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Abstract: The penetration of large-diameter tubular piles and their relevant construction effect have
significant influences on the bearing capacity of piles and nearby buildings (structures). This study
focuses on developing an indoor test model device for the dynamic field monitoring of the construction
effect of penetrated large-diameter tubular piles based on monocular visual digital photography. The
results show that the relationship between the penetration of the tubular piles and time function (blow
counts) changes from a logarithmic function to a linear function when piles penetrate from the loose layer
to the sandy layer, and then to the silty soil layer. The penetration rates differ significantly under different
formation conditions. There are obvious plugging and squeezing effects as tubular piles penetrate
different strata. The plugging effect radiates outward in a rectangular shape. The influence sphere of
the squeezing effect is divided into the shear failure zone, radial squeezing zone, and hemispherical
expansion zone. According to the measurement data, the squeezing effect increases first and then
weakens during the construction of tubular piles. This makes the adjacent pile deviate from the initial
position by 17.4 mm, making the next pile deviate from the initial position by 6.4 mm, to the maximum
extent. This further verifies the superiority of pile-jumping construction. The research conclusions can
provide reasonable suggestions and a reference basis to improve the penetration parameters of tubular
piles and optimise their construction techniques.

Keywords: PHC tubular piles; close-range photogrammetry; penetration; construction effect;
dynamic monitoring

1. Introduction

When reinforcing soft soil foundations using tubular piles, their penetration and
relevant construction effects could influence the resistance against pile settlement and the
failure mode and bearing capacity of the piles. Therefore, these effects have a significant
influence on the bearing capacity of the composite foundation [1].

Currently, the dial indicator contact measuring method, static load testers, tile marking
measuring method, inclinometer measuring method, and accelerometer measuring method
are commonly used to monitor the penetration of tubular piles. For example, Xing H.F.
et al. analysed the pile settlement laws of PHC tubular piles by determining the blow
counts of settled piles, further optimising the penetration design of tubular piles through
the incorporation of geological exploration data [2]. Further, Luo C.L. et al. simulated real
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piles by using square steel bars and marked scales on the bars to measure the penetration
depths of the piles [3].

Studies on the construction effect of large-diameter tubular piles mainly focus on the
evolution mechanism and influencing factors of the construction effect and the bearing
capacity of pile foundations based on the construction effect. Concerning the evolution
mechanism of the construction effect of tubular piles, Lei H.Y. et al. monitored the hyper-
static pore pressure and soil mass displacement through field tests, analysed the squeezing
effect of high-rise platform tubular piles in soft soil regions, and determined the dissipation
laws of hyperstatic pore water pressure and variation characteristics of soil mass displace-
ment caused by pile settlement [4]. Xie Y.J. et al. carried out statistical analyses on soil plug
data during the penetration of 44 PHC piles (60–65 cm) from three sites and five types of
typical soft soil foundations in Shanghai. They concluded that the IFR and soil plug ratio
(PLR) had a linear relationship. Moreover, the empirical formula was fitted [5]. Xing H.F.
et al. analysed the settlement laws of PHC tubular piles by observing the blow counts,
finding that PHC tubular piles had a very strong squeezing effect on surrounding soil
masses [6]. Yu X. et al. studied the pile–soil interaction of open-ended and closed-ended
piles through finite element analysis and determined the stress mechanism of soil plug
soils under different vertical loads [7]. Chen L.Z. et al. proposed a calculation formula for
the soil plug height based on the Terzaghi theory of ultimate bearing capacity [8]. Liu J.W.
et al. studied the influences of tubular pile diameters and other factors on the evolution
laws of soil plugs using discrete element numerical simulation software [9].

Concerning the influencing factors of construction effects, Ko J. et al. simulated the
piling process of steel tubular piles in sandy soils and explored the influences of the pile
diameter, piling energy, and elasticity modulus of soils and bearing strata on the plugging
effect. The researchers believed that the piling energy was the primary influencing factor of
the plugging effect, followed by the pile diameter, penetration depth into bearing strata, and
elasticity modulus of the soil mass [10]. Zhan Y.X. et al. simulated the settlement process of
open-ended tubular piles of different models based on the particle flow program PFC2D.
They then determined the macro-mechanical response mechanism during settlement by
analysing the microscopic changes in the soil mass. The results demonstrated that the
diameter of the tubular piles influences the plugging effect significantly. With an increase
in this diameter, the plugging effect decreased quickly [11]. Further, Tang B. et al. carried
out field penetration tests on 17 groups of open-ended and closed-ended model piles
into clays and found that the radius–thickness ratio and diameter of the tubular piles
influenced the soil plug height greatly. Moreover, they found a linear relationship between
the IFR and soil plug ratio (PLR). Given the same tubular pile, the bearing capacity of
open-ended tubular piles was 0.2–0.3 times lower than that of closed-ended ones [12].
Through multiple tests, Leane B.M. et al. found that, given the same foundation, the soil
plug height in piles was positively related to the inner diameter and radius–thickness ratio
of open-ended tubular piles [13]. Wang T. et al. carried out numerical simulation analyses
on the penetration process of tubular piles under the influences of different factors. They
concluded that the plugging effect is positively related to the pile–soil friction coefficient.
However, it is negatively related to the pile diameter (at the same wall thickness). Overall,
the radius–thickness ratio of piles is a decisive factor influencing the soil plug height [14].

Concerning the bearing capacity of pile foundations, Doherty P. et al. conducted a pile
pressing test into soft clay to investigate the influences of end conditions on the bearing
capacity of tubular piles. They found that the total radial stress during the construction of
tubular piles was directly related to excess pore water pressure and the soil plug degree,
presenting a linear increase with reductions in the IFR. Fingings revealed that the end
resistance on the annual section was independent of the IFR [15]. Gavin F. et al. investigated
the influences of pile end conditions and the closing degree of soil plugs on the resistance
development of pile bodies, proposing an estimation formula for the vertical bearing
capacity of open-ended tubular piles, which could estimate the vertical bearing capacity of
tubular piles well [16]. Thongmunee S. et al. discussed the bearing mechanism of dry sand
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soil plugs through a tubular pile model loading test and characterised the plugging effect
using the DEM model. The results showed that, with increases in the relative soil plug
density, the pressing strength on the pile increased. The DEM simulation results agreed
well with test results when the pressing strength on the pile was relatively small [17].
Mohammed Y. et al. studied the influences of soil plugs on the bearing capacity and carried
out tests on 60 model piles. Results revealed that tubular piles reached the complete soil
plug state in loose and medium-density sandy soils during static pressure piling but were
in a partial soil plug state in compact sandy soils. The bearing capacity of tubular piles
was related to the PLR, and its increase rate in compact sandy soils was higher than that in
loose and medium-density sandy soils [18]. Mohammed Y. et al. compared the influences
of the soil plug degree on the bearing capacities of single open-ended and closed-ended
steel tubular piles, revising 24 open-ended steel tubular pile models. They believed that
the ultimate soil plug height was closely related to the piling mode and compactness of
strata [19].

In general, common penetration monitoring methods have certain disadvantages, such
as being time-consuming, labour-intensive, and difficult to operate. Further, they often have
a low measurement accuracy and cannot adequately conduct standard dynamic monitoring
of penetration. Moreover, studies on the construction effect of large-diameter tubular
piles face issues regarding insufficient field displacement measurement data and visual
monitoring data from indoor tests. Therefore, they cannot reflect the entire production
process and sphere of influence of the construction effect. Digital photography is used for
technological support in this study, given its low cost, high measurement accuracy, and
simple operation [20,21].

Therefore, this paper intends to use digital photography technology to monitor the
dynamic penetration value and squeezing effect of large-diameter pipe piles on the spot.
According to the monitoring results, the relationship between the dynamic penetration
value of large-diameter pipe piles, the impact frequency and strata structure is analysed,
the evolution law and influence range of squeezing effect is analysed, and laboratory tests
are carried out to provide additional explanations.

2. Monocular Visual Digital Photography
2.1. Digital Close-Range Photogrammetry Technology

Digital close-range photogrammetry integrates the close-range photogrammetry tech-
nique, image processing technology, and computer technology. It uses a digital camera
as the primary monitoring equipment. It can monitor several sites simultaneously and
acquire transient deformation information. At present, this technology has been applied
successfully to the dynamic deformation monitoring of several objects, such as steel struc-
tures [22], bridges [23,24] masonry walls [25], aeroplane wings [26] and large steel-structure
buildings [27,28]. Studies on dynamic deformation monitoring using digital close-range
photogrammetry technology based on digital cameras are relatively mature. Figure 1 shows
the camera in this study.
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ternal parameter matrix and distortion coefficients of the camera by using the pinhole 
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(2) The calibration results were compared with the results of the MATLAB Camera Cal-
ibrator, and they had only slight differences. Moreover, the mean reprojection error 
of the PDMS was smaller than 0.5 pixels. 

Table 1. Internal camera parameters and distortion coefficients of the Samsung Galaxy S9 rear cam-
era. 

Calibration Method PDMS MATLAB 

Camera internal parameters 
xf  3095.729583 3115.151478 
yf  3081.980675 3101.594706 
xc  1979.634456 1990.049731 

Figure 1. A Sony-350 camera was used for the monocular digital photography, displaying (a) front
view, (b) side view, and (c) principle of CCD imaging.
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2.2. Image-Forming Principle and Calibration of the Camera

The image-forming principle of the digital camera can be expressed using a pinhole
imaging model [29–32]. Its details are as follows:

sm′ = A[R| t]M′ (1)

where (x, y, z) are the three-dimensional coordinates of points in the spatial coordinate system
and (µ, ν) are the plane coordinates of the projection points. A is the internal parameter matrix
of the camera. (cx, cy) are the horizontal and vertical offsets of the shaft, respectively. Finally,
( fx, fy) are the horizontal and vertical focal lengths of the lens, respectively.

S

 µ
ν
1

 =

 fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3




X
Y
Z
1

 (2)

In previous studies, digital cameras were usually calibrated using the grid method
and direct linear transformation method. Although these methods have relatively high
accuracy, their calibration efficiency is low. Hence, Zhang’s calibration method [33], which
is more convenient and quicker, was applied in this study to calibrate smartphone cameras.
Concerning the working principle, Zhang′s calibration method calculates the internal
parameter matrix and distortion coefficients of the camera by using the pinhole imaging
model. The process is as follows:

(1) A black-and-white checkerboard was designed. Pictures of the checkerboard were
taken using smartphones at different postures, from different distances (Figure 2). A
group of pictures was taken, and the poor-quality ones were eliminated. Finally, the
calibration results were obtained, as shown in Table 1.

(2) The calibration results were compared with the results of the MATLAB Camera
Calibrator, and they had only slight differences. Moreover, the mean reprojection
error of the PDMS was smaller than 0.5 pixels.
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Figure 2. Distortion correction process, showing the (a) distorted image, (b) image after distortion
correction, and (c) cut corrected image.

2.3. Cooperative Transform Shifting Parallax Method

The cooperative transform shifting parallax method was the core algorithm of the
monocular visual digital photography technique used in this study [34,35]. It requires the
photographic optical axis to be perpendicular to the reference plane. Moreover, the dis-
placement of the deformation monitoring point was transformed into the real displacement
of the deformation point, which was calculated according to the mathematical relationship
between the photographic scales of the reference plane and the object surface (object plane)
(Figure 3). The detailed deduction process is as follows:
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Table 1. Internal camera parameters and distortion coefficients of the Samsung Galaxy S9 rear camera.

Calibration Method PDMS MATLAB

Camera internal parameters

fx 3095.729583 3115.151478
fy 3081.980675 3101.594706
cx 1979.634456 1990.049731
cy 1510.257453 1513.00499

Average re projection error Mean error in Pixel 0.2256 0.3800

Deformation parameters

k1 0.286489 0.342840
k2 −1.464689 −1.956038
p1 −0.000442 0.000571
p2 −0.000537 −0.000147
k3 2.365860 3.615712
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where m is the photographic scale of the reference plane. ∆xde and ∆zde are the horizontal
and vertical displacements of the deformation points on the object plane, respectively. ∆pde

x
and ∆pde

z are the horizontal and vertical parallax errors of the corresponding deformation
points on images, respectively. Notably, ∆pde

x and ∆pde
z contain system errors at this time.
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where points a(xde
1 , zde

1 ) and b(xde
2 , zde

2 ) are the homonymy points on the zero image and sub-
sequent images, respectively. Meanwhile, (dxde

1 , dzde
1 ) and (dxde

2 , dzde
2 ) are system errors of

the homonymy deformation points on the zero image and subsequent image, respectively.

3. Dynamic Monitoring Test of the Standard Penetration of Large-Diameter Tubular
Piles and the Relevant Construction Effect

In this paper, a case study was carried out on the renovation and expansion project
along the section of the Beijing-Taipei High-Speed Rail Corridor from Dezhou (Shandong-
Hebei Border) to Qihe. This region covers the alluvial plain of the Yellow River. The field
test was performed in Pingyuan County, Dezhou City. The route is shown in Figure 4.
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Through field geotechnical explorations, the strata in the study area were found to
be plain fill, plain fill, silt, silty clay, aleurite, silt, aleurite, fine sand, and silt, respectively
(Table 2). Among them, the seventh layer of fine sand was relatively thick, and it was one
of the choices for use as the bearing stratum at the pile end.

Table 2. Thickness and soil properties of different strata in the test site.

Geologic
Age

Strata
No.

Bottom
Elevation (m)

Bottom Depth
(m)

Thickness of
Strata (m) Description of Strata

Q4
al+pl 1 15.5 0.5 0.5 Plain fill: isabelline, loose, slightly humid, silt as the major

component, with few plant roots.

Q4
al+pl 2 8.9 7.1 6.6 Silt: isabelline, slightly compact, slightly humid, uniform

ingredients, high sand content.

Q4
al+pl 3 −1.2 17.2 10.1

Silty clay: yellow, 14.1–14.5 M. cinereus, plastic, locally thin
silt strata, occasional iron and manganese oxides, moderate

dry strength, moderate tenacity, smooth cutting surface.

Q4
al+pl 4 −3.2 19.2 2

Aleurite: isabelline, moderately compact, saturated, quartz
and feldspar as major components, relatively pure

arenaceous, good sorting performance, poor grading.

Q4
al+pl 5 −7.6 23.6 4.4 Silt: isabelline, compact, humid, thin layer with small clay

soil content, moderate dry strength, poor tenacity.

Q3
al+pl 6 −10.1 26.1 2.5

Aleurite: isabelline, compact, saturated, quartz and
feldspar as major components, relatively pure arenaceous,

good sorting performances, poor grading.

Q3
al+pl 7 −26.1 42.1 16

Fine sand: isabelline, compact, saturated, quartz and
feldspar as major components, relatively pure arenaceous,

good sorting, poor grading.

Q3
al+pl 8 −34 50 7.9

Silt: brown, compact, humid, thin layer with small clay soil
content, looks like multi-layer steamed bread, stinking

smell, moderate dry strength, poor tenacity.

In this study, dynamic monitoring tests on the standard penetration of large-diameter
tubular piles and monitoring tests on the construction effect were carried out at the con-
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struction site and in an indoor environment. The experimental schemes and processes are
as follows:

3.1. Dynamic Monitoring Test of Standard Penetration of Large-Diameter Tubular Piles

The designed length, pile diameter, and wall thickness of tubular piles for site opera-
tion were 47 m, 800 mm, and 60 mm, respectively. A rectangular arrangement was adopted
for the piles (Figure 5a,b).
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away from the large-diameter tubular pile, to keep the camera stable throughout the test 

Figure 5. Field diagram of large diameter pipe pile penetration monitoring experiment, showing the
(a) large diameter pipe pile, (b) rectangular pile arrangement, and (c) monitoring diagram.

Figure 5c shows that the control points and monitoring sites were set reasonably
according to the requirements of the time-baseline parallax method. The digital camera and
tripod were installed at appropriate positions in the stable zone, which was some distance
away from the large-diameter tubular pile, to keep the camera stable throughout the test
procedure. The tubular piles were about 15 m from the digital camera and about 2.5 m
from the tripod. The experimental steps were as follows:

1© Before the penetration of the tubular piles, several high-quality images were taken,
and the optimal one was chosen as the initial image for comparison with subsequent images.

2© During the penetration of tubular piles, an image was taken every 2 s to obtain the
spatial position of the tubular pile at the given moment.

3© Finally, the abovementioned process was repeated for each test until all tubular
piles were penetrated successfully. Further, image data were processed; the monitoring test
sites are shown in Figure 6.

3.2. Field Tests on the Construction Effect of Large-Diameter Tubular Piles

The pile layout is shown in Figure 5b. Pile #6 has been fished, and it was about 1 m
away from the earth′s surface. To investigate the influences of Pile #4 and Pile #5 on Pile
#6, the author developed a monitoring steel bar (Figure 7c) and welded it onto the surface
of Pile #6 to measure its spatial displacement. Five reflector plates were pasted onto the
self-made steel frame as monitoring sites. The monitoring equipment and monitoring sites
are shown in Figure 7.

The layouts of the digital cameras and the monitoring process were comparable to
the dynamic monitoring test of the standard penetration of large-diameter tubular piles.
Tripods and digital cameras were set at 13 m and 15 m in front of the monitoring steel bar.
Further, total-station instruments were installed freely near the digital cameras. Before the
construction of Pile #4, the initial image and initial spatial coordinates of the self-made
steel bar were acquired by the digital cameras and total-station instruments, respectively.
The images and spatial coordinates of the self-made steel bar were acquired regularly
throughout construction. These steps were repeated in the construction of Pile #5.
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Figure 7. Site schematic diagram of large diameter pipe pile construction effect experiment, showing
the (a) digital camera, (b) total station, and (c) self-made monitoring steel pole.

3.3. Indoor Tests on the Construction Effect of Large-Diameter Tubular Piles

The self-designed device was applied to simulate squeezed soils, the soil plug phe-
nomenon, and the bearing capacity of open-ended tubular piles during settlement. The
test model groove was a 100 cm (length) × 40 cm (width) × 80 cm (height) rectangular
tempered glass box with an open upper end; the tempered glass pieces were connected
by binding. The layered pavement was applied as sample loading in the experiment, and
layering was visualised using dyeing sands. The displacement changes in soil plugs at
different positions in the tubular pile could be seen clearly during penetration. The loading
support in the test and the physical image are shown in Figure 8.
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Figure 8. Experiment and schematic diagram, showing the (a) schematic diagram of model design,
(b) laboratory test site, and (c) model box with stained sand.

The test steps were similar to those of the dynamic monitoring test of the standard
penetration of large-diameter tubular piles. The digital camera is 1.5 m away from the
model device, the photographic optical axis is perpendicular to the monitoring surface
of the model device, and control points are laid on the monitoring surface of the model
box (white cubes in Figure 8c). The lines between the control points constitute the regions
shown in the study. The experimental steps were as follows:

1© Before a pipe pile penetration test, several high-quality images were taken, and the
optimal one was chosen as the initial image for comparison with subsequent images.

2© After the pipe pile penetration test, one image was taken to obtain the final spatial
position of the tubular pile.

3© Finally, the above-mentioned process was repeated for each test, image data
were processed.

4. Data Processing and Analysis
4.1. Standard Penetration Data Analysis of Large-Diameter Tubular Piles

In the test, the pixel displacements of the reference points were supposed to be zero
in theory. However, their pixel displacements were not zero in the cooperative transform
shifting parallax method. As such, these values were deemed as the measurement accuracy
of pipe pile penetration test. Due to the large amount of data, the authors selected 12 tests
of pipe pile 1–2 penetration test for data processing. The measurement accuracy is shown
in Table 3. In Table 3, 1-Point 0, 1-Point 1, and 1-Point 2 represent the control point 0, 1, and
2 in pipe pile #1 penetration test. 2-Point 0, 2-Point 1, and 2-Point 2 represent the control
point 0, 1, and 2 in pipe pile #2 penetration test. MSE is mean square error, its maximum is
0.84 mm, and its minimum is 0.14 mm.

Table 3. Measurement Accuracy of Camera/mm.

Blow Counts
Pile 1 Blow Test Pile 2 Blow Test

1-Point 0 1-Point 1 1-Point 2 2-Point 0 2-Point 1 2-Point 2

1 0 0.73 0.73 0.99 0 0
2 0 0 0.73 0.99 0 0
3 0 0 0.73 0.49 0 0
4 −0.73 0 0.73 0.99 0 0
5 −0.73 0.73 0 0.49 −0.49 0
6 0 0 0.73 0.49 0 0
7 −0.73 0 0 0.99 0 −0.49
8 −0.73 0.73 0 0.99 0 0
9 0 0 0.73 0.99 0 0
10 0 0 0.73 0.49 0 0
11 0 0 0.73 0.99 −0.49 0
12 0 0 0.73 0.49 0 0

MSE 0.42 0.37 0.63 0.82 0.20 0.14
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The penetration data of tubular piles at different time points were acquired through
image processing (Table 4). Figure 9a,b show that a Logistic functional relationship exists
between the penetration and blow counts. The penetration rate of Pile #1 was relatively
large, and it penetrated the strata completely after 12 blow counts. This indicates that
the soil structure at 0–10 m below the surface was relatively loose, agreeing with the
observations regarding actual strata.

Table 4. Monitoring data of pipe pile penetration at No. 6 pile position.

Hit Times Displacement/m Hit Times Displacement/m Hit Times Displacement/m

1 0.099 42 6.190 83 8.801
2 0.157 43 6.323 84 8.883
3 0.267 44 6.433 85 8.921
4 0.314 45 6.430 86 8.922
5 0.388 46 6.605 87 8.960
6 0.460 47 6.626 88 8.997
7 0.596 48 6.885 89 9.046
8 0.605 49 6.948 90 9.084
9 0.704 50 6.977 91 9.124

10 0.832 51 7.100 92 9.220
11 0.883 52 7.159 93 9.257
12 0.940 53 7.190 94 9.287
13 1.310 54 7.317 95 9.327
14 1.505 55 7.372 96 9.364
15 1.622 56 7.398 97 9.403
16 1.786 57 7.488 98 9.408
17 1.937 58 7.551 99 9.507
18 1.993 59 7.604 100 9.523
19 2.364 60 7.692 101 9.548
20 2.595 61 7.737 102 9.605
21 2.780 62 7.786 103 9.593
22 2.978 63 7.851 104 9.671
23 3.073 64 7.900 105 9.663
24 3.519 65 7.962 106 9.705
25 3.790 66 8.016 107 9.782
26 3.986 67 8.027 108 9.819
27 4.113 68 8.081 109 9.868
28 4.149 69 8.135 110 9.911
29 4.658 70 8.244 111 9.931
30 4.655 71 8.301 112 9.978
31 4.763 72 8.308 113 10.007
32 4.877 73 8.353 114 10.051
33 4.997 74 8.409 115 10.079
34 5.045 75 8.442 116 10.118
35 5.143 76 8.466 117 10.186
36 5.187 77 8.552 118 10.191

37 5.455 78 8.631 ...
...

38 5.617 79 8.672 ...
...

39 5.736 80 8.708 151 11.507
40 5.833 81 8.781 152 11.541
41 5.914 82 8.791 153 11.535

Figure 9c,d show that a single exponential decay function relationship exists between
penetration and blow counts. The penetration rate increased first and then decreased, and
Pile #2 penetrated the strata completely after 153 blow counts. Pile #2 penetrated about
7.69 m after 60 blow counts. At this moment, it had passed through the loose silt and
silty clay strata. Subsequently, it entered the stratum dominated by aleurite, leading the
penetration rate to decrease due to the hard texture.

Since Pile #3 had the highest number of blow counts, several images existed for
analysis. Hence, the penetration data of Pile #3 were divided into four stages to facilitate
independent processing. In Figure 10a–d, we can see the spatial evolution patterns of the
underground part and the above-ground part of the pipe pile in four monitoring stages. It
can be seen from Figure 10e,f that the penetration rates of Pile #3 show a trend of single
exponential decay functions. However, the penetration rate of Pile #3 was significantly
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lower than those of Pile #1 and Pile #2. Pile #3 was penetrated completely after 1200 blow
counts. Currently, the bottom of Pile #3 was in the aleurite. Moreover, the strata pressure
increased with increases in depth, making soils harder and harder. Consequently, the
penetration rate of Pile #3 was relatively low.
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Figure 9. Schematic diagram of penetration change in first and second pipe piles at pile position 6,
displaying the (a) spatial diagram of penetration evolution law of pipe pile 1, (b) fitting analysis of
penetration evolution law of pipe pile 1, (c) spatial diagram of penetration evolution law of pipe pile
2, and (d) fitting analysis of penetration evolution law of pipe pile 2.

Similarly, the data of Pile #4 were divided into three stages for independent processing
and fitting. In Figure 11a–c, we can see the spatial evolution patterns of the underground
part and the above-ground part of the pipe pile in three monitoring stages. It can be seen
from Figure 11d,e that the penetration rates of Pile #4 show a trend of the piecewise linear
function. Its slope decreases first and then increases suddenly.

Based on the abovementioned analysis, an obvious turning point exists in the penetra-
tion rate of Pile #4 around the 500th blow count. This demonstrated that Pile #4 penetrated
through the relatively hard aleurite into the relatively soft silt and further approached the
bearing stratum.
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the strata in fourth monitoring stage, (e) spatial diagram of penetration evolution law, and (f) fitting 

analysis of penetration evolution law. 

Similarly, the data of Pile #4 were divided into three stages for independent pro-

cessing and fitting. In Figure 11a–c, we can see the spatial evolution patterns of the under-

ground part and the above-ground part of the pipe pile in three monitoring stages. It can 

be seen from Figure 11d,e that the penetration rates of Pile #4 show a trend of the piece-

wise linear function. Its slope decreases first and then increases suddenly. 

Figure 10. Schematic diagram of penetration evolution of pipe pile 3 at pile position 6, showing
the (a) schematic diagram of pipe pile penetrated the strata in first monitoring stage, (b) schematic
diagram of pipe pile penetrated the strata in second monitoring stage, (c) schematic diagram of pipe
pile penetrated the strata in third monitoring stage, (d) schematic diagram of pipe pile penetrated
the strata in fourth monitoring stage, (e) spatial diagram of penetration evolution law, and (f) fitting
analysis of penetration evolution law.
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Figure 11. Diagram of penetration evolution of the 4th pipe pile at pile 6, showing the (a) schematic 

diagram of pipe pile penetrated the strata in first monitoring stage, (b) schematic diagram of pipe 

pile penetrated the strata in second monitoring stage, (c) schematic diagram of pipe pile penetrated 

the strata in third monitoring stage, (d) spatial diagram of penetration evolution law, and (e) fitting 

analysis of penetration evolution law. 

Based on the abovementioned analysis, an obvious turning point exists in the pene-

tration rate of Pile #4 around the 500th blow count. This demonstrated that Pile #4 pene-

trated through the relatively hard aleurite into the relatively soft silt and further ap-

proached the bearing stratum. 

Figure 11. Diagram of penetration evolution of the 4th pipe pile at pile 6, showing the (a) schematic
diagram of pipe pile penetrated the strata in first monitoring stage, (b) schematic diagram of pipe
pile penetrated the strata in second monitoring stage, (c) schematic diagram of pipe pile penetrated
the strata in third monitoring stage, (d) spatial diagram of penetration evolution law, and (e) fitting
analysis of penetration evolution law.

On this basis, the variation curves of the penetration of large-diameter tubular piles
were plotted. In Figure 12a, the penetration and the corresponding blow counts evolve as
a piecewise function, which is a logarithmic function in the early stage, a gently sloping
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linear function in the middle stage, and a sharply sloping linear function in the late stage.
According to the variations in the penetration and penetration rates at different stages,
the geological conditions of tubular piles could be assessed intuitively concerning their
locations. On this basis, the blow frequency and blow loads of the tubular piling machine
could be adjusted promptly.
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Figure 12. Diagram of penetration change in large diameter pipe pile at pile position 6, showing the
(a) fitting analysis of penetration evolution law at pile position 6, and (b) sketch of the penetration
Kalman filter deviation.

Additionally, Figure 12b shows that monocular visual digital photography can meet the
requirements concerning the standard penetration monitoring accuracy of large-diameter
tubular piles. It can provide reliable basic data for the planning and design of deep foundations,
facilitating the proposal of reasonable suggestions for unstable geological conditions. This can
help improve the success rate of field construction significantly.

4.2. Field Monitoring Data Analysis of the Construction Effect of Large-Diameter Tubular Piles

The spatial displacements of observation points 1–5 during the construction of Position
5 and Position 4 were acquired through a combination of the data from the digital camera
and station instrumentation. To express the positional evolution state of Position 6 accu-
rately and clearly, the mean measuring results of observation points 1–5 were calculated,
and the corresponding diagram was plotted (Table 5 and Figure 13).

Table 5. Movement value of the monitored pile (A-6).

Pipe Pile
Number

Displacement in N Direction/mm Displacement in E Direction/mm Displacement in H Direction/mm

Construction
of A-5

Construction
of A-4

Construction
of A-5

Construction
of A-4

Construction
of A-5

Construction
of A-4

1 −3.0 −0.6 6.4 −6.4 1.2 0.4
2 −8.2 −1.2 15.2 −5.0 2.0 0.2
3 −8.4 −3.2 14.2 −4.6 2.4 0.8
4 −6.6 −2.8 14.6 −3.4 0.2 1.6
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diagram of horizontal displacement, (d) schematic diagram of H-direction displacement, and
(e) relationship between compaction effect and space displacement.
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Figure 13a,e show that, during the construction of Piles #1, #2, #3, and #4 at Position 5,
Position 6 deviated by 3 mm, 8.2 mm, 8.4 mm, and 6.6 mm along the S direction, respectively.
During the construction of Piles #1, #2, #3, and #4 at Position 4, Position 6 deviated by
0.6 mm, 1.2 mm, 3.2 mm, and 2.8 mm along the S direction, respectively. According to the
measurement data, Position 6’s squeezing effect strengthened first and then weakened with
increases in the penetration of tubular piles.

In Figure 13b,e, Position 6 deviated by 6.4 mm, 15.2 mm, 14.2 mm, and 14.6 mm along
the E direction during the construction of Piles #1, #2, #3, and #4 at Position 5, respectively.
During the construction of Piles #1, #2, #3, and #4 at Position 4, Position 6 deviated by
6.4 mm, 5 mm, 4.6 mm, and 3.4 mm along the E direction, respectively. According to
measurement data, Position 6 was squeezed away and rebounded along the E direction.
This phenomenon indicates that the squeezing effect strengthened first and then weakened
with increases in the penetration of tubular piles.

Figure 13a–e show that the squeezing effect peaked when the penetration depth of the
tubular piles was about 20 m during the construction at adjacent positions, which could
make surrounding tubular piles deviate from the initial position by nearly 2 cm. During
the pile-jumping construction, the squeezing effect was relatively weak. The maximum
squeezing effect was observed when the penetration depth of tubular piles was about 10 m,
which could make the tubular piles deviate from the initial position by about 0.5 cm. The
experimental results in this study further verified the reliability of pile-jumping construction
technology and provided reference data for its optimisation.

Figure 13d,e showed that a slight uplift was developed during the construction of
adjacent piles and pile-jumping construction. This was the collaborative consequence of
increasing the short installation and side friction resistance under the squeezing effect.

4.3. Plugging Effect Analysis of Large-Diameter Tubular Piles

An obvious plugging effect was observed in the indoor tests on large-diameter
tubular piles when they penetrated the strata. Displacement variations in three stages
of the plugging effect are shown in Figure 6. Figure 14a–c show that, in the early
piling stage, foundation soils suffered shear failure due to the influence of the pile wall.
Meanwhile, the soil mass below the pile wall close to the pile end developed shear
displacement. However, the soil mass in the piles did not move downward significantly
as the pile penetrated further.

Figure 14d–f show that the soil plug height and the frictional force between the
soil plug and pile wall increased with increases in the penetration depth of tubular
piles. Under these circumstances, the soil plug moved downward continuously due to
frictional resistance. Accordingly, the altitude difference between the top surface of the
soil plug and the original sand surface increased. Since the shear deformation near the
pile wall was larger than that of sand particles in the middle of the soil plug, the dyeing
sand layer was ‘convex’. Further, and the soil plugs in piles produced a ‘convex’ arch
due to frictional resistance.

Figure 14g,h show that, as the piles pressed in continuously, the soil plug was com-
pacted gradually due to the combined action of downward frictional resistance with the
pile wall and the counterforce of the soil mass at the pile end. The dyeing sand layer
developed a ball cap-like ‘concave’ arch. The soil plug in the pile developed an extremely
large frictional force, stopping the further inrush of the soil mass into the pile like a ‘bottle
plug’. The length of the soil plug did not increase any more after this, reflecting a significant
plugging effect. Consequently, the bearing characteristics of open-ended piles were the
same as those of closed-ended ones.
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Figure 15. Soil body displacement contour diagram for different penetration of piles at the (a) pile 

penetration of 100 mm, and (b) pile penetration of 150 mm. 

Figure 14. Soil plug phenomenon of pipe pile (a) before pressing piles, (b) at the pressed depth of
50 mm, (c) at the pressed depth of 100 mm, (d) at the pressed depth of 150 mm, (e) at the pressed
depth of 200 mm, (f) at the pressed depth of 250 mm, (g) at the pressed depth of 300 mm, and (h) at
the pressed depth of 350 mm.

Additionally, a displacement contour map of the foundation soil was also drawn when
the model piles penetrated the strata. The sphere of influence and size of the plugging
effect were analysed quantitatively.

Figure 15 shows that the horizontal and longitudinal spheres of influence expanded
gradually as the piles settled. However, the vertical influences were significantly more
obvious than the horizontal influences. The contour lines in the vertical and horizontal
spheres of influence were rectangular. Model piles may have developed a horizontal
squeezing effect when the plugging effect began to form. The horizontal sphere of influence
of the squeezing effect also expanded severalfold.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 23 
 

significant plugging effect. Consequently, the bearing characteristics of open-ended piles 

were the same as those of closed-ended ones. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 14. Soil plug phenomenon of pipe pile (a) before pressing piles, (b) at the pressed depth of 

50 mm, (c) at the pressed depth of 100 mm, (d) at the pressed depth of 150 mm, (e) at the pressed 

depth of 200 mm, (f) at the pressed depth of 250 mm, (g) at the pressed depth of 300 mm, and (h) at 

the pressed depth of 350 mm. 

Additionally, a displacement contour map of the foundation soil was also drawn 

when the model piles penetrated the strata. The sphere of influence and size of the plug-

ging effect were analysed quantitatively. 

Figure 15 shows that the horizontal and longitudinal spheres of influence expanded 

gradually as the piles settled. However, the vertical influences were significantly more 

obvious than the horizontal influences. The contour lines in the vertical and horizontal 

spheres of influence were rectangular. Model piles may have developed a horizontal 

squeezing effect when the plugging effect began to form. The horizontal sphere of influ-

ence of the squeezing effect also expanded severalfold.  

V
er

ti
ca

l 
d

ir
ec

ti
o

n
 o

f 
m

o
d

el
 b

o
x
/m

m

/cm

 

V
er

ti
ca

l 
d

ir
ec

ti
o

n
 o

f 
m

o
d

el
 b

o
x

/m
m

/cm

 
(a) (b) 

Figure 15. Soil body displacement contour diagram for different penetration of piles at the (a) pile 

penetration of 100 mm, and (b) pile penetration of 150 mm. 
Figure 15. Soil body displacement contour diagram for different penetration of piles at the (a) pile
penetration of 100 mm, and (b) pile penetration of 150 mm.



Appl. Sci. 2022, 12, 11468 18 of 22

4.4. Squeezing Effect Analysis of Large-Diameter Tubular Piles

In the data processing, the images are first loaded in the software, and then the control
point file is established. Last, the authors run the image analysis program Geodog and post
processor Post Viewer to carry out pixel and displacement solution.

The cloud chart of soil mass displacement at different penetration depths was obtained
from data processing. It can be seen from Figure 16 that, in the early penetration stages,
the piles arrived at a superficial soil mass. Even though soil mass, within a certain level at
the pile bottom, mainly moved downward laterally, the surrounding soil mass was mainly
squeezed out laterally. With increases in the penetration depth, the rising trend of the deep
soil mass was weakened, and the surrounding soil mass developed vertical displacement
and deformation relative to the pile body. Radial squeezing played a dominant role in
most regions. Moreover, a spherical disturbed area would be formed at the bottom of the
pile. The scope of this area was related to the initial state of the soil mass, such as relative
compaction (Figure 18).
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Figure 16. Cloud diagram of pipe pile penetration displacement when (a) penetrated into 1/4 pile
length, (b) penetrated into 2/4 pile length, (c) penetrated into 3/4 pile length, and (d) penetrated into
4/4 pile lengths.

To study the spatial variation laws of the displacement deformation of the surrounding
piles of the soil mass, as well as the effective sphere of influence, vertical observation belts
were set at one, three, five, seven, and nine times the pile diameter away from the pile after
it was penetrated completely. Moreover, horizontal monitoring belts were set at 0 cm, 8
cm, 16 cm, 24 cm, 32 cm, 40 cm, 48 cm, and 56 cm away from the soil mass surface. The
variation curves of the vertical soil displacement at different distances away from the pile
and soil displacement at different depths were also drawn (Figure 17).
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(b) relationship curve between soil body displacement and distance from pipe pile.
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Figure 17a shows that the vertical soil displacement increased first and then decreased
with increases in the distance from measuring points to the central axis of the pile body.
The soil displacement approached 0 at the position, which was nine times the pile diameter
away. It could be viewed as the boundary of the radial squeezing zone. Figure 17b reflected
that, in the penetration depth range of piles, the horizontal displacement of the soil mass
followed an exponential function. The radial displacement slowly approached 0 when
the penetration depth was 1.5 times the pile length, forming a hemispherical expansion
area [36–39]. The squeezing effect of the penetrated piles is shown in Figure 18.
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5. Conclusions

Based on the highway construction project from Jinan to Gaoqing, the standard pen-
etration of large-diameter tubular piles was monitored at a construction site based on
monocular visual digital photography. Moreover, an indoor test model was developed per
practical engineering conditions to study the construction effect of large-diameter tubular
piles. Some major conclusions could be drawn.

(1) When large-diameter tubular piles penetrate from the loose stratum to aleurite and
then to silt, the relationship between the penetration and time function (blow counts)
evolves as a piecewise function. This, which is a logarithmic function in the early
stage, a gently sloping linear function in the middle stage, and a sharply sloping linear
function in the late stage. The penetration rates vary significantly under different
strata conditions.

(2) According to the measurement data regarding pile deviation, the squeezing effect
increases and then weakens during adjacent pile construction and pile-jumping con-
struction. The maximum squeezing effect is observed as the adjacent pile is penetrated
by about 20 m or the jumping pile is penetrated by about 10 m. The monitored pile is
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influenced greatly by the construction of adjacent piles, similar to the results of the
pile-jumping construction method.

(3) The plugging effect can be divided into three stages: the formation of a soil plug,
increases in the frictional force between the soil plug and pile wall, and closure. In
the first stage, it is manifested as a convex arch. In the second stage, the soil plug
gradually changes from a convex arch to a concave arch. In the third stage, the soil
plug is closed completely. Such engineering characteristics are similar to those of
closed-ended piles.

(4) The horizontal and longitudinal spheres of influence of surrounding soil masses expand
gradually with increases in the penetration depth of tubular piles. More specifically,
vertical influences are significantly greater than horizontal influences. The contour lines
the of vertical and horizontal spheres of influence form a rectangular distribution.

(5) When the plugging effect of a tube is closed, a horizontal squeezing effect of the
surrounding piles of soil mass is developed. The horizontal sphere of influence
expands, including the shear failure zone, radial compression zone, and hemispherical
expansion zone. Among them, the radial compression zone is expanded to the point
where it is nine times the pile diameter away from the pile axis, and the hemispherical
expansion zone extends to the depth where it is 1.5 times the pile length.

In conclusion, digital photography technology is innovatively applied to the field
monitoring process of large diameter pipe piles, which provides a cost-effective technical
means to obtain the dynamic penetration value of large diameter pipe piles, and these data
are of great significance to the field construction and optimization design of large diameter
pipe piles. At the same time, digital photography technology can realize high-precision
dynamic monitoring of the penetration value of large-diameter pipe piles in laboratory tests,
which provides technical support for studying the dynamic evolution law of large-diameter
pipe pile construction effect and optimizing construction parameters.
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