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Abstract: A significant amount of the literature is focused on converters that supply the required
voltage with low input-current ripple to electronic devices. A hybrid converter that combines
boost and Cuk converters was developed recently. This hybrid converter achieved a relatively low
input-current ripple based on earlier strategies. This paper proposes a new model that simulates
a hybrid power converter system using a unified evolutionary algorithm (EA). As part of this
paper, we present an improved framework for a hybrid power converter. Moreover, a unified EA is
developed to incorporate differential evolution (DE) and genetic algorithm (GA) properties in order
to analyze the proposed modified hybrid power converter. This research describes a modified hybrid
power converter that optimizes the zero-ripple duty cycle (DZ) through the proposed algorithm
for minimizing the input-current ripple. Based on our simulation results, comparing the proposed
method with the baseline algorithm reveals that the proposed approach is significantly more efficient
than the baseline algorithm and achieves the minimum input-current ripple in different gain values.
In addition, we observe that the proposed algorithm performs better than the DE and GA algorithms
in terms of obtaining low input-current ripple results. Therefore, the proposed hybrid algorithm is
becoming more efficient with hybridization.

Keywords: power converter; differential evolution; genetic algorithm; unified framework

1. Introduction

Over the past several years, emphasis has been placed on optimizing advanced elec-
tronic systems, which depend on reliable and efficient power supplies. To achieve these
objectives, optimization methods are used in the design of power converters [1]. The
voltage ratings of the various components in electrical and electronic devices differ. DC–DC
converters are electronic circuits that generate the appropriate voltage for a specific ele-
ment [2]. In general, these are categorized into buck, boost, buck-boost, and Cuk converters.
The DC–DC converters are power electronics-based circuits that are capable of varying
and regulating the voltage level from input to output. These converters have been used in
a wide variety of applications, such as automatic control systems, renewable energy sys-
tems [3,4], photovoltaic generation, fuel cell generation, and electric vehicles [2,5] because
of their high efficiency, small size, and simple structure.

The converters produce waves with many harmonics. This is an important characteris-
tic. A filter is placed at the output of the converter to reduce these harmonics. It is complex
and expensive to filter the output voltage or current of a converter that delivers a square
voltage or current by alternation. The pulse-width modulation (PWM) technique has been
demonstrated to be the most suitable for a controlled converter. In addition, it effectively
neutralizes the output wave [6]. In [6], the authors presented various techniques using
controlled PWM. Three PWM strategies with different vertical and horizontal combinations
were evaluated in [7]. Thereby, their output harmonics were measured.

Many scholars have recently applied and implemented metaheuristic techniques in
the context of complex optimization problems [8,9]. Several metaheuristic algorithms
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have been developed. These include DE [10], GA [11], and particle swarm optimization
(PSO) [12]. These methods are reliable, straightforward, and simple to implement. Conse-
quently, these are among the preferred approaches [13]. Metaheuristics have been applied
in several practical applications [14], and some are used in optimizing relevant problems.
These include an improved interlaced boost converter [15]. Problems with power con-
verters have been solved using the PSO algorithm [15–17]. In [15], an interleaved boost
converter (IBC) using an optimal Type-III controller is described. In order to design the
controller parameters, the classical “k-factor” strategy was employed, followed by the
development of an optimal Type-III controller based on PSO. In the paper [16], the authors
introduced an optimization method for a proportional-integral PI controller for four-phase
interleaved boost converters. The PSO algorithm was used to find the optimal gains for PI
controllers [16]. By using the chaos PSO algorithm, the paper [17] simulated and analyzed
a boost converter with maximum power point tracking (MPPT).

In [18], a GA was utilized to perform constrained optimization of a DC–DC converter
for uninterruptible power supply applications. In [19], the design of a PID controller for
controlling a DC–DC boost converter in PV systems was discussed. Here, three controller
parameters were adjusted using the GA. A method that optimizes the duty cycle based
on a pre-calculated duty cycle by using the GA for a non-inverting buck-boost converter
was proposed in [20]. Furthermore, the duty cycles were estimated using a discrete model.
An optimization method for synchronized buck converters using discrete variables was
presented in [21]. The DE algorithm was used in [22] to design high-power millimeter-wave
mode converters. In [23], a variation in the DE algorithm was developed to determine the
switching angles of a programmed pulse-width modulation (PPWM)controlled inverter.
In [24], a differential evolution strategy was used to solve the optimal switching angle
problem in an harmonic elimination pulse-width modulation (HE-PWM). As described
in the paper [25], a hybrid converter was presented that was capable of providing both
AC and DC loads with one DC input where a voltage source inverter replaced the control
switch of the boost converter. An optimized filter design for a boost converter was created
using GA in [26]. By using GA, it was possible to reduce the lower-order harmonics of
an inverter considerably. Due to the nonlinear characteristics and time-varying features
of power converters, GA was applied to optimize PI parameters [27]. The bee colony
optimization algorithm generated duty cycles for the Sheppard–Taylor and interleaved
converter in [28,29]. In [30], authors constructed and developed a hybrid converter that
was intended for marine applications.

An EA based on pulse-width modulation was proposed in [31] for a hybrid interleaved
boost–Cuk converter. This paper introduced the pulse-width-modulation technique and
described the formula to analyze the influence of independent duty cycles and an input-
current ripple; however, differential evolution was employed to minimize the input-current
ripple. The approach proposed therein had certain limitations. First, the zero-ripple
duty cycle (DZ) was maintained at a constant. Maintaining DZ at a constant affected the
performance because the input-current ripple estimation depended on DZ. Second, the
approach used a basic DE algorithm and failed to utilize the new advances proposed in the
DE literature. Motivated by these, the main contributions of this paper are listed as follows:

1. Introduce a modified hybrid converter that simultaneously optimizes three variables
(duty cycle D, scale factor k, and DZ);

2. A new framework to be designed for the hybrid power converter;
3. We proposed a unified EA to minimize the input-current ripple;
4. A hybrid algorithm that combines DE and GA is suggested to enhance the current

model’s performance.

The remainder of this paper is organized as follows: In Section 2, we provide an
overview of the existing hybrid power converters, DE, and GA. Section 3 provides further
details on the proposed method. The results are presented in Section 4, and the conclusions
are presented in Section 5.
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2. Background
2.1. Existing Hybrid Power Converters

A wide variety of DC–DC converter topologies have been developed for power
electronics over the past few years [32,33]. Interleaved converters, like the interleaved
boost converter, have proven successful among the various converters. An important
aspect of interleaved converters is that all parallel converters need to have an identical
duty cycle or voltage gain. Parallel converters share the same input voltage. Therefore,
a severe power imbalance occurs when one converter increases the voltage more than
the other. A key feature of interleaved converters is that they have a zero input-current
ripple at their operation points. For instance, a double-phase interleaved boost converter
exhibits zero input-current ripple. Furthermore, hybrid interleaved converters such as the
one described in [34] are being investigated. It is feasible to select a zero input-current
ripple for this converter. This enables it to operate in the best operating range. Unlike
the conventional interleaving converters with an identical duty cycle for all converters, a
hybrid converter [34] employ a PWM strategy to assign a duty cycle to each converter. The
duty cycles are dependent. Although hybrid converters may have independent duty cycles,
an equal gain in voltage may be obtained by any set of duty cycles. This results in various
input ripple currents.

The hybrid converters [24,27] are illustrated in Figure 1a. It is a combination of a
Cuk converter and a boost converter. Consequently, their input voltages are identical, and
the load is connected differentially from the Cuk output to the boost converter output.
Owing to the Cuk converter’s negative output voltage, the voltage gain is more significant
when the two boost converters are interleaved. This is because they have independent
outputs and may have different duty cycles. The PWM strategy is illustrated in Figure 1b.
Meanwhile, Figure 1c shows the current waveform in a duty cycle where the ripple in the
input-current is zero.

The mathematical model of the hybrid power converter can be summarized as follows:

VC1 = Vin
1

1− D1
; IL1 = IO

1
1− D1

(1)

VC2 = Vin
1

1− D2
; IL2 = IO

D2

1− D2
(2)

VC3 = Vin
1

1− D2
; IL3 = IO (3)

The duty cycle for each transistor sx is determined by Dx (x = 1, 2). The voltage VCy
(y = 1, 2, 3) represents the voltage across each capacitor Cy. The current ILz (z = 1, 2, 3) is
equal to every inductor’s current Lz. Io is the output current. A series connection of C1 and
C3 yields the output voltage. The output results are expressed as follows, based on the load
resistance R:

Vo = Vin
1

1− D1
+ Vin

D2

1− D2
; Io =

VO
R

(4)

As part of the PWM strategy of a hybrid converter [31], the duty cycle of the converter
is s2, d = d2. Therefore, the duty cycle of s1 (d1) is expressed as a fraction of d multiplied by
k, as follows:

d = d2; d1 = kd (5)

The following equation can be obtained by applying similar properties to inductors:

L1 = kL2 (6)
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k is determined by the duty cycle wherein zero input-current ripples are preferred. The
duty cycle is called DZ, in which a mathematical equation is written as the following:

k =
1− DZ

DZ
(7)

A detailed description of the PWM strategy is available in [34]. It is generally straight-
forward. However, it has drawbacks because it loses a degree of freedom when a duty cycle
is proportional to another over the entire range of operations. Considering this limitation
in [34], a new PWM strategy was proposed in [31]. The duty cycles can be represented as in
Equation (8). Here, k is a variable and not a constant. In [31], the best value was selected at
each operation point. The study provided a more detailed description of the current PWM
strategy used in this research. In addition, the input-current ripple was analyzed under
two conditions: D > DZ and D < DZ.
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Figure 1. Hybrid power converter proposed in [31]. (a) Structure, (b) PWM strategy, and (c) Wave-
forms of the input current ripple.

2.1.1. The Case of D > DZ

When D > DZ and the switching functions overlap, the maximum ripple may occur in
two periods: (1 − kD) TS and (1 − D) TS. Further information concerning this situation is
provided in [31].
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The input-current ripple at the time interval (1 − kD) TS is defined by Equation (8):

∆ig = (1− kD)TS(
Vin
L2

+
Vin −VC1

L1
) (8)

We obtain Equation (9) based on Equations (1) and (5):

∆igA =
VinTS
L2KL

(kL − kD− kLkD) (9)

The input-current ripple in the time interval (1 − D) TS is derived using Equation (10):

∆ig = (1− kD)TS(
Vin
L1

+
Vin −VC2

L2
) (10)

The following equation is defined based on Equations (2) and (5):

∆igB =
VinTS
L2KL

(1− D− kLD) (11)

2.1.2. The Case of D < DZ

When D < DZ, the switching functions have a dead time (when both transistors are off).
Under such conditions, the maximum ripples can occur at two times: DTS and kDTS [31].

The input-current ripple during the period of the DTS can be calculated using the
following formula:

∆ig = DTS(
Vin
L2

+
Vin −VC1

L1
) (12)

We obtain Equation (13) based on Equations (1) and (5):

∆igA2 =
VinTS
L2KL

D
(1− KD)

(kL − kD− kLkD) (13)

For the period kDTS, the ripple of the input-current can be expressed as Equation (14):

∆ig = kDTS(
Vin
L1

+
Vin −VC2

L2
) (14)

The following equation can be obtained based on Equations (2) and (5):

∆igB2 =
VinTS
L2KL

kD(1− D− kLD) (15)

Thus, the algorithm should comply with the gain. This can be expressed by Equation (16):

G =
1

1− KD
+

D
1− D

(16)

2.2. Differential Evolution (DE)

DE is a well-known evolutionary algorithm (EA) which incorporates mutation, crossover
or recombination, and selection [10]. The DE algorithm consists of a set of search agents
X = {x1, x2, . . . , xm}. Here, xi represents a potential solution that improves gradually
during the evolution. The DE algorithm randomly initializes the population and then,
evaluates the fitness function:

Xi(j) = XiL + rand [0, 1]. (XiH − XiL) (17)

where XiL is the lower bound and XiH is the upper bound. Xi(j) is selected randomly from
the interval [XiL, XiH]. Subsequently, mutation, recombination (crossover), and selection
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are used to improve individuals in an iterative process. Mutation is used as the search tool.
Mutation operations create mutant vectors by adding the weighted difference between two
randomly selected vectors to form a third vector. In this study, we applied the DE/current-
to-best/1 mutation strategy. It is expressed as follows:

Ocur = Xcur + F(Pbest − Xcur) + F(Xr1 − Xr2) (18)

where Xcur and Ocur indicate the current parent and its corresponding offspring solution,
respectively. F denotes the scaling factor, and Xr1 and Xr2 denote the random solutions.

In crossover operations, the parameters of the mutant vector are mixed with those of
the target vector to generate a new vector, which is commonly referred to as a trial vector.
A trial vector can replace the target vector in the next generation if it is more suitable than
the target vector. We used a binomial crossover in this study. It is described as follows:

Uj,i,G+1 =

{
Vj,i,G+1 i f a rand ≤ CR

Xj,i,G Otherwise

j = 1, 2, . . . , D; i = 1, 2, . . . , Np

(19)

where D is the number of genes. CR denotes the crossover factor, which is typically between
zero and one.

Selection guides the search for potential regions within the search space. In the
selection step, the initial step is a one-to-one competition analysis (local search). The next
step is to select the best individual in the population (global search):

Xi,G+1 = arg−max{ f (Xi,G), f (Ui,G+1)}

Xb,G+1 = arg−max{ f (Xi,G+1)}

i = 1, 2, . . . , Np.

(20)

2.3. Genetic Algorithm (GA)

The GA was developed by John Holland in 1970 and has been demonstrated to be an
efficient tool [35]. In contrast to other evolutionary computation techniques, such as PSO,
the GA identifies the optimal solution from the solution space. In general, GAs are based
on groups of points rather than an individual point. This can be used to solve optimization
problems through natural selection and genetics. GAs can handle a population of many
individuals to achieve the best solution by using a randomly initialized population. The
initial population of the GA is generated at random. This is similar to DE (Equation (17)).
After a parent population is generated, mating selection is performed to select better parent
individuals to generate offspring. Variation (crossover and mutation) operators are used
to produce offspring solutions. Subsequently, the parent and offspring populations are
combined. The selection mechanism is then performed based on the objective function.
The combined population is sorted according to the optimization criteria of the objective
function, and better N solutions are preserved for the next generation. This process is
repeated until the termination condition is satisfied.

3. Proposed Methodology

This section briefly describes the proposed model and its key components. First, we
describe the modified model for a hybrid power converter. Then, we describe the proposed
unified EA to solve the modified model.

3.1. Modified Hybrid Power Converter

The hybrid power converter approach proposed in [31] aims to minimize input-current
ripple. However, they considered two optimization parameters (D and k) for the power
converter model. The power converter model proposed in [31] considers two periods.
Considering these periods, the input-current ripple may attain a maximum value. Therefore,
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it is necessary to formulate the objective function in order to minimize the maximum value
of the input-current ripple. If D > DZ [31], this procedure minimizes a maximum ripple in
the input-current. Similarly, the largest input-current ripple is minimized when D < DZ [31].
Furthermore, they considered several restrictions, including achieving the desired voltage
gain; evaluating the switch time, and searching the domain, which includes valid values
for D and k. However, the objective-function estimation is highly sensitive to DZ. Hence, in
our proposed model, we aim to optimize three variables (D, k, and DZ) simultaneously and
analyze its performance. The range of the three variables is between 0 and 1, according to
the below equations. The modified hybrid power converter can be expressed as:

min
D,k,Dz∈R

f (D, k, Dz) =
{

f1(D, k, Dz), D > Dz
f2(D, k, Dz), otherwise

(21)

Subject to;

G ≤ 1
1− kD

+
D

1− D
≤ G + t (22)

0 ≤ D ≤ 1 (23)

0 ≤ k ≤ 1 (24)

0 ≤ DZ ≤ 1 (25)

Thus, f 1(D, k, DZ) and f 2(D, k, DZ) are formulated as follows:

f1(D, k, Dz) =
[∣∣∆igA1

∣∣, ∣∣∆igA1

∣∣ > ∣∣∆igB1

∣∣∣∣∆igB1

∣∣, Otherwise.
(26)

f2(D, k, Dz) =
[∣∣∆igA2

∣∣, ∣∣∆igA2

∣∣ > ∣∣∆igB2

∣∣∣∣∆igB2

∣∣, Otherwise.
(27)

DZ was maintained at a constant of 0.6 in [31]. It plays a significant role in the
calculation of the objective functions. Consequently, its optimization would yield better
results. The effectiveness of optimizing DZ is verified in the simulation section.

3.2. Unified Evolutionary Algorithm

In this study, we combined the advantages of two popular EAs: DE and GA. Herein,
DE operators are used to produce the offspring population, which helps in its exploitation.
Then, a GA selection mechanism is used to preserve elite individuals. First, an initial popu-
lation of size N is generated randomly according to Equation (17). Unlike in the previous
approaches, three variables are considered in the proposed approach [31]. Therefore, an
individual Xi is defined as:

Xi = {D, k, DZ} (28)

The candidate solutions are evaluated based on the Xi in the objective function pre-
sented in Equation (21). Thus, Equation (21) can be expressed as:

min
Xi∈R

f (Xi) =

{
f1(D, k, Dz), D > Dz
f2(D, k, Dz), otherwise

(29)

The proposed model involves a constrained optimization problem. Therefore, it is
necessary to apply a penalty function to assess the population in the objective function.
Feasible solutions can be determined through the penalty function. The penalty function
for the power converter is formulated as follows:

h =

∣∣∣∣wc
(

G− 1
1− Xi1Xi2

− Xi1
1− Xi1

)∣∣∣∣ (30)
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A constant factor w is used to determine the degree to which a candidate’s fitness
value is penalized. c represents the violated constraint indicator, with c ε {0, 1}. Meanwhile,
Xi1 = D, and Xi2 = k. Equation (29) can be revised as follows based on the penalty function
for evaluating the population:

min
Xi∈R

f (Xi) + h (31)

After evaluation, the offspring are generated using the DE mutation “DE/current-
to-best/1”. The “DE/current-to-best/1” to generate trail vector is performed as described
in Equation (18). After the trial vector is generated, the offspring solution is produced
using a binomial crossover. Binomial crossover is performed according to Equation (19).
Next, the offspring and parent populations are combined. The combined population is
then sorted according to the optimization criteria of the objective function (i.e., the input-
current ripple was minimized in this study). Hence, the combined population is sorted in
the ascending order of the objective function. Then, N solutions in the sorting order are
preserved for the next generations. Figure 2 presents a schematic of the general framework
of the proposed method.
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4. Simulation Setup and Results

This section describes the parameter settings for the algorithms being compared and
the hybrid power converter. We conducted several experiments to evaluate the performance
of our proposed method. It was compared with the baseline method [31], DE and GA
algorithms. We considered various desired voltage gains as part of the evaluation to
demonstrate the efficiency of our approach. Simulations were performed on a PC with an
Intel Core i5-10400 CPU processor operating at 2.90 GHz and a 64-bit version of Windows
10 with MATLAB 2021b. In the experiments, the gain value G was varied from 3 to 6 at
intervals of 0.1.
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4.1. Comparison between the Proposed Method and Baseline Algorithm

The approach proposed in [31] was selected as the baseline algorithm to validate the
performance of the proposed algorithm. The control parameters for the baseline algorithm
were set as follows: the mutation scaling factor F was selected from a uniform distribution
between 0.2 and 0.8; the crossover rate was set as 0.2 and w was maintained as 10, as
recommended in [31]. F, CR, and w were set as 0.3, 0.75, and 10, respectively, for the
proposed method. The population size and the number of generations were set as 20 and
50, respectively. Because the EA is a stochastic algorithm, these results are based on the
average value collected from 30 independent executions. Moreover, Table 1 provides the
relevant parameters for the hybrid power converter.

Table 1. Parameters for simulation setting.

Input Voltage Vin 20 V

Inductor Factor kL 0.6666

Switching Frequency fS 50 kHz

Output Resistance R 60 Ω

L1 66 µH

L2 100 µH

The mean values of the input-current ripple obtained over 30 independent runs
are presented in Table 2. In addition, we have provided the hybrid power converter
parameters D, k, and DZ. It is evident from the results presented in this table that the
proposed method achieved a lower input–current ripple value in all the cases. It achieved
a significant improvement in the input-current ripple value as G increased. Table 2 reveals
that the optimization of DZ simultaneously optimized both D and k. The simulation
results of the proposed method are better than those of the baseline algorithm because of
the optimization of DZ. The baseline algorithm maintained DZ at a constant of 0.6. The
proposed method performed better for each gain instance at different values of DZ. For
example, the proposed method optimized DZ to 0.7998 for a gain of 3.1 and 0.9519 for a gain
of 4. Thus, the optimization of DZ improved the performance of the model. In the summary
of Table 2, the proposed hybrid algorithm (combines DE and GA) method performed
better than a baseline (basic DE) model. Therefore, due to hybridization, the proposed
method minimizes input-current ripple better than the baseline method, demonstrating
its efficiency. In particular, as the G value increases, the efficiency of the proposed method
increases significantly because it incorporates the properties of DE and GA.

Table 2. Comparison of proposed method with baseline algorithm.

Gain Methodology Input-Current
Ripple (∆ig) D k DZ

3
Proposed 0.0758 0.5807 0.6751 0.9999

Baseline 0.0844 0.5806 0.6753 0.6
Proposed 0.0203 0.5951 0.6688 0.7998

3.1 Baseline 0.0520 0.5950 0.6689 0.6

3.166
Proposed 1.32 × 10−5 0.6000 0.6666 0.7888

Baseline 0.0105 0.6000 0.6667 0.6
Proposed 0.0180 0.6045 0.6646 0.9999

3.2 Baseline 0.0508 0.6037 0.6685 0.6

3.3
Proposed 0.0710 0.6175 0.6588 0.7010

Baseline 0.1527 0.6144 0.6744 0.6
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Table 2. Cont.

Gain Methodology Input-Current
Ripple (∆ig) D k DZ

Proposed 0.1265 0.6298 0.6533 0.8508
3.4 Baseline 0.2548 0.6245 0.6794 0.6

3.5
Proposed 0.1721 0.6414 0.6480 0.9180

Baseline 0.3562 0.6342 0.6847 0.6
Proposed 0.2271 0.6524 0.6430 0.8303

3.6 Baseline 0.4504 0.6435 0.6886 0.6

3.7
Proposed 0.2662 0.6629 0.6383 0.9999

Baseline 0.5339 0.6524 0.6923 0.6
Proposed 0.3204 0.6728 0.6338 0.9334

3.8 Baseline 0.6255 0.6607 0.6971 0.6

3.9
Proposed 0.3533 0.6823 0.6295 0.9759

Baseline 0.7045 0.6687 0.7007 0.6
Proposed 0.3944 0.7081 0.5149 0.9519

4 Baseline 0.7873 0.6768 0.7031 0.6

4.1
Proposed 0.4234 0.7169 0.5054 0.8247

Baseline 0.8646 0.6840 0.7067 0.6
Proposed 0.4657 0.7250 0.4968 0.9966

4.2 Baseline 0.9416 0.6912 0.7101 0.6

4.3
Proposed 0.4758 0.7327 0.4890 0.9602

Baseline 1.0116 0.6980 0.7130 0.6
Proposed 0.5354 0.7400 0.4819 0.9141

4.4 Baseline 1.0635 0.7045 0.7156 0.6

4.5
Proposed 0.5407 0.7468 0.4753 0.8284

Baseline 1.1519 0.7108 0.7185 0.6
Proposed 0.5418 0.7533 0.4693 0.8076

4.6 Baseline 1.1947 0.7169 0.7205 0.6

4.7
Proposed 0.5613 0.7594 0.4636 0.8536

Baseline 1.2526 0.7229 0.7218 0.6
Proposed 0.5797 0.7652 0.4584 0.9999

4.8 Baseline 1.3181 0.7285 0.7253 0.6

4.9
Proposed 0.6217 0.7708 0.4536 0.9999

Baseline 1.364 0.7339 0.7273 0.6
Proposed 0.6652 0.7760 0.4490 0.9999

5 Baseline 1.4482 0.7392 0.7281 0.6

5.1
Proposed 0.7102 0.7811 0.4448 0.9999

Baseline 1.4702 0.7444 0.7296 0.6
Proposed 0.7848 0.7859 0.4408 0.9999

5.2 Baseline 1.5316 0.7492 0.7331 0.6

5.3
Proposed 0.7166 0.7904 0.4371 0.9999

Baseline 1.5812 0.7541 0.7329 0.6
Proposed 0.6714 0.7948 0.4336 0.9999

5.4 Baseline 1.6132 0.7587 0.7342 0.6

5.5
Proposed 0.7472 0.7990 0.4303 0.9999

Baseline 1.6585 0.7628 0.7376 0.6
Proposed 0.7614 0.8031 0.4271 0.9426

5.6 Baseline 1.7035 0.7673 0.7380 0.6

5.7
Proposed 0.7751 0.8069 0.4241 0.9999

Baseline 1.7547 0.7716 0.7403 0.6
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Table 2. Cont.

Gain Methodology Input-Current
Ripple (∆ig) D k DZ

Proposed 0.8227 0.8107 0.4213 0.9999
5.8 Baseline 1.778 0.7752 0.7416 0.6

5.9
Proposed 0.8362 0.8142 0.4186 0.9995

Baseline 1.8344 0.7793 0.7419 0.6
Proposed 0.8493 0.8177 0.4161 0.9999

6 Baseline 1.8721 0.7831 0.7442 0.6

Furthermore, we compared the baseline and proposed methods as shown in Figure 3
to demonstrate the effectiveness of the proposed method. Figure 3a shows the input-current
ripple values of the compared algorithms. It indicates that the proposed technique can
attain smaller input-current ripple values over its operating area. Moreover, in most cases,
the models differ significantly, except in one case, which demonstrates an almost similar
performance (gain = 3).
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an improvement of almost 50% in most cases. The performance of the proposed algorithm
improved by almost 100% for a gain of 3.166.

In Figure 4, the proposed method is evaluated using a convergence graph that illus-
trates its speed performance. We consider ten operation points in the test to estimate the
speed with which the optimization algorithm attains the optimal value. Figure 4 exhibits
the input-current ripple obtained at each generation for gain values of 3.4, 3.6, 3.8, 4, 4.3,
4.7, 5, 5.3, 5.7, and 6 for the baseline and proposed methods. The gain values were selected
based on the most significant and relevant points. It is evident from Figure 4 that the
proposed method performed significantly better than the baseline method. In addition, it
exhibited a speed performance higher than that of the previous method.
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4.2. Further Analysis on the Proposed Method

In this section, we analyze the performance of the proposed unified EA with dif-
ferential evolution [10] (DE and DE*) and the genetic algorithm [35] to demonstrate its
superiority. We have presented the obtained input-current ripple (∆ig) for the proposed
hybrid approach, DE, DE*, and GA, in Table 3. As shown in Table 3, DE represents the orig-
inal differential algorithm with the “DE/rand/bin” and binomial crossover. As mentioned
earlier, in the proposed unified EA, the “DE/current-to-best/1” and binomial crossover
are employed. For better analysis, we have included DE* in the simulation setup that
replaces the “DE/rand/bin” mutation with the “DE/current-to-best/1” mutation. For a
fair comparison, the crossover rate (CR) and mutation scaling factor (F) are maintained
identically for DE, DE*, and unified EA as CR = 0.75 and F = 0.3. The GA employs a
real-encoding crossover and a polynomial mutation. The mutation factor F is chosen from
real random numbers as uniformly distributed between 0 and 1, and CR ∈ [0, 1], in GA.
We set the population size and number of generations to 20 and 50, respectively.

Table 3. Comparison of proposed method with DE and GA algorithms.

Gain
Input-Current Ripple (∆ig)

Proposed DE DE* GA

3 0.0758 0.0903 0.8000 0.2745
3.1 0.0203 0.0368 0.0338 0.2478

3.166 1.32 × 10−5 0.0098 0.0031 0.2214
3.2 0.0180 0.0303 0.0213 0.1413
3.3 0.0710 0.0811 0.0892 0.3102
3.4 0.1265 0.1369 0.1353 0.4496
3.5 0.1721 0.1920 0.1857 0.4079
3.6 0.2271 0.2304 0.2348 0.4199
3.7 0.2662 0.2906 0.2774 0.5628
3.8 0.3204 0.3318 0.3345 0.5955
3.9 0.3533 0.3654 0.3699 0.7023
4 0.3944 0.4157 0.4170 0.6418

4.1 0.4234 0.4461 0.4475 0.6955
4.2 0.4657 0.4751 0.4756 0.8467
4.3 0.4758 0.5040 0.4921 0.9972
4.4 0.5354 0.5485 0.5557 1.0329
4.5 0.5407 0.5801 0.5592 1.0595
4.6 0.5418 0.6622 0.5698 1.0270
4.7 0.5613 0.5925 0.5795 1.2939
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Table 3. Cont.

Gain
Input-Current Ripple (∆ig)

Proposed DE DE* GA
4.8 0.5797 0.6535 0.5910 1.0793
4.9 0.6217 0.7050 0.6450 1.2583
5 0.6652 0.6843 0.6792 1.3074

5.1 0.7102 0.7431 0.7441 1.3449
5.2 0.7848 0.7932 0.7936 1.3159
5.3 0.7166 0.7579 0.7214 1.3645
5.4 0.6714 0.8528 0.6949 1.3718
5.5 0.7472 0.7864 0.7645 1.5165
5.6 0.7614 0.9056 0.7806 1.5898
5.7 0.7751 0.7966 0.7888 1.4792
5.8 0.8227 0.8491 0.8499 1.7313
5.9 0.8362 0.9011 0.8652 1.6052

6 0.8493 0.9514 0.8783 1.4860

As shown in Table 3, the mean values of the input-current ripple over 30 runs are given.
Based on the results in Table 3, the proposed method resulted in lower input–current ripple
values than DE, DE*, and GA in all cases. The proposed method has better simulation results
than DE, DE*, and GA algorithms because our proposed hybrid algorithm incorporates the
properties of DE and GA. Additionally, the efficiency of the proposed hybrid algorithm is
increasing with hybridization. The hybridization of the proposed method can potentially
improve the current model’s performance and minimizes input-current ripple. To conclude,
a hybrid algorithm can improve the method’s performance (convergence speed) and the
quality of the solutions.

5. Conclusions

In this study, we developed a hybrid power converter model based on a unified EA.
Three power converter variables were optimized simultaneously to increase the efficiency
of the model. Furthermore, we proposed a unified EA that integrated the properties of DE
and genetic GA to evaluate the modified hybrid power converter. This study employed
the unified EA to optimize the zero-ripple duty cycle (DZ) in order to minimize the input-
current ripple. Based on the simulation results obtained in this study, the proposed method
achieved a lower input-current ripple value across the operating range when compared to
the baseline method. By analyzing the percentage improvement results that were found,
the proposed method improved the majority of cases by nearly 50%. In addition, the
proposed algorithm was compared with DE and GA, and the simulation results indicated
that the proposed algorithm obtained a low input-current ripple when compared to those
with different gain values. Due to this, the efficiency of the proposed method and the
hybridization of the current model was proven. Consequently, the proposed algorithm
outperformed the baseline technique, DE, and the GA algorithms. In addition, it performed
better than the baseline algorithm in terms of speed.

In the future, we intend to optimize other parameters of the power converter (such as
the indicator factor, switching frequency, and output resistance) to enhance the performance.
Additionally, we would like to apply the hybrid algorithm to other hybrid power converters.
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