying component that
6 h (Correlation time) is estimated in discrete
batches that are
correlated in time
Tropospheric Dry/Wet 1 em (Bias, 1-0) Modeled with a constant
Delays 1 cm (Temporal, 1-0) random bias and stochastic
1 h (Batch Length) varying component that
6 h (Correlation time) is estimated in discrete
batches that are
correlated in time
Ionospheric Day/Night 55/15 cm [Day] (Bias, 1-0) Modeled with a constant
Delays 55/15 cm (Temporal, 1-0) random bias and stochastic

1 h (Batch Length)
6 h (Correlation time)

varying component that
is estimated in discrete
batches that are
correlated in time

4.2. Performance with No Biasing

The filter bank we consider in this subsection, includes three filters. This includes an
optical-only filter (only processes optical data), a radiometric-only filter (only processes
radiometric data), and a fused filter (processes both optical and radiometric data). The intent
of this filter bank is to identify when optical and radiometric are in conflict with one
another—a strong indication of mis-modeling in the system. Beyond this we would like
to identify which data type is mis-modeled, and ideally be able to determine the cause of

the mis-modeling.

We begin our analysis by evaluating the filter performance in the absence of measure-
ment biasing. The position error and uncertainty for each filter in the bank are shown in
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Figures 3-5. In these results, we see that the optical-only filter (Figure 3) tracks the space-
craft at a level of 10-50 km (1-0) until right before entry, where uncertainty deceases to the
sub-kilometer level over the course of a few days. Conversely, the radiometric-only filter
(Figure 4) tracks consistently at the 10 km level (1-0) until immediately before entry where
position uncertainty rapidly decreases to the sub-kilometer level, while radiometric-only
tracking generally has a smaller square root of the trace of the position covariance (RTPC)
level than the optical-only tracking, it should be noted that there is a period right before
entry where optical-only tracking begins to outperform the radiometric-only tracking.
The fused filter (Figure 5) consistently outperforms the other two filters throughout the
duration of the simulation. Position uncertainty ranges between 1 and 10 km (1-c, RTPC),
generally decreasing with time, until about 4-days before entry when position tracking
improves significantly. It should be noted, that each filter’s position error stays within its
position uncertainty bounds, though the radiometric-only filter results show that the error
is generally smaller than what the uncertainty metrics dictate that it should be. This may
be indicative of over-inflating radiometric data-weighting, which would result in larger
uncertainties than the available information would otherwise indicate. However, this is a
single realization of error in this system, so it cannot be taken as fully representative of the
system’s more general error response behavior.
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Figure 3. Position error (blue) and square root of the trace of the position covariance (RTPC, 1-c
(orange) and 3-c (red)) for optical-only filter in the no-biasing setup.
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Figure 4. Position error (blue) and RTPC uncertainty (1-0 (orange) and 3-c (red)) for radiometric-only
filter in the no-biasing setup.
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Figure 5. Position error (blue) and RTPC uncertainty (1-0 (orange) and 3-c (red)) for fused filter in
the no-biasing setup.

When applying the Magill-based gating network to this filter bank in this nominal
scenario, we obtain the results depicted in Figure 6. The results show a clear preference
for the fused and radiometric-only filter for the first portion of this approach phase. This
makes intuitive sense because each filter is exhibiting nominal behavior (i.e., no anomalous
measurement residuals), and the fused and radiometric-only filters produce solutions with
significantly smaller state uncertainties. Beyond the first portion of approach, the fused
filter begins to dominate the weightings because the aggregate information from both
radiometric and optical data types begins to dominate over the less-informed radiometric-
only solution. These results essentially tell us that the fused filter is overwhelmingly the
best performing filter in the bank under the standard MME criteria (i.e., small measurement
residuals and small innovations uncertainty).
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Figure 6. Magill gating network weights with properly modeled measurements.

The weightings that come from our optimal gating network are shown in Figure 7.
These weightings use a batch size of 1000 measurements (M = 1000). Unlike the weightings
from Magill’s gating network, we do not see a clear preference for any of the filters, which is
an indication of a healthy (i.e., well-modeled) filter bank. Equal weightings occur when the
measurement residuals and uncertainties output from the filters in the bank are statistically
consistent with each other. When one or more filters begin to be preferred by the network
(i.e., large weighting), this is an indication that at least one of the filters in the bank is not
behaving in a statistically consistent manner—i.e., its residuals are either too large relative
to its uncertainty (leading to a low weight) or its residuals are too small relative to its
uncertainty (leading to a higher weight). Unlike the Magill weighting scheme, our optimal
weighting scheme focuses on prioritizing filters that output residuals that are statistically
small with no preference for how small the uncertainty of that filter is. Since each filter in
this scenario is properly modeled, they will each output measurement residuals that are
statistically consistent with their uncertainty metrics, thus resulting in nearly equal weights
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across the bank. In these types of scenarios, we would usually select the default filter to
use for estimation purposes and conclude that no anomalies are occurring. In this instance,
that default filter is the fused filter, since it is the best-informed filter.
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Figure 7. Optimal gating network weights with properly modeled measurements.

4.3. Performance with Measurement Biasing

Having established how these filters and gating networks perform when measure-
ments are properly modeled, we now move toward assessing the weighting schemes’
performance in the presence of measurement biasing. In order to assess the sensitivity of
the filter banks to bias types, we will run different biasing scenarios where the size of the
bias is varied. These scenarios are defined in Table 2. We will evaluate the effects of optical
and radiometric biasing independently in the ensuing analysis. These biases are simply
added to the actual measurement; however, some are representative of realistic issues in
the system. The optical bias can be seen as a slight mis-modeling in the fixed orientation
of the camera relative to the spacecraft attitude. The range bias can be seen as either a
clock bias (spacecraft or ground-based) or transponder delay mis-model associated with
the receiver electronics.

Table 2. Measurement Biasing Used in Simulations.

Optical Biasing Radiometric Biasing
(S;ir)l(;ple Bias Line Bias (pix) Range Bias (m) (II)I?EZP)I er Bias
No Bias 0.0 0.0 0.0 0.0
Small Bias 0.2 0.3 5.0 0.03
Medium Bias 2.0 3.0 50.0 0.3
Large Bias 20.0 30.0 500.0 3.0

The effects of a small optical bias on the optical-only and fused filters are shown in
Figures 8 and 9, respectively. It is clear that even this small bias (on the order of uncertainty
in the measurements) has the effect of causing the filters to have significantly higher position
errors than predicted by the filter’s uncertainty metrics. The solutions do not fully diverge,
but larger biases could cause this to occur. The radiometric-only solution is unaffected in
this scenario, since it does not process the biased optical measurements.
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Figure 8. Position error (blue) and RTPC uncertainty (1-0 (orange) and 3-0 (red)) for optical-only
filter in Small Optical Bias setup.
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Figure 9. Position error (blue) and RTPC uncertainty (1-0 (orange) and 3-c (red)) for fused filter in

Small Optical Bias setup.

The resulting weights from the Magill gating network for these optical bias scenarios
are shown in Figure 10. From these results we can make two clear conclusions: (1) the
fused filter is still preferred overwhelmingly and (2) the size of the optical bias does not
have a significant effect on how the Magill weights behave. Essentially, the Magill weights
are unable to identify that the radiometric-only solution is the best performing filter. This is
because the method for computing the weights necessitates that all measurements be used
to compute filter weights, even measurements that are not processed by specific filters. This
rigidness results in all three filters behaving poorly with the biased optical measurements,
but because the fused filter has the smallest uncertainty it ends up rising to the top.
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Figure 10. Magill gating network weights with biased optical measurements.

Our optimal gating network’s weights for this scenario with biased optical measure-
ments are shown in Figure 11. The rigidity of the Magill weighting scheme is contrasted
by our optimal gating network, which can be retooled to ignore unprocessed measure-
ments when computing filter weights. The weights show a clear preference for the radio
solution, and this preference becomes more significant as the size of the bias in the optical
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measurement grows. As previously discussed, the fact that the filter weights deviate signif-
icantly from their nominal values (i.e., equally weighted at 1/N) can be viewed as a sign
of mis-modeling in the system. Because the radiometric solution is clearly preferred, we
can assume that the source of the mis-modeling is something to which the optical-only and
fused filters have greater sensitivity (e.g., biasing in the optical measurement model).
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Figure 11. Optimal gating network weights with biased optical measurements. Small (solid lines),

medium (dotted lines), and large (dashed lines) biasing cases are included.

These results show that the Magill weights are largely insensitive to optical biasing,
while our new gating network is able to clearly identify the presence of a problem while
also indicating the potential source of the issue. Moving forward, we will investigate how
these gating networks and filters perform in the presence of radiometric measurement
biasing. The position uncertainty and error due to a Large Radiometric Measurement Bias
(Table 2) for the radiometric-only and fused filters are shown in Figures 12 and 13. Neither
filter diverges because a large portion of the radiometric biases are absorbed by different
parameters in the filter (e.g., ranging errors can be absorbed by clock error parameters);
however, the effect of the biases can still be seen. The radiometric-only filter position
error drifts noticeably outside of the 3-c bounds. The biases’ effects on the fused filter are
more subtle. Essentially, the additional un-biased optical information helps constrain the
solution to stay near the true trajectory, which gives an advantage over the radiometric-only
solution. However, when comparing the fused filter’s performance in the no bias scenario
setup, we can see a slight increase in position error that is attributable to the presence of
these radiometric measurement biases.
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Figure 12. Position error (blue) and RTPC uncertainty (1-¢ (orange) and 3-c (red)) for radiometric-only
filter in Large Radiometric Bias setup.
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Figure 13. Position error (blue) and RTPC uncertainty (1-o (orange) and 3-c (red)) for fused filter in
Large Radiometric Bias setup.

Further investigating the effect of these radiometric biases, the clock phase uncertainty
and error statistics from the fused filter are shown in Figure 14. When processing un-biased
radiometric data, the fused filter outputs clock errors that are near 0-¢ in size; however,
when the large radiometric bias is introduced the filter now outputs clock error in the range
of 1-2 0. More specifically, the clock error is approximately 2 ps, which is what should
be expected from the 500 m range bias that we introduced. Essentially, this result shows
that the filter absorbed the range bias into the clock error modeling in a way that is not
statistically anomalous. This is why the fused filter is still able to output accurate state
estimates despite being given biased radiometric data. By turning down the clock phase
uncertainty, we would be able to better detect smaller radiometric errors; however, it is
important not set the clock uncertainty too low where the filter becomes susceptible to
divergence from realistic/anticipated clock errors.
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Figure 14. Clock phase error and uncertainty for fused filter in Large Radiometric Bias setup.

The weights from the Magill gating network for these biased radiometric data scenarios
are shown in Figure 15. Once again, we find that that the Magill weights overwhelmingly
prefer the fused filter despite the introduction of biased measurements. This makes sense,
since the fused filter is still able to output statistically healthy estimates and it still produces
the smallest uncertainty in its estimate. It is interesting to note that the size of the radiomet-
ric bias does have a noticeable effect on how quickly the filter weights converge to their
steady-state values. As the size of the bias increases, we find that the filter weights more
quickly favor the fused filter over the radiometric-only filter—the optical-only is always
low-weighted due to its high uncertainty metrics. This makes intuitive sense because
the radiometric-only solution is more significantly compromised by the radiometric data
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biasing as compared to the fused filter. Even though this result is intuitive, we would prefer
the gating network be able to identify the presence of the mis-modeling and help isolate its
root cause. Our optimal gating network better exhibits this type of behavior.
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Figure 15. Magill gating network weights with biased radiometric measurements. Small (solid lines),
medium (dotted lines), and large (dashed lines) biasing cases are included.

The weights from our optimal gating network for these radiometric data bias scenarios
are shown in Figure 16. We clearly see through these results that radiometric measurement
biasing is more difficult to detect as compared to optical measurement biasing. The type of
radiometric biasing that we introduced is consistent with a clock bias, and because our filter
is setup to estimate clock states, the filters themselves are able to deal with the biasing as
long as that biasing is not too large of a clock error (relative to our a priori clock uncertainty
modeling). When the biasing is detected, the weights are still able to identify that the
optical-only filter is the best behaving filter since it does not process the biased data. This
result is significant since it can be used in analysis to point to the root cause of the anomaly
being radiometric in nature or another similar problem that would primarily disadvantage
radiometric-based tracking over optical-based tracking. The effects of smaller radiometric
biases are not easily distinguishable, but this goes back to the issue of the clock and other
parameters absorbing their effects. By adjusting the filter models, we could make the gating
network more sensitive to radiometric biases, but the filter may then be less robust to the
biases themselves. As an alternative, we could possibly add new filters to the bank that
vary modeling for the parameters that absorb radiometric biases (e.g., clock modeling).
This proposed extension to this investigation is left as future work.
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Figure 16. Optimal gating network weights with radiometric measurement biasing. Small (solid
lines), medium (dotted lines), and large (dashed lines) biasing cases are included.

For each of the scenarios run to this point, we computed their average optimal gating
network weight over the full data arc and summarized those results in Table 3. These aver-
age values give a general sense of the priority of the filters across the full data arc. These
results really underline the conclusions that we have made up to this point:
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*  When all filters in the bank are properly modeled, each of the weights stays close to
the ideal 1/ N value, thus indicating nominal filter bank behavior (i.e., no anomaly
is detected).

¢  Optical biasing is detectable via our optimal gating network at all three magnitudes
(with detectability increasing with the size of the bias), and the gating network clearly
prefers the radiometric-only solution over the the other two (with the fused filter
performing the worst of all). This result indicates that the anomaly is likely related to
optical data quality and that specifically the optical and radiometric data are inconsis-
tent with one another.

*  Given our filter setup, the radiometric biasing is not as easily detectable via our gating
network. This makes sense because the filters were setup to estimate parameters that
mimic the biasing that we injected, so essentially the biasing is not anomalous under
our model unless it becomes too large. As it becomes larger, the optical-only solution
does become preferred, which indicates the biasing is becoming too large for what our
filters are modeling.

Table 3. Average Optimal Gating Network Weights for Biased Measurement Scenarios.

Case Radio Filter Optical Filter Fused Filter
Ideal 0.3333 0.3333 0.3333
No Bias 0.3354 0.3272 0.3374
Small Bias—Optical 0.4186 0.2923 0.2891
Medium Bias—Optical 0.9008 0.0638 0.0354
Large Bias—Optical 0.9679 0.0316 0.0004
Small Bias—Radio 0.3354 0.3272 0.3374
Medium Bias—Radio 0.3350 0.3280 0.3370
Large Bias—Radio 0.3047 0.3899 0.3054

Through these results, we have found that the Magill gating network is largely insen-
sitive to measurement biasing in radiometric-optical fused deep space navigation. When
biasing occurs, the Magill weights consistently prefer the fused filter even when it is cor-
rupted by the biased information. Our new optimal gating network, however, is able to
detect statistically significant mis-modeling. Beyond this, its outputs may also be used
to isolate the possible root causes behind detected anomalies, which can greatly aid in
operational analysis. Moving forward, we will investigate how this new optimal gating
network performs in the presence of dynamic mis-modeling.

4.4. Dynamical Model Mis-Modeling

To investigate the efficacy of our new gating network in detecting the presence of
dynamic mis-modeling, we will introduce more dynamic variations in the truth data and
then slightly adjust the filter bank to include filters with varied parameters for acceleration
estimation. In terms of truth data changes, we significantly increase the error in the
attitude control thrusting such that each thruster has a random constant bias drawn from a
zero-mean normal distribution with a standard deviation of 3x the nominal thrust level
(5% 10712 km/s?) and daily temporal variations in the magnitude that are drawn from a
zero-mean normal distribution with a standard deviation of 10x the nominal thrust level.
We leave the attitude thruster direction uncertainty untouched relative to the nominal
scenario setup.

In order to enable detection of dynamic mis-modeling in our filter bank, we introduce
variations of our existing three filters where the new versions have different uncertainties
on attitude control thruster magnitude parameters. Our standard filters (radio, optical,
and fused) remain unchanged relative to the scenario setup, so they have large errors in
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their attitude control thrusting models—they only model a 3% bias and a 5% daily variation
in the attitude thruster magnitudes. The new filters (radio-Q, optical-Q, and fused-Q) are
all modeled properly—they model a 300% bias and a 1000% daily variation in the attitude
thruster magnitudes, while thrusters in reality would never be this poorly behaved, this
type of scenario is reminiscent of the Mars Climate Orbiter crash, where a units modeling
error led to significant modeling issues in the attitude control system. It should be noted that
these modeling errors only occur during attitude thrusting, so the errors are not constant,
and thus will not be as detectable as a comparably-sized constant bias in acceleration.
The intent of this exercise is to see whether these dynamically mis-modeled filters are
de-weighted by our gating network in a way that would allow us to detect the anomaly as
well as determine the cause of the anomaly.

Before investigating how the gating networks react to the introduction of this attitude
thruster mis-modeling, we first want to quantify the effect of this dynamic mis-modeling
on the individual filters. Figures 17-19 show the position error and uncertainty metrics
that results from the optical-only, radiometric-only, and fused filters that are dynamically
mis-modeled. The optical-only filter (Figure 17) seems relatively unaffected by the pres-
ence dynamic mis-modeling—this is a different truth realization from the no-biasing case,
but the position error is similarly well-bounded by its uncertainty envelope. Conversely,
the radiometric-only filter (Figure 18) is noticeably affected by the dynamic mis-modeling.
Position tracking error begins to steadily increase over time (relative to the uncertainty
bounds) until it exceeds the 3-¢ bound for an extended period. The fused filter (Figure 19)
exhibits similar behavior—Its position error grows beyond the 3-c bound for an extended
period, but it begins to recover near entry as the optical data becomes more information
rich. These results tell us that radiometric data is far more sensitive to this type of dynamic
mis-modeling than optical data. In initial analysis, this increased sensitivity does not seem
to be associated with simulation geometry (i.e., net attitude control thrust orientation with
respect to Earth and optical targets), but it may be due to the uncertainties present in the
filter. The optical filter has larger state uncertainties, in general, which can make it less
sensitive to dynamic mis-modeling and it has fewer parameters than radiometric data (e.g.,
clock error, transponder bias, etc.) that could improperly absorb the dynamic mis-modeling.
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Figure 17. Position error (blue) and RTPC uncertainty (1-¢ (orange) and 3-¢ (red)) for optical-only
filter with attitude thruster mis-modeling.
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Figure 18. Position error (blue) and RTPC uncertainty (1-o (orange) and 3-c (red)) for radiometric-only
filter with attitude thruster mis-modeling.
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Figure 19. Position error (blue) and RTPC uncertainty (1-0 (orange) and 3-0 (red)) for fused filter

with attitude thruster mis-modeling.

The Magill gating network weights for our filter bank with 6 filters are shown in
Figure 20. These results show that the Magill gating network overwhelmingly favors the
properly modeled fused filter (fused-Q). This makes sense because this filter is properly
modeled and fully-informed, so it would have small residuals and small uncertainties.
By strongly favoring the fused-Q filter over the fused filter, we can postulate that there
is mis-modeling in the system because the lower uncertainty filter (the fused) should
be preferred if no mis-modeling were present—it is hard to validate this fully, though,
because the Magill weights have been shown to be unable to reliably detect mis-modeling
through our previous examples. There is a tradeoff between increasing dynamic uncertainty
parameters in the filter. By increasing these parameters, we essentially lessen statistical
constraints on the data, which allow the filter to absorb more error, which can yield smaller
measurement residuals; however, this comes with higher estimate uncertainties, generally.
The Magill gating network accounts for the size of the measurement residual and the
innovations’ uncertainty, which means adding dynamic uncertainty to the system can yield
results that are difficult to predict.
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Figure 20. Magill gating network weights with attitude thruster mis-modeleing.
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The weights from our optimal gating network are shown in Figure 21. The results
clearly indicate an anomaly is occurring due to the fact the weights are consistently different
from one another. We see that this gating network indicates a preference primarily for
the optical filters, and secondarily to the properly modeled fused and radiometric-only
filters. The dynamically mis-modeled fused and radiometric-only filters have the least
priority. These results are fairly intuitive based on our previous analysis. We previously
saw that the optical filters were generally unaffected by the dynamic mis-modeling, so we
would expect them to rank highly in the gating network. Similarly, the properly modeled
radiometric-only and fused filters, should perform well because they are not subject to
any unaccounted biasing. However, two results are odd: (1) the optical filters outperform
the properly modeled radiometric-only and fused filters and (2) the effects of the dynamic
mis-modeling seem to diminish over time. In the former case, this seems to imply that
the optical filters produce lower residuals than the other two properly modeled filters
in a y2-sense. This is somewhat confirmed by the position tracking results (Figure 17),
which shows position error for the optical filter is generally below the 1-¢ bound. This
might imply that the uncertainty metrics from the optical filter are too large in this scenario.
In the latter case, this result is somewhat un-intuitive because we saw that position error in
the fused and radiometric-only filters actually grows over time, so we would expect their
residuals to grow commensurately. This result would lead to drops in the weights for these
two filters, not increases as we have observed. This type of result warrants more study and
should be addressed in future work.
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Figure 21. Optimal gating network weights with attitude thruster mis-modeling.

Overall, the weights from this gating network do tell us that an anomaly is occurring
in the system. The gating networks preference for the optical filters seems to indicate that
the problem is something to which the optical data is relatively insensitive. Furthermore,
the gating network’s secondary preference for the higher dynamic uncertainty filters seems
to indicate the issue may be dynamic in nature. By combining these inferences, we can
hypothesize that there is a dynamic mis-modeling in the system that acts in a manner to
which radiometric data is especially sensitive. This once again shows the utility of this
gating network in its abilities to both identify the presence of mis-modeling and provide a
means for characterizing what that mis-modeling may be.

As a final test of this gating network’s capabilities, we consider an extension to the
dynamic mis-modeling problem. Our previous example focused on whether the gating
network could identify mis-modeling when half of the filter’s in the bank were properly
modeled and the other half under-represented dynamic variations in the attitude thruster
model. In this next example, we mis-model all six filters in the same manner—we increase
the true nominal attitude thruster magnitude by a factor of ten, while keeping the original
values in the filters. This results in a modeling error on the order of 1 x 107! km/s?. We
then remove the attitude thruster magnitude-specific parameters from the filters as well as
the temporal estimation of the SRP parameter (just estimated as a bias now), and instead
we add parameters for a batched (1-day batch length) polynomial acceleration model to
the filters to account for mis-modeled accelerations (i.e., process noise). The standard
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filters (i.e., fused, radio, and optical) all use an a priori sigma of 5 x 10712 km /s? for this
polynomial acceleration model (termed low-uncertainty filters going forward) while the
high-uncertainty filters (i.e., fused-Q, radio-Q, and optical-Q) all use an a priori sigma of
5 x 10~ km/s?. This filter setup is designed to detect dynamic mis-modeling when the
filter weights begin to favor the high uncertainty models.

The error and uncertainty behaviors for this setup are similar to what we have seen
previously. The low-uncertainty radiometric and fused filters have position errors that
quickly diverge outside the 3-¢ tracking envelopes due to the mis-modeling. The low-
uncertainty optical filter does experience some degraded tracking (especially right before
entry), but it is clearly less sensitive to the mis-modeling than the filters that use radiometric
data. The high-uncertainty filters perform much better than their low-uncertainty counter-
parts. The error remains bounded by the uncertainty envelopes, which indicates that the
higher uncertainty polynomial acceleration model is appropriately compensating for the
mis-modeled attitude control thruster models. The Magill gating network metrics for this
scenario are also similar to the previous example. This gating network overwhelmingly
favors the high-uncertainty fused filter, since it is the only fully-informed filter that outputs
measurement residuals that are not too large relative to its expected level of uncertainty.
Once again, however, this result is hard to draw a conclusion from, since we have already
shown the Magill weights do not reliably detect the presence of anomalies.

The filter weights from our optimal gating network are shown in Figure 22. Other than
in the middle of the arc, several things are apparent in these results: (1) anomalous behavior
is detectable due to the filters deviating from equal weighting, (2) the low-uncertainty fused
and radiometric-only solutions are the worst performing filters, (3) the filter that is the
most consistently highly-weighted is the optical high-uncertainty filter, and (4) all three
low-uncertainty filters have low weights right before entry. These results seem to indicate
that an anomaly is occurring in the system to which radiometric data is more sensitive
than optical data except right near entry. Because the high uncertainty filters generally
perform better, we might assume that this means the source of the anomaly is dynamic in
nature, but as already mentioned this gating network currently is vulnerable to filters with
over-inflated uncertainty metrics. This motivates us to address this vulnerability through
future research. The performance of the gating network in the middle of the arc (near
measurement index 30,000) is also an area of future research, as this is an unexpected result
that does not have an obvious answer.
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Figure 22. Optimal gating network weights with mis-modeled dynamics and varied process
noise models.

As with the measurement biasing analysis, we computed the average optimal network
weightings for each filter in the bank for both dynamic mis-modeling scenarios (Table 4).
These results reinforce the following conclusions we have previously made:

* Ananomaly is detectable in both dynamic mis-modeling scenarios due to the gating
network’s deviation from the ideal weights

¢  The source of the anomaly in both instances more significantly affects radiometric-
based solutions than optical-based solutions. Radiometric and fused filters perform
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similarly, so this seems to indicate that the radiometric and optical data are not fighting
each other

*  The higher uncertainty filters are preferred in both scenarios, which seems to indicate
that the source of the mis-modeling may be dynamic in nature—specifically, mis-
modeling to which optical data is less sensitive than radiometric data.

Table 4. Average Optimal Gating Network Weights for Mis-Modeled Dynamics Scenarios.

Filters Ideal  Attitude Thruster Scenario Process Noise Scenario
Radio Filter 0.1666  0.0844 0.0961
Optical Filter 0.1666  0.2510 0.1992
Fused Filter 0.1666  0.0815 0.0742
Radio-Q Filter 0.1666  0.1658 0.1945
Optical-Q Filter  0.1666  0.2520 0.2431
Fused-Q Filter ~ 0.1666 0.1653 0.1929

The simulations and results discussed in this section have shown that our optimal
gating network has the ability to identify and characterize filter anomalies related to
measurement and dynamic mis-modeling. These results show promise and warrant future
research into this method with the ultimate goal of being a method that can autonomously
navigate a spacecraft while detecting and diagnosing problems as they occur.

5. Conclusions

In this study, we investigated the usage of filter bank gating networks for the purposes
of anomaly detection in deep space autonomous navigation with fused observable types.
We specifically investigated methods from the areas of Multiple Model Estimation (MME)
and Mixture of Experts (MoE). Existing methods did not tend to deal with the problem of
measurement-fused estimation, so our work focused on developing an MME-based gating
network that could be used to detect anomalies in a system, especially those relating to
conflicting information from different measurement data types. This new gating network
was designed to reward filters that produce measurement residuals that are consistent with
the filter s uncertainty metrics while balancing this against a term that incorporates memory
of previous filter weightings and ensures that the weightings are properly normalized. We
then expanded this algorithm to deal with filters that only process a subset of the available
measurement types, which is vital to dealing with the fused-sensor problem.

After developing this new gating network, we tested it and a standard gating network
against a numerical simulation based on the Insight spacecraft’s Mars approach phase
navigation with fused, optical-only, and radiometric-only data. In these results, we found
that our new optimal gating network was able to detect statistically significant measurement
mis-modeling—indicated by the gating network weights deviating from equality. Optical
sensor biasing stood out clearly (especially as the size of the bias grew) due to there being no
modeling in the filters that accounted for this type of biasing. Radiometric biasing was not
as easily detectable, though, because the filters already accounted for clock errors, which
were consistent in size with the introduced biasing. Essentially, the radiometric biasing was
not statistically significant because our models already accounted for the possible presence
of these level of errors. For dynamic mis-modeling, we introduced mismodeling into the
attitude control thrusting and added new filters to the filter bank that better modeled the
introduced level of dynamic uncertainty. We found that the gating network weights clearly
identified the presence of the dynamic mis-modeling. We were also able to characterize the
mis-modeling as dynamic in nature due to the network’s preference for the large dynamic
uncertainty versions of the filters and the fused filters did not indicate any problems with
radiometric and optical information consistency. In each of our simulations we compared
our results against the existing Magill gating network and found that it provided no means
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to consistently identify mis-modeling and often selected filters that were mis-modeled as
the optimal solution. Not being able to consistently detect the presence of mis-modeling,
the Magill method also had no means to characterize anomalies like our optimal gating
network is able to do. This characterization process is not automated at this point, but our
gating network provides a good foundation that is flexible enough to adapt to specific
mission setups and different types of anticipated anomalies.

These results demonstrated that our new algorithm shows significant promise for
its intended use-case, but we did identify areas to expand and improve this algorithm
in the future. Specifically, work should be commenced to adjust the algorithm such that
it does not prefer filter solutions with over-inflated uncertainty metrics. Furthermore,
we need to further push this algorithm toward its autonomous use-case by defining an
automated method for triggering an anomaly detection by the gating network, developing
a fully-defined decision tree to characterize the anomaly using the filter weightings as
a guide, and assessing the computational load of this algorithm using a flight-like code
framework. Finally, developing simulations that more realistically represent a broader set
of expected anomalies in a navigation solutions will better demonstrate the capabilities of
this algorithm.
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