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Featured Application: In this study, an improved ZS thinning algorithm combined with a
de-noising algorithm is proposed for track line detection; this algorithm can realize the detection
function under complex road conditions, different weather and other scene conditions, and has
higher feasibility and effectiveness.

Abstract: In the field of intelligent driving of freight trains, determining the track line ahead of the
train is an important function in the autopilot technology of such trains. Combining the characteristics
of freight railway tracks, we conduct an in-depth analysis of the shortcomings of object detection
technology in extracting track lines and propose an improved Zhang–Suen (ZS) thinning theory for a
railway track line recognition algorithm. Through image preprocessing and single pixel thinning
steps, a continuous track line is obtained and then processed by a denoising algorithm to obtain a
complete track line. Experimental results show that the track extracted by our method has good
continuity and less noise. It can simultaneously perform track detection on straight roads, curves
and turnouts, and is suitable for changing weather conditions such as sunny daytime, mild rainy
daytime, cloudy daytime, night with lamp lighting and night without lamp lighting conditions.

Keywords: track line recognition; object detection; improved ZS thinning; single pixel; continuity

1. Introduction

In the field of intelligent driving of freight trains, track line identification ahead of the
train plays a crucial role and involves more functions; this creates higher requirements for
its real-time performance and accuracy [1]. The track line in this paper are two rails on the
railway, used as a reference line for the boundary of the railway; the accuracy of recognition
directly affects the train’s perception of the range of environment factors ahead of it [2]. The
dynamic and complex background interference caused by fasteners, transponders, gravel
pavements, sleepers as shown in Figure 1, and natural light and shadows within the limits
of the rails is the main constraint on the robustness and accuracy of track line recognition.
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(You Only Look Once) algorithm [4], and the two-step Faster R-CNN (Region-CNN) al-
gorithm [5]. Two types of object detection algorithms have limitations in terms of narrow 
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If the object is too narrow and long to become a small target, the ground truth box 
cannot find the corresponding default box to match it during training, so the detection 
effect is not reliable. The SSD network trains the anchor boxes, with each feature map 
randomly corresponding to several anchor boxes. If the corresponding anchor boxes are 
relatively small, it is difficult to obtain sufficient training using the pixels on the corre-
sponding feature map. During testing, the predicted results may be inaccurate, which will 
greatly interfere with the normal results [6]. YOLO directly obtains prediction results 
through global features and depends entirely on data accumulation. It is not effective for 
detecting objects with weak characteristics. The two-step detection algorithm based on R-
CNN does not scale the original image, resulting in a much slower detection speed than 
the one-step detection algorithm. Moreover, if there are many objects in the image and the 
aggregation is strong, the detection effect of the two-step detection algorithm is not ideal. 

We define the proportion of effective information in the ground truth box as PEI in 
Equation (1): this can be used as a measure of the proportion of the object to be examined 
in the ground truth box, evaluating the feasibility of training and prediction results. In the 
object detection models based on deep learning, most deep learning models train images 
with a proportion of effective information higher than 50%, the accuracy of the model 
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target to be detected is a person or signal lamp, PEI > 0.5 will be more ideal for training 
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In the past decade, the development of deep learning and convolutional neural net-
works led to great progress in object detection technology. It includes a wide range of fields,
for example, intelligent video surveillance, vehicle automatic driving, robot environment
perception, and visual human–computer interaction. However, there are still many unre-
solved problems. Combining the current research by domestic and foreign scholars in the
field of target detection and the scenarios applicable to this paper, the existing problems
can be summarized as described below.

The narrow and long object problem: Current mainstream object detection algo-
rithms include the one-step SSD (Single Shot MultiBox Detector) algorithm [3], the YOLO
(You Only Look Once) algorithm [4], and the two-step Faster R-CNN (Region-CNN)
algorithm [5]. Two types of object detection algorithms have limitations in terms of narrow
and long object detection.

If the object is too narrow and long to become a small target, the ground truth box
cannot find the corresponding default box to match it during training, so the detection effect
is not reliable. The SSD network trains the anchor boxes, with each feature map randomly
corresponding to several anchor boxes. If the corresponding anchor boxes are relatively
small, it is difficult to obtain sufficient training using the pixels on the corresponding
feature map. During testing, the predicted results may be inaccurate, which will greatly
interfere with the normal results [6]. YOLO directly obtains prediction results through
global features and depends entirely on data accumulation. It is not effective for detecting
objects with weak characteristics. The two-step detection algorithm based on R-CNN does
not scale the original image, resulting in a much slower detection speed than the one-step
detection algorithm. Moreover, if there are many objects in the image and the aggregation
is strong, the detection effect of the two-step detection algorithm is not ideal.

We define the proportion of effective information in the ground truth box as PEI in
Equation (1): this can be used as a measure of the proportion of the object to be examined
in the ground truth box, evaluating the feasibility of training and prediction results. In the
object detection models based on deep learning, most deep learning models train images
with a proportion of effective information higher than 50%, the accuracy of the model being
even higher. In other words, the higher the proportion of effective information, the more
accurate the model training.

PEI =
con(k ∈ E f f ective|

⋃
k)

con(Ground truth box)
(1)

where the ground truth box represents the true bounding box, con represents the amount of
information contained, k represents the pixels, Effective represents the effective pixels (i.e., the
pixels contained in the target to be checked),

⋃
k represents the set of all pixels, PEI represents

the proportion of the effective information in the true bounding box (i.e., the proportion of
pixels contained in the target to be checked and all pixels in the bounding box).

As shown in Figure 2, the green rectangular box is the ground truth box. When the
target to be detected is a person or signal lamp, PEI > 0.5 will be more ideal for training and
prediction using the method of object detection. When the target to be detected is a narrow
track line, PEI < 0.5 shows that the invalid information accounts for a large proportion in
the ground truth box, which will cause great interference in later training and prediction,
resulting in a poor final effect.

Relative entropy (KL divergence) is introduced to measure the difference between
valid information and invalid information. As shown in Equation (2)

DKL(P||Q) = ∑n
i=1 P(xi)log2(

P(xi)

Q(xi)
) (2)

where DKL represents the relative entropy and KL represents divergence which is used to
measure the difference between valid information and invalid information. P(x) represents
the distribution of valid information and Q(x) represents the distribution of invalid infor-



Appl. Sci. 2022, 12, 11320 3 of 21

mation; the difference between them can be measured by P(x)/Q(x), with i representing the
random variable (1 . . . n). If the ratio is 1, it shows that they are very similar. The greater
the interference of invalid information on effective information, the relatively poorer the
object detection.
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results in a huge number of candidate regions. Many scholars realized effective improve-
ments in this respect. Singh et al. [8] proposed an algorithm named SNIPER that per-
formed efficient multi-scale training in instance-level visual recognition tasks. Their algo-
rithm benefitted from batch normalization during training without the need to synchro-
nize batch normalization statistics across GPUs and processed up to five images per sec-
ond when reasoning with a single GPU. Shen et al. [9] proposed a multi-scale graph con-
volution network based on a spectral-graph wavelet framework to improve multi-scale 
representation learning. This network flexibly utilized continuously scaled multi-scale ad-
jacent information to enhance the recognition ability of the learned multi-scale represen-
tation and provided stable feature extraction under the guarantee of the theoretical frame-
work. Huang et al. [10] combined the Birch algorithm with an added multi-scale predic-
tion of three-scale detection to improve real-time performance and accuracy. However, 
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Rail line targets are relatively long and narrow. The straight parts are trapezoid in
shape, with short upper and bottom edges and long lateral sides. The curved part presents
various irregular shapes due to having different curvatures. The shape of the turnouts is
more complicated and variable, and much redundant information exists. It is, therefore,
difficult to use the corresponding labeling method of the object detection network for
accurate data calibration; accordingly, the object detection method is less applicable to the
track line detection problem.

Real-time detection: Since the object to be detected may be located anywhere in the image,
and the size of the target is uncertain, it is usually necessary to construct a feature pyramid
of the detection image [7]. A picture passes through the feature pyramid (1×, 2×, 3×), three
scales are enlarged and the calculation will be fourteen times larger. Sliding the window
on multiple scales to search for the position of the object in an exhaustive manner results
in a huge number of candidate regions. Many scholars realized effective improvements in
this respect. Singh et al. [8] proposed an algorithm named SNIPER that performed efficient
multi-scale training in instance-level visual recognition tasks. Their algorithm benefitted from
batch normalization during training without the need to synchronize batch normalization
statistics across GPUs and processed up to five images per second when reasoning with
a single GPU. Shen et al. [9] proposed a multi-scale graph convolution network based on
a spectral-graph wavelet framework to improve multi-scale representation learning. This
network flexibly utilized continuously scaled multi-scale adjacent information to enhance
the recognition ability of the learned multi-scale representation and provided stable feature
extraction under the guarantee of the theoretical framework. Huang et al. [10] combined the
Birch algorithm with an added multi-scale prediction of three-scale detection to improve
real-time performance and accuracy. However, the detection speed was still slow and the
prerequisite for the application of the object detection algorithm in the mobile terminal,
autonomous driving, and embedded fields was to achieve lightweight processing. Deep
neural networks are usually accompanied by problems such as large model size and high
resource consumption. Implementing lightweight processing of object detection algorithm
based on deep learning is still a key issue to be urgently solved.

Sample data set: Against the background of deep learning, the object detection range
is increasingly widely used because of the lack of various training sample data. At present,
the mainstream method for obtaining sample data involves manual methods for large-
scale corpus labeling. For example, the ImageNet database established by Li Feifei and
others, and the general large-scale labeling datasets such as PASCAL VOC and MS COCO.
However, there is no clear sample of a railway track dataset. Our application scenario is
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a modern freight railway of nearly 10 km in length. On the one hand, using supervised
learning methods makes the cost of manual labeling too large, and it is impossible to label all
scenarios. On the other hand, the complicated road conditions such as straight roads, curves,
and turnouts, as well as material and color are different. The marked data cannot adaptively
and accurately identify new categories of objects in different scenarios. Therefore, in
recent years, methods such as transfer learning or reinforcement learning based on weak
supervision [11] or unsupervised [12,13] were proposed to train object detection models;
however, combining prior knowledge to achieve adaptive object recognition in different
scenarios is still a problem.

To address these issues, in our scenarios, we consider the shortcomings of existing deep
learning-based object detection technology. Our requirement is to show a clear track line,
rather than directly giving the track area, which means that it cannot be segmented by a
semantic method. We, therefore, propose an improved ZS thinning theory of the railway track
line recognition algorithm. This method refines the track line into a single pixel, and there
are no overlapping pixels, which makes the connection ability of the track line stronger. In
addition, this method does not require sample data and only relies on the shallow features of
the image to complete the track line extraction. It does not require much computing power
and has good real-time performance. It can simultaneously perform track detection on straight
roads, curves and turnouts, and is suitable for changing weather conditions.

The remainder of this paper is organized as follows. In Section 2, we review the
related works on track line detection. In Section 3, we describe our method, introducing
the concrete steps of track line identification in the improved ZS thinning algorithm, and
expounding the contour-based denoising algorithm. After showing the experimental
results in Section 4, we finally draw our conclusion in Section 5.

2. Related Work

In the field of intelligent driving of trains, determining the track line in front of the
train is an important issue in autopilot technology. To detect track lines, it is convenient
to divide the track area, reduce the obstacle detection range, and improve the calculation
speed and accuracy of target recognition. Currently, there are many methods and systems
to help drivers drive safely [14,15]. With the development of intelligent train research
technology and computer vision, new technologies are increasingly applied to track line
detection ahead of trains.

Researchers such as Kaleli and Akgul [16] proposed a vision-based track extraction
algorithm using dynamic programming. They used dynamic programming to calculate the
optimal path: this extracted rail space with minimal cost, and then used dynamic program-
ming to extract left and right rails at the same time. Gschwandtner et al. [17] proposed a sim-
ple and effective geometric constraint, which was derived from the unique properties of the
rail, in order to achieve fast and reliable track detection. Nassu, Ukai et al. [18] introduced
a method to perform rail extraction by matching edge features with candidate rail patterns
modeled as parabolic segment sequences. Qi et al. [19] and others proposed a track recogni-
tion algorithm based on HOG features. Firstly, the image was divided into a series of cells,
then the cell located at the bottom of the image was taken as the seed point, and the seed
region growth was carried out by comparing the similarity of HOG features of adjacent
cells. Finally, the track was extracted from the seed region growth results. In [20], a cost-
effective visual turnout detection method was proposed. Berg [21] and other researchers
first established a curvature map and a direction map according to camera parameters, then
calculated the most likely track curvature according to the edge information of the image,
obtained the initial mask of the near track from the curvature, and then corrected the initial
mask by the learning method to obtain the near track. Espino et al. [22] first set up a sliding
window at the starting position of the track. The point with the largest gradient change
in the window was regarded as the characteristic point of the track, and the window slid
upward along the gradient direction to continue searching for the characteristic point of the
track. In [23], the cumulative value of pixel gradient was first calculated in blocks and the
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bottom track feature points were determined by combining prior knowledge. A method
based on angle alignment measurement was proposed to extract the track feature points
upward. Work by [24] implemented the recursive estimation method to extract track lines.
Bettemir [25] and other scholars used a heuristic algorithm to detect rails and sleepers with
high accuracy; the algorithm then processed the image through Gaussian filtering and
edge detection. However, the detection distance of this heuristic algorithm was extremely
limited. In [26], an automatic rail detection method was proposed; it used Hu moment
invariant features to realize track line searches and B-spline curves as fitting models. It was
necessary to fit the near and far view regions, respectively. The various methods proposed
in the above research achieved certain effects for specific scenes. In reference [27], by
moving the three-dimensional laser scanning technology, a region growth-fitting algorithm
was realized by using the tracking points with clear intensity filtering and the strategy of
K-means clustering fusion, so as to extract the vector line of the railway track, and then
further distinguish the situations of bends and turnouts.

Compared with high-speed railway tracks, tram tracks [28] and subway tracks, however,
the appearance of gravel roads, irregular sleepers, road junctions and ravine fences make the
surrounding environment more complex; furthermore, there are curves with larger curvatures
and complex turnout conditions. The commonly used track recognition system based on
an edge detection operator [29] cannot adapt to a complex road environment that includes
different light scenes and multiple turnout track routes, so real-time performance cannot meet
specific requirements. An algorithm based on deep learning also requires high computing
power equipment, which is not available for freight trains, and is costly.

Beginning with the autopilot technology of freight trains, we study track line detec-
tion based on shallow features and propose a track line extraction algorithm based on
morphological thinning theory. Our algorithm is suitable for complex road conditions and
changeable weather scenes, and ensures the continuity of track lines.

3. Methods
3.1. Image Preprocessing

The image obtained by the sensor contains much invalid information, so it is necessary
to preprocess the entire image and reduce the calculations. The preprocessing in our
method includes two sections: histogram equalization and image threshold segmentation.

When acquiring images by camera, factors such as uneven illumination and environ-
mental noise affect the final image quality. The necessary image-enhancement process
is conducive to improving the image effect. Since image enhancement refers to the de-
graded image features, it can process the edges, contours and contrast to improve the
visual effect of the image, thereby improving the clarity of the image, highlighting the
effective information in the image, compressing the invalid information and transforming
the image into a form more suitable for human or computer analysis and processing. A
basic algorithm in image-enhancement processing, histogram equalization is simple in
principle, mature in technology, and can significantly improve image quality. The essence
of histogram equalization is to perform non-linear stretching on an image with uneven
pixel distribution, redistribute the pixel values of the image, and finally evenly distribute
the pixel values in the entire grayscale range. In this paper, we use the method of global
histogram equalization. The original image is shown in Figure 3 and the processing effect
is shown in Figure 4.

Image threshold segmentation is a widely used segmentation technique in image
processing. It uses the difference in grayscale characteristics of the target area to be extracted
from the image and its background to treat the image as a combination of two types of areas
with different grayscale levels. It is reasonable to choose one threshold to determine whether
each pixel in the image should belong to the target or the background, thus generating a
corresponding binary image. Considering that the scene studied in this paper is complex
and changeable, the target and background will change greatly; as a result, a single fixed
threshold poses great limitations. In this paper, we use the adaptive threshold method, in
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which the optimal threshold should be adaptively generated according to each image frame.
In this method, we iterate through different thresholds and calculate the intraclass variance
between background and target for different thresholds. When the intraclass variance is
maximized, the corresponding threshold will be the desired threshold [30]. The calculation
process is as follows:

Appl. Sci. 2022, 12, 11320 6 of 21 
 

into a form more suitable for human or computer analysis and processing. A basic algo-
rithm in image-enhancement processing, histogram equalization is simple in principle, 
mature in technology, and can significantly improve image quality. The essence of histo-
gram equalization is to perform non-linear stretching on an image with uneven pixel dis-
tribution, redistribute the pixel values of the image, and finally evenly distribute the pixel 
values in the entire grayscale range. In this paper, we use the method of global histogram 
equalization. The original image is shown in Figure 3 and the processing effect is shown 
in Figure 4. 

  
(a) (b) 

Figure 3. (a) presents the original image of freight track and (b) shows the gray histogram image of 
freight track. 

  

(a) (b) 

Figure 4. (a) presents the image of histogram equalization effect and (b) shows gray histogram im-
age of freight track. 

Image threshold segmentation is a widely used segmentation technique in image 
processing. It uses the difference in grayscale characteristics of the target area to be ex-
tracted from the image and its background to treat the image as a combination of two 
types of areas with different grayscale levels. It is reasonable to choose one threshold to 
determine whether each pixel in the image should belong to the target or the background, 
thus generating a corresponding binary image. Considering that the scene studied in this 
paper is complex and changeable, the target and background will change greatly; as a 
result, a single fixed threshold poses great limitations. In this paper, we use the adaptive 
threshold method, in which the optimal threshold should be adaptively generated accord-
ing to each image frame. In this method, we iterate through different thresholds and cal-
culate the intraclass variance between background and target for different thresholds. 
When the intraclass variance is maximized, the corresponding threshold will be the de-
sired threshold [30]. The calculation process is as follows: 

Assume that the gray range of threshold t is 0, 1, 2..., L − 1, and let the probability Si 
of pixels with gray level i be: 𝑆௜ = 𝑛௜𝑁  (3)

Figure 3. (a) presents the original image of freight track and (b) shows the gray histogram image of
freight track.

Appl. Sci. 2022, 12, 11320 6 of 21 
 

into a form more suitable for human or computer analysis and processing. A basic algo-
rithm in image-enhancement processing, histogram equalization is simple in principle, 
mature in technology, and can significantly improve image quality. The essence of histo-
gram equalization is to perform non-linear stretching on an image with uneven pixel dis-
tribution, redistribute the pixel values of the image, and finally evenly distribute the pixel 
values in the entire grayscale range. In this paper, we use the method of global histogram 
equalization. The original image is shown in Figure 3 and the processing effect is shown 
in Figure 4. 

  
(a) (b) 

Figure 3. (a) presents the original image of freight track and (b) shows the gray histogram image of 
freight track. 

  

(a) (b) 

Figure 4. (a) presents the image of histogram equalization effect and (b) shows gray histogram im-
age of freight track. 

Image threshold segmentation is a widely used segmentation technique in image 
processing. It uses the difference in grayscale characteristics of the target area to be ex-
tracted from the image and its background to treat the image as a combination of two 
types of areas with different grayscale levels. It is reasonable to choose one threshold to 
determine whether each pixel in the image should belong to the target or the background, 
thus generating a corresponding binary image. Considering that the scene studied in this 
paper is complex and changeable, the target and background will change greatly; as a 
result, a single fixed threshold poses great limitations. In this paper, we use the adaptive 
threshold method, in which the optimal threshold should be adaptively generated accord-
ing to each image frame. In this method, we iterate through different thresholds and cal-
culate the intraclass variance between background and target for different thresholds. 
When the intraclass variance is maximized, the corresponding threshold will be the de-
sired threshold [30]. The calculation process is as follows: 

Assume that the gray range of threshold t is 0, 1, 2..., L − 1, and let the probability Si 
of pixels with gray level i be: 𝑆௜ = 𝑛௜𝑁  (3)

Figure 4. (a) presents the image of histogram equalization effect and (b) shows gray histogram image
of freight track.

Assume that the gray range of threshold t is 0, 1, 2..., L − 1, and let the probability Si
of pixels with gray level i be:

Si =
ni
N

(3)

∑L−1
i=1 Si = 1 (4)

The probability value of the target is:

ω0(t) = ∑t
i=0 Si (5)

The mean value of target is:

µ0(t) = ∑t
i=0

iSi
ω0

(6)

The probability value of the background is:

ω1(t) = ∑L−1
i=t+1 Si (7)
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The mean value of background is:

µ1(t) = ∑L−1
i=t+1

iSi
ω1

(8)

The intraclass variance value is:

f (t) = ω0(t)ω1(t)(µ0(t)− µ1(t))
2 (9)

Traverse all the thresholds and find the corresponding t value that maximizes the
intraclass f (t), which is the threshold required. The effect of the adaptive threshold method
after the histogram equalization in Figure 4 is shown in Figure 5.
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3.2. Improved ZS Thinning Algorithm

The ZS thinning algorithm proposed by Zhang and Suen [31] in 1984 is a very popular
and fast parallel thinning algorithm [32–35]; it has the advantages of fast speed, good
connectivity, simple principles, etc., [36]. It involves the following basic definitions: a pixel
at location (x, y) has two horizontal and two vertical neighbors. The set of four pixels, noted
N4(p), is called the 4-neighborhood of the pixel, as shown in Figure 6c. As is shown in
Figure 6d, the four diagonal pixels, denoted ND(p), represent the diagonal neighborhood
of the pixel. The points of N4(p) and ND(p) together are called the 8-neighborhood of the
pixel, as shown in Figure 6b.
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Its function is to perform two iterations on the entire binary map in the 3× 3 neighborhood
boundary points that must be deleted by operation search. However, the thinning result cannot
be guaranteed to be a single pixel; moreover, different degrees of noise exist, which affects
recognition of the track line.

Making full use of the advantages of the ZS thinning algorithm, we start by thinning
into a single pixel and adapting to various complex scenes. An improved ZS thinning
algorithm is proposed for track line detection. The specific process is as follows:

Set the target point to 1 and the background point to 0. The algorithm performs the
following operations on the boundary points:

(1) In the binary image obtained after the preprocessing described in Section 3.1, the
algorithm looks for 8-neighborhoods centered on the boundary point, denotes the
center point as P1, and the adjacent points in the clockwise direction as P2, P3,..., P9,
where P2 is directly above P1, as shown in Figure 6a.

Num(P1) represents the number of non-zero neighbors in P1’s 8-neighborhood.

Num(P1) = ∑9
i=2 Pi (10)

S(P1) is the number of changes from 0 to 1 in the sequence P2, P3,..., P9, and the range
is 0–4, which can be expressed in the following form.

S(P1) = ∑4
i=1 Ai (11)

Ai=

{
1, P2i−1 = 0 and (P2i = 1 or P2i+1 = 1)

0, else
(12)

The reason for the processing result of the ZS parallel thinning algorithm being a
non-single pixel width is that there are pixels with an angle of 90◦, that is, existing points
that are not deleted because they do not meet the conditions for deletion. Here, these points
are defined as redundant points. The redundant points have four main directions, shown
by the red dotted frames in Figure 7.
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Combining the four directions in which redundant points are generated, the specific
reasons for their occurrence are analyzed in the 4-neighborhood. The number of non-zero
neighbors in the 4-neighborhood of the central point P1.

N(4) = ∑9
i Pi (i = 2, 4, 6, 8) (13)

Redundant points appear, N(4) = 2. Express this in the form of a neighborhood
template as, ‘*’ represents 0 or 1, as follows:

0 1 * * 1 0 * 0 0 0 0 *
1 1 0 0 1 1 1 1 0 0 1 1
* 0 0 0 0 * 0 1 * * 1 0

(2) Extraction of redundant points. In order to facilitate the extraction of redundant
points, the 8-neighborhood points of P1 are binary coded in clockwise order in
Step (1). P2, P3,..., P9 correspond to one binary bit. If the neighborhood point value
is 1, the corresponding binary bit is 1. If the neighborhood point value is 0, the corre-
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sponding binary bit is 0. As shown in Figure 8, the binary code corresponding to the
eight neighborhoods of P1 is shown in Table 1.
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Table 1. Binary codes corresponding to the eight neighbors of P1.

P2 P3 P4 P5 P6 P7 P8 P9

1 1 0 0 0 1 1 0

The mathematical expression for calculating the 8-neighborhood binary coding of P1
is as follows:

B(P1) = ∑9
n=2 Pn ∗ 2n−2 (14)

The set of all values of B(P1) is Σ.

(3) Mark the points that meet all the following conditions:
a. 2 ≤ Num(P1) ≤ 6

b.S(P1) = 1 || B(P1) ∈ Σ
c. P2 ∗ P4 ∗ P6 = 0
d. P4 ∗ P6 ∗ P8 = 0

(15)

(4) Follow Step (3) and mark the points that meet all the following conditions:
a. 2 ≤ Num(P1) ≤ 6

b. S(P1) = 1 || B(P1) ∈ Σ
c. P2 ∗ P4 ∗ P8 = 0
d.P2 ∗ P6 ∗ P8 = 0

(16)

After checking all boundary points, remove all marked points.

(5) Steps (3) and (4) constitute an iteration until no boundary points satisfy the marking
conditions, and the area composed of the remaining points is the final result.

In order to show the experimental results more intuitively, we selected the same small
segment of track to conduct ZS refinement and improve ZS refinement, respectively. The
experimental results are shown in Figure 9. Figure 9a,c shows the original refinement
results, while Figure 9b,d shows the corresponding refinement results for a single pixel.
According to the experimental results, the track line is refined into a single pixel, and there
are no overlapping pixels, which makes the connection ability of the track line stronger,
demonstrating that our method can extract more continuous track lines.
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Figure 9. Single pixel rendering after macro-magnification. (a,c) is the original refinement results
with the overlapping pixels, (b,d) is corresponding the refinement results for a single pixel.

In order to present a more significant visualization effect, we converted the white
pixels to yellow without changing any line width. The effect of the improved ZS thinning
algorithm is shown in Figure 10.
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Figure 10. The result of freight railway after improved ZS algorithm processing. (a) is a multiple sets
of straight track lines, (b) is curves with a small curvature track lines, (c) is the curved with a large
curvature track line, (d) is the multiple turnout track lines.

3.3. Denoising Algorithm

The image obtained by the improved ZS thinning algorithm does not only include
the track line, but also the interference from the factors beside the track, such as gravel,
sleepers, gully fences, etc. Denoising must, therefore, be conducted to obtain the best
track line. In this paper, a contour-based denoising method is proposed. According to the
topology and distribution of the contour, the width, height and area of the contour are
calculated using the minimum circumscribed rectangle. We then judge whether the contour
is the boundary of the track profile we are looking for by the height, width and area of the
minimum bounding rectangle of the contour, as shown in Figure 11.
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Figure 11. Schematic diagram of minimum circumscribed rectangle.

where θ is the included angle between the counterclockwise rotation of the horizontal
axis and the first side of the encountered rectangle. The side length is width, and the top and
bottom sides are height. The thinned image is I1, imgW and imgH are the width and height
of the original image, W and H are the width and height of the minimum circumscribed
rectangle, T represents the width–height ratio of the minimum circumscribed rectangle, the
length is L, and S represents the area.

T = W/H W ∈ (0, imgW), H ∈ (0, imgH) (17)

L = Max{W, H}W ∈ (0, imgW), H ∈ (0, imgH) (18)

S = W ∗H W ∈ (0, imgW), H ∈ (0, imgH) (19)

The specific process is as follows:

(1) According to the length and area differences in track profile and side interference,
find the minimum circumscribed rectangle of all profiles in I1, as shown in Figure 12a.
The blue parts in the figure represent the generated rectangular boxes. It can be seen
from the figure that there are various large and small rectangular boxes. By setting
the threshold, we screen out the rectangular boxes that meet the conditions, and all
the pixel values in the rectangular boxes in this part will be retained; the remaining
pixels are then set to zero. This method can eliminate most noise points. The specific
steps are as follows: The length of each minimum circumscribed rectangle in I1 is
Li. If Li is less than the threshold parameter λ1, all pixels in its domain are set to 0.
If it is larger than the parameter, the first λ2 bits are reserved in order from large to
small. Many experiments demonstrated that most noise points can be eliminated
when λ1 ∈ (40, 50) and λ2 ∈ (12, 15), and the processed image is recorded as I2.

(2) Morphological dilation is performed on I2 using 3 × 3 structural elements to eliminate
small patches, holes, small discontinuities, etc. The processed result is recorded as I3.

(3) Remember that λ is the length-screening coefficient of the minimum circumscribed rect-
angle, and δ is the area-screening coefficient of the minimum circumscribed rectangle.
According to the geometric properties of image I3, a filtering rule is defined:
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When the height, width and area of the minimum bounding rectangle of a contour do
not meet the formula, the contour is excluded (all pixels in the contour are set to 0). After
screening the length and area coefficients, the complete track area is finally obtained. The
experimental results show that when λ ∈ (400, 500) and δ ∈ (1400, 1600), the denoising
effect is significant. {

λ < W < imgW
λ < H < imgH

and δ < S < imgW ∗ imgH (20)

As shown in Figure 12, Figure 12a is the minimum circumscribed rectangle of all
profiles in the image. Figure 12b shows the results of the improved ZS algorithm processing.
Figure 12c shows the results of the denoising algorithm processing. Figure 12d shows
the results of track line extraction. As can be seen from Figure 12d, after the improved
refinement algorithm and denoising processing, the obtained track line has good continuity
and less noise, which is very consistent with the actual track line.

3.4. Track Region Extraction Algorithm

The algorithm for track region extraction based on track line matching is realized
on the basis of track line recognition. The algorithm for track area extraction must first
determine the starting point of the track, which may have multiple starting points. Secondly,
each starting point is used as a reference point to search for new pixels, which connect to the
starting point along its connected domain. The matching criterion is to find the matching
points that meet the gauge characteristics in the transverse direction by using the position
of the points found and the idea of connectivity, so as to determine the corresponding
relationship between the track lines in the image—whether they belong to the same line.
The interference track line is then eliminated. Finally, according to the complete matching
relationship, the track area to be checked is obtained. The specific process is as follows, and
the algorithm diagram is shown in Figure 13.
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Determine the starting point. As the train is moving along a line, the image usually 
extends from the bottom up (excluding the lack of image visual field angle in the process 
of turning—blind area). Next, search for the starting point on the track line binary map 
from the N row (N starts at the bottom of the image). All points are considered as possible 
starting points, and the search area is the lateral width of the whole image. If a point xi (i 
= 1, 2, 3…) is found with a pixel value of 255 (white dot) and the pixel next to the left has 
a value of 0 (black dot), it is the starting point. If no possible starting point is found in the 
N row, then continue to n-1 row. By analogy, if the starting point cannot be found in the 
Nmax row (indicating the maximum fracture line acceptable for the starting position), the 
search for the starting point in this connected domain will be abandoned and this step will 
be repeated in the next connected domain. 
(1) Search for new pixels on the track line and match left and right in the transverse 

direction. After the initial point is determined in the first step, the new pixels 
iL
x

satisfying the conditions are searched upward in the connected area of each track line 
Li (i = 1, 2, 3…) in the f(x,y) image, and all the points (match points) on the same 
transverse surface with the point 

iL
x are found on the left and right sides. At the same 

time, according to the trapezoidal characteristic of “near wide and far narrow” of the 
distance between the track lines, the maximum Dmax and minimum Dmin distance be-
tween the track lines are set, and the distance between the matching points is con-
stantly updated in the process of matching from bottom to top, so as to reduce the 
mismatching rate. Considering the matching situation of track lines in complex side 
roads, this paper sets the limit that when the number of matching points on the same 
lateral surface exceeds the limit T number, the leftmost point is directly matched with 
the rightmost point to delimit the track area. By analogy, the track line is traversed 
from bottom to top, searching for all matching track lines. 

(2) Elimination of interference track lines. Not all the tracks in the image can match each 
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Determine the starting point. As the train is moving along a line, the image usually
extends from the bottom up (excluding the lack of image visual field angle in the pro-
cess of turning—blind area). Next, search for the starting point on the track line binary
map from the N row (N starts at the bottom of the image). All points are considered as
possible starting points, and the search area is the lateral width of the whole image. If a
point xi (i = 1, 2, 3 . . . ) is found with a pixel value of 255 (white dot) and the pixel next to
the left has a value of 0 (black dot), it is the starting point. If no possible starting point is
found in the N row, then continue to n-1 row. By analogy, if the starting point cannot be
found in the Nmax row (indicating the maximum fracture line acceptable for the starting
position), the search for the starting point in this connected domain will be abandoned and
this step will be repeated in the next connected domain.

(1) Search for new pixels on the track line and match left and right in the transverse
direction. After the initial point is determined in the first step, the new pixels xLi
satisfying the conditions are searched upward in the connected area of each track line
Li (i = 1, 2, 3 . . . ) in the f (x,y) image, and all the points (match points) on the same
transverse surface with the point xLi are found on the left and right sides. At the same
time, according to the trapezoidal characteristic of “near wide and far narrow” of the
distance between the track lines, the maximum Dmax and minimum Dmin distance
between the track lines are set, and the distance between the matching points is
constantly updated in the process of matching from bottom to top, so as to reduce the
mismatching rate. Considering the matching situation of track lines in complex side
roads, this paper sets the limit that when the number of matching points on the same
lateral surface exceeds the limit T number, the leftmost point is directly matched with
the rightmost point to delimit the track area. By analogy, the track line is traversed
from bottom to top, searching for all matching track lines.

(2) Elimination of interference track lines. Not all the tracks in the image can match each
other, and there will be tracks of different lengths. When searching for matching points
on the track line, based on a large number of experiments, the track lines that can be
fully matched are two or four matching points with little difference in the number of
matching points (in the case of turnoff). Therefore, the most complete track lines are
selected according to the number of matching points for the track area extraction.

(3) The matching points on the track line are obtained, which is the complete track running
area of the train.

We proposed a method based on a track line of the track-line matching region ex-
traction algorithm. This algorithm can accurately detect the track region, and is suitable
for straight track lines, curved track lines and multiple turnout track lines; the testing
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effect is shown in Figure 14. Moreover, the algorithm is not affected by the influence of a
downhill situation. Detection speed, minimal calculations and having the advantage of
strong anti-interference mean that the algorithm satisfies real-time requirements.

Appl. Sci. 2022, 12, 11320 14 of 21 
 

straight track lines, curved track lines and multiple turnout track lines; the testing effect 
is shown in Figure 14. Moreover, the algorithm is not affected by the influence of a down-
hill situation. Detection speed, minimal calculations and having the advantage of strong 
anti-interference mean that the algorithm satisfies real-time requirements. 

  
(a) straight track region extraction 

  
(b) curved track region extraction 

  
(c) Multiple turnout track region extraction 

  
(d) Crossing track region extraction 

Figure 14. Track region extraction based on track line matching under different lines and light con-
ditions (the track region is colored in green). 
Figure 14. Track region extraction based on track line matching under different lines and light
conditions (the track region is colored in green).



Appl. Sci. 2022, 12, 11320 15 of 21

4. Experiments and Results

After preprocessing with the improved ZS algorithm, the preliminary track line was
obtained, and the complete track line was then also obtained using the denoising algorithm.
Finally, the track region was extracted using the track line matching algorithm. In order
to verify the effectiveness of the proposed algorithm under different routes and different
lighting conditions, various environmental conditions were tested. The tracks of different
routes are usually classified into a single set of straight track lines, multiple sets of straight
track lines (only focusing on the current traffic routes), curved with a large curvature,
curves with a small curvature, two turnout roads and multiple turnout track lines. After
the above processing, we obtained the image of a single-pixel-wide track line and the
track region, colored in green. Our experimental results for different scenes are shown in
Figures 15 and 16.

Appl. Sci. 2022, 12, 11320 15 of 21 
 

4. Experiments and Results 
After preprocessing with the improved ZS algorithm, the preliminary track line was 

obtained, and the complete track line was then also obtained using the denoising algo-
rithm. Finally, the track region was extracted using the track line matching algorithm. In 
order to verify the effectiveness of the proposed algorithm under different routes and dif-
ferent lighting conditions, various environmental conditions were tested. The tracks of 
different routes are usually classified into a single set of straight track lines, multiple sets 
of straight track lines (only focusing on the current traffic routes), curved with a large 
curvature, curves with a small curvature, two turnout roads and multiple turnout track 
lines. After the above processing, we obtained the image of a single-pixel-wide track line 
and the track region, colored in green. Our experimental results for different scenes are 
shown in Figures 15 and 16. 

 
Figure 15. Single set of straight track lines and track region extraction. 

 
Figure 16. Multiple turnout track lines and track region extraction. 

Figure 15. Single set of straight track lines and track region extraction.

Appl. Sci. 2022, 12, 11320 15 of 21 
 

4. Experiments and Results 
After preprocessing with the improved ZS algorithm, the preliminary track line was 

obtained, and the complete track line was then also obtained using the denoising algo-
rithm. Finally, the track region was extracted using the track line matching algorithm. In 
order to verify the effectiveness of the proposed algorithm under different routes and dif-
ferent lighting conditions, various environmental conditions were tested. The tracks of 
different routes are usually classified into a single set of straight track lines, multiple sets 
of straight track lines (only focusing on the current traffic routes), curved with a large 
curvature, curves with a small curvature, two turnout roads and multiple turnout track 
lines. After the above processing, we obtained the image of a single-pixel-wide track line 
and the track region, colored in green. Our experimental results for different scenes are 
shown in Figures 15 and 16. 

 
Figure 15. Single set of straight track lines and track region extraction. 

 
Figure 16. Multiple turnout track lines and track region extraction. Figure 16. Multiple turnout track lines and track region extraction.



Appl. Sci. 2022, 12, 11320 16 of 21

Different lighting scenes are usually divided into rainy weather straight roads, rainy
weather curved roads, evening, evening without lamp lighting, evening with lamp lighting
and crossing scenes. The effect is shown in Figures 17 and 18.
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Figure 18. Driving routes under different lighting conditions and directions.

In order to verify the effectiveness of our method more comprehensively, a test dataset
was established. Our test data were collected in Shaoguan City, Guangdong Province, China.
We built a railway track video library comprising 380 items, including videos of different
lighting conditions and directions of different driving routes. The resolution of each frame was
1920 × 1080, and the frame rate was 10 fps. Several typical video frames in the video library
are shown in Figure 18. Trains were traveling at a speed of 30 km/h, and the range of images
captured by the camera was 10–150 m, which is sufficient to meet driver reaction needs. The
algorithm code was implemented in the Visual Studio 2017 platform and runs in a 2 GB mem-
ory Intel Core I5 CPU. The speed at which the algorithm processes a 1920 × 1080 single-frame
image is 150 ms.

To demonstrate the advantages of our method, we compared it with other methods;
we tested the methods used in [30,32] and the related theoretical methods used in [36]. We
randomly selected 10 videos from the dataset and processed them with these methods.
Table 1 shows the results of the comparative experiment. In Table 2, TNF means total
number of frames and GNF means total number of good frames (we removed the frames
with discontinuities and noisy track lines). The method in [30] was based on Sobel. Re-
search in [32] was based on ZS. Skeleton is a continuous thinning of the skeleton through
morphological erosion and opening operations mentioned in the literature [36]. As can be
seen from the table, under the same conditions, more frames with better extraction track
lines are obtained through our method, and our processing accuracy is also higher. On
sunny days, when the light was better, our accuracy is as high as 94.74%; however, in
the evenings or on rainy days, our accuracy is a little lower; nevertheless, accuracy is still
around 90%.

Table 2 shows the results of the comparison between the running time of the track line
extraction algorithm and the track region extraction algorithm under different lighting and
different route scenes. It can be seen from Table 3, with our algorithm and according to the
different conditions, each frame-image-processing time is slightly different. When dealing
with complex track lines and rainy weather conditions, the processing time is relatively
long (five frames per second); however, when dealing with good light and a simple track
line, the processing time is slightly shorter (seven frames per second). Nevertheless, there
is not much difference between them in terms of processing speed. The algorithm also
meets the real-time requirements of freight railway. (More than five frames per second is
sufficient for freight railroads, which do not have fast trains.)
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Table 2. The results of the comparative experiment under freight railway scenario.

Scenes TNF

GNF

Sobel Skeleton ZS Ours

Good
Frames

Accuracy
Rate

Good
Frames

Accuracy
Rate

Good
Frames

Accuracy
Rate

Good
Frames

Accuracy
Rate

Video 1 rain, straights 445 331 74.38% 399 89.66% 387 86.96% 410 90.11%

Video 2 evening,
turnouts, curves 331 156 47.12% 273 82.47% 281 83.63% 286 86.40%

Video 3 sunny, turnouts,
curves 476 367 77.10% 432 90.75% 434 91.17% 451 94.74%

Video 4
evening,
turnouts,
straights

273 244 89.37% 236 86.44% 243 89.01% 245 89.74%

Video 5 sunny, straights
turnouts, curves 281 215 76.51% 251 89.32% 244 86.83% 262 93.23%

Video 6 cloudy,
turnouts, curves 479 435 90.81% 424 88.51% 438 91.44% 441 92.06%

Video 7 rain, curves 396 297 75.42% 340 86.03% 356 90.16% 364 92.02%

Video 8 evening,
turnouts, 366 289 79.01% 322 88.65% 318 87.24% 329 90.23%

Video 9 sunny, straights
turnouts, 421 374 89.24% 357 85.02% 378 90.16% 391 93.24%

Video 10 evening
turnouts, curves 356 306 86.21% 316 89.19% 320 90.16% 327 92.65%

Table 3. Comparison of the extraction time for track areas in different scenes under the condition of
finite computational force.

Scenes Track Line Extraction Time (ms) Track Region Extraction Time (ms) Total Time (ms)

Simple track line (daytime) 40.3 110.5 150.8
Complex track line (daytime) 44.6 120.3 164.9

Simple track line
(cloudy and rainy weather) 41.2 108.4 149.6

Complex track line
(cloudy and rainy weather) 46.0 120.0 166.0

Multiple turnout track line (night) 39.7 107.2 146.9
Multiple turnout track line

(headlights at night) 40.1 112.5 152.6

From the above, it can be concluded that our algorithm is better applicable to freight
railways; however, in order to verify that this method is also applicable to other scenarios,
we collected subway scene data which included videos of different directions of different
driving routes. The resolution of each frame was also 1920 × 1080, and the frame rate was
25 fps; we extracted the track region using our algorithm, as shown in Figure 19.

We also chose video data from four different subway scenes and performed statistical
analyses; the results are shown in Table 3. As can be seen in this table, we used the same
conditions, retaining the images with a better processing effect and deleting the frames
with discontinuities and noisy track lines, as shown by GNF. Table 4 shows that straight
track line extraction accuracy achieves above 93%, curved track lines and multiple turnout
line extraction also achieve more than 90% accuracy. Compared with freight railways in
complex environments, subway lines are simple (no appearance of gravel roads, irregular
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sleepers, road junctions or ravine fences); we can, therefore, conclude that the method is
also applicable to subway railways.
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Table 4. The results of the comparative experiment under subway tunnel conditions scenario.

Video 1 Video 2 Video 3 Video 4

Scenes straight (Uphill, Downhill) straights, Curves straight (Different Light) straight, turnouts

TNF 498 486 524 516

GNF good
frames

accuracy
rate

good
frames

accuracy
rate

good
frames

accuracy
rate

good
frames

accuracy
rate

Result 464 93.17% 443 91.15% 492 93.89% 465 90.11%

5. Discussion

Beginning with the extraction of medium- and low-speed freight railway track lines,
this paper proposes an improved ZS thinning algorithm combined with a denoising al-
gorithm for track line detection. Our algorithm can realize the detection function under
complex road conditions, different weather and other scene conditions, and has a higher
feasibility and better effectiveness than several others. However, due to uneven illumina-
tion, shooting angle, heavy snow and other severe weather conditions, the shallow layer
feature information of the track in the image is insufficient, which undoubtedly has adverse
effects on the effect of the algorithm. In addition, the time taken to process a single frame of
image exceeds 150 ms, which does not meet the video-processing requirement of 10 frames
per second on a fast railroad. The next work direction of the authors is to achieve wider
adaptability of the optimization algorithm and reduce its processing time.
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