
Citation: Dai, Z.-H.; Wang, R.-H.;

Guan, J.-H. Auxiliary

Decision-Making System for Steel

Plate Cold Straightening Based on

Multi-Machine Learning Competition

Strategies. Appl. Sci. 2022, 12, 11473.

https://doi.org/10.3390/

app122211473

Academic Editors:

Minvydas Ragulskis,

Wen-Hsiang Hsieh and

Jia-Shing Sheu

Received: 10 October 2022

Accepted: 10 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Auxiliary Decision-Making System for Steel Plate Cold
Straightening Based on Multi-Machine Learning
Competition Strategies
Zhen-Hu Dai 1,2,†, Rui-Hua Wang 3,† and Ji-Hong Guan 1,*

1 School of Electronic and Information Engineering, Tongji University, Shanghai 200070, China
2 Shanghai Baosight Software Co., Ltd., Shanghai 201203, China
3 School of Software, Nanchang University, Nanchang 330047, China
* Correspondence: jhguan@tongji.edu.cn; Tel.: +86-18616102875
† These authors contributed equally to this work.

Abstract: In the process of steel plate production, whether cold straightening is required is significant
to reduce costs and improve product qualification rates. It is not effective by adopting classic machine
learning judgment algorithms. Concerning the effectiveness of ensemble learning methods on
improving traditional machine learning methods, a steel plate cold straightening auxiliary decision-
making algorithm based on multiple machine learning competition strategies is proposed in this paper.
The algorithm firstly adopts the rough set method to simplify the attributes of the conditional factors
for affecting whether the steel plate cold straightening is required, and reduce the attribute dimensions
of the steel plate cold straightening auxiliary decision-making data set. Secondly, the competition
of training multiple different learners on the data set produces the optimal base classifier. Finally,
the final classifier is generated by training weights on the optimal base classifier and combining it
with a centralized strategy. While the hit rate of good products of the final classifier is 97.9%, the
hit rate of defective products is 90.9%. As such, the accuracy rate is better than the single kind of
simple machine learning algorithms, which effectively improves the product quality of steel plates in
practical production applications.

Keywords: steel plate production; attribute reduction; ensemble learning; machine learning

1. Introduction

Currently, industrial real-time databases need AI data analysis technologies to solve
the problems of defect detection [1], sorting identification [2], size detection [3], visual
guidance [4], etc., which help enterprises to achieve flexible production [5] and high
automation. For example, the intelligent defect detection makes the manual detection to be
a laborious task as the human eye is not able to distinguish the fast moving tiny objects.
Furthermore, the excessive use of eyes is much easier to miss objects. AI technologies can be
used to overcome these difficulties and increase detection efficiency by means of adjusting
the detection accuracy according to the product detection requirements. At the same time,
AI technologies can realize automatic detection, automatic processing and reducing the rate
of defective products and labor costs by means of cooperating with automatic production
lines, which increase the production efficiency significantly [6].

However, the classical single AI algorithm applied in the current industrial production
process is still insufficient. A single AI algorithm has different prediction capabilities for
different data sets, and its adaptability to multiple production environments and multiple
steel plates is also insufficient. It is also easier to fall into local optimization and cannot
obtain the optimal solution.

Aiming at the shortcomings of classical single AI algorithm, this project proposes an en-
semble learning algorithm based on multi-machine learning, which effectively compensates
for the shortcomings of a single AI algorithm and improves the prediction performance.
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As shown in Figure 1, certain internal stress generates in the manufacturing process of
steel plates [7]. The magnitude of internal stress plays a key role in the application of steel
products and the effect on final products. The internal stress of steel plates is unqualified,
which may cause deformation and cracks of steel plates. Detecting unqualified steel plates
and performing cold straightening is the key to improving the production quality of steel
plates. The accuracy of whether steel plates need cold straightening cannot be guaranteed
if it is only judged by workers’ experience and naked eyes. Also, the effect is not ideal
because it is usually affected by the status and quality of workers. These problems can be
avoided by using AI technologies to make decisions on cold straightening of steel plates.
The steel plate cold straightening auxiliary decision-making algorithm aims to predict
whether the internal stress of steel products is qualified and cold straightening is necessary,
which may lead to a more stable and accurate judgment on whether cold straightening is
necessary in the steel plate production process.
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However, traditional single machine learning algorithms cannot adapt well to different
types of steel plates (including steel plates of different sizes and different physical com-
positions, as their production environment and corresponding data can be very different)
and production processes in actual production because they often fall into local optimum
easily, and the adaptability of the model is limited [8]. Because a single kind of classical
AI algorithm has different capabilities to process data sets with different characteristics,
there is also a bias towards the data processing capabilities of different sizes and types
of steel plates. Using the multi-classifier ensemble learning method can make up for the
shortcomings of different classifiers and improve the final classification prediction effect.
At present, it is an urgent and common problem in the steel production industry to propose
a steel plate cold straightening auxiliary decision-making method with higher judgment
accuracy and stronger model adaptability [9].

Ensemble learning [10] is a common statistical learning method, which is widely
applied and effective. Ensemble learning usually achieves significantly better generalization
performance than a single learner by combining multiple learners. In the classification
problem, it enhances the performance of classification by changing the weights of training
samples, learning multiple classifiers and combining these classifiers linearly.

Based on the above industrial background, this project adopts the strategy of ensemble
learning to propose a new type of steel plate cold straightening auxiliary decision-making
method. With the data of rough rolling [11], finishing [12] and steel plates that have not
been cold straightened [13] after accelerated cold treatment [14], this project analyzes factors
which play a pivotal role in the internal stress and uses ensemble learning methods to build
a strong machine learning method which is able to predict if steel plate cold straightening
is necessary.

By predicting the subplate that needs to be cold straightened more effectively, this
model reduces the cold straightening rate, the customer quality objections caused by
residual stress and is applied to improving the yield of steel products.

2. Introduction to the Steel Plate Cold Straightening Auxiliary Decision-Making Data

We used SIEMENSE PLC in the production of steel plates, which used snap7 technol-
ogy to collect production data. In the cold straightening stage of steel plates, a patented
technology that automatically recognizes the FQC image content of thick plates to obtain
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the corresponding data parameters in real time is used. Finally, the real-time database can
be obtained by means of processing data by the data collection gateway.

The specific data acquisition process is shown in Figure 2.
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We selected Baosteel’s steel plates production data as the data source of this project.
Since many of Baosteel’s subplates from May to July 2020 were cold straightened [15], this
paper selects the data of subplates that have not been cold straightened from January to
April 2020 as the subject in this study. The experiment is aimed at the steel plate production
process and purposefully slices steel plates whose uniformity of preheating and sizes are
different; the experimental data of the study is composed of factors about rolling thickness,
temperature, torque, bending force at stages of rolling mill and finishing and attributes like
the production intervals, whether the production happens in a single furnace.

The main influencing factors for the internal stress in the steel plate and whether cold
straightening is required are summarized in the experimental data, which is shown in
Table 1 below.

Table 1. List of properties that may affect the internal stress in the steel plate and whether it is cold
straightened or not.

Variable Name Physical Meaning

PH_EQUALITY Uniformity of the preheating section
LENGTH Subplate length
WIDTH Subplate width
THICKNESS Subplate thickness

PRE_EXITTHICKNESS_MAX_RM The maximum value of the target value of the rollout
thickness at the roughing stage

PRE_EXITTHICKNESS_MEAN_RM The average of the target values for the roll
thickness at the roughing stage
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Table 1. Cont.

Variable Name Physical Meaning

MEAS_TORQUETOP_MAX_RM The maximum value of the torque measurement
at the roughing stage

MEAS_TORQUETOP_MEAN_RM The average of the torque measurements at the roughing stage

PRE_BENDINGFORCE_MAX_FM The maximum value of the target value of the bending roll force at the
finishing stage

PRE_BENDINGFORCE_MEAN_FM The average value of the target value of the bending
roll force at the finishing stage

MEAS_BENDINGFORCE_RANGE_FM Change in bending roll force measurement at
the finishing stage

PRE_EXITTEMPERATURE_MAX_FM The maximum value of the target value of the
outlet temperature at the finishing stage

PRE_EXITTEMPERATURE_MEAN_FM The average of the target values for the rolling
the temperature at the finishing stage

PRE_EXITTEMPERATURE_RANGE_FM Change in target value of outgoing temperature at
the finishing stage

ENTRYTEMP_MAX_RM The maximum temperature before rolling at the
roughing stage

ENTRYTEMP_MEAN_RM The average of the pre-rolling temperatures at the
roughing stage

ENTRYTEMP_RANGE_RM Change in temperature before rolling at the
roughing stage

IN_EVENT The interval is fewer than 7 days and it is produced
in a single furnace

EVENT The time interval is greater than 7 days and
it is produced in a single furnace

MULTI_IN_EVENT The interval is fewer than 7 days and it is produced
in multiple furnaces

MULTI_EVENT The time interval is greater than 7 days and
it is multi-furnace production

3. Auxiliary Decision-Making System for Steel Plate Cold Straightening Based on
Multi-Machine Learning

In the steel plate production and application, a single machine learning algorithm is
usually used. However, a single learning algorithm lacks the ability to adapt to different
steel plate types and manufacturing, which may lead to poor learning effects. As a result,
the use of ensemble learning methods is an important strategy to effectively improve the
accuracy and stability of learning.

Among numerous ensemble learning algorithms [16], the AdaBoost [17] algorithm,
whose main strategy is weighted voting, is one of the most representative methods. More-
over, it follows the rule that the minority is subordinate to the majority. The AdaBoost
algorithm constantly updates and optimizes the weight of each underlying algorithm
through adequate training. Finally, the weight of the high-accuracy classifier is improved
and the weight of the low-accuracy classifier is reduced. Consequently, the accuracy of the
final integration decision is increased and the performance of the algorithm is improved
during the voting process.

The rough set is an important theory for the reasoning of uncertain problems [18]. Data
attribute reduction based on the rough set is a widely recognized method in dimensionality
reduction of high-dimensional data [19]. This method which has been widely applied
to various types of industrial data mining during recent years can be used to eliminate
irrelevant attributes and reduce model complexity under basically the same decision and
classification ability. The reduction result of taking the rough set is more objective and
effective because it is not necessary to use any prior attribute distribution information.
In this paper, a steel plate cold straightening auxiliary decision-making system based
on multi-machine learning competitive strategy (MMLCS) is proposed. In addition, the
rough set method is applied to blending the idea of ensemble learning and simplifying the
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attributes of multiple attribute factors that affect the magnitude of the internal stress and
decide whether cold straightening is required in the steel plate. At the same time, the idea
of ensemble learning is fused, and a multi-machine learning competitive strategy (MMLCS)
is proposed.

The industrial data mining algorithm model of the multi-machine learning competitive
strategy is shown in Figure 3. The corresponding algorithmic framework of this model is
as follows:
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This model includes data reduction modules (containing data cleaning, data discretiza-
tion, rough set), multi-machine competition module, ensemble learning, and other main
modules. The learning process was as follows: First, training data set attribute reduction
should be done. Then, the result should be imported into the multi-machine competition
module. In the multi-machine competition module, M classifiers are trained through
a competitive strategy. N optimal classifiers (N < M, N is an odd number) are finally
obtained and saved into the multi-optimal classifier module. In the end, in the ensemble
learning module, a multi-optimal classifier is extracted, predicting the actual steel plate
according to the integration strategy and calculating the optimal prediction results.

The following subsections will introduce some of the important modules involved in
the model in detail.

3.1. Data Attribute Reduction

This cold straightening data set can be regarded as a knowledge expression system
IS = (U, R, V, f ), wherein, U = {x1 x2 . . . xi} represents the non-empty finite set of
cold straightening data record objects(tuples), where the xi is the No.i cold straightening
record(tuple). R = C ∪ D is the set of all attributes of the cold straightening data, divided
into two subsets that do not intersect, namely conditional attribute C and decision attribute
D, conditional attribute C includes all the attributes mentioned in Table 1, and the domain



Appl. Sci. 2022, 12, 11473 6 of 13

of decision attribute D: D ⊂ {1,−1}, 1 means that cold straightening occurs, −1 means
that no cold straightening occurs. V: The set of values for conditional attribute C, and
Va is the domain of the property. f : U × R→ V is an information function that assigns
a value to any property of a ∈ R corresponding to any object x ∈ U, namely fa(x) ∈ Va.
The Cold Straightening Prediction Information System is a large, complex and diverse data
collection containing many redundant attributes. To obtain a simplified decision table,
further processing is required.

This project uses a rough set reduction method, and the reduction algorithm is intro-
duced in the Algorithms 1:

Algorithms 1 RS_Reduction

Input: Cold Straightening Forecast Information System IS = (U, C, D, V, f )

Output: IS∗ = (U, C∗, D, V, f ) after attribute reduction, wherein C∗ ⊆ C
For the algorithm steps, check Reference [20].

3.2. Multi-Machine Competition and Integration Modules

The classifier race process in multiple machine learning competitions is shown in
Figure 4. Firstly, input the initialized training data, and use the rough set to reduce
attributes. The simplified data is used to learn and train M different algorithms, with M
different knowledge produced after learning. The test data is then applied to competing
for M knowledge. Finally, N classifiers with the highest prediction accuracy are outputted
and saved into the optimal classifier module.
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The key algorithmic steps in the Multiple Machine Learning Competition module are
as follows:
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Algorithms 2 MML_competition

Input: M alternative algorithm sets X,

// X =
{

Algorithm1( ), Algorithm2( ), · · ·AlgorithmM( )
}

Training data set: set1, Test data set: set2
// set1 and set2 are data sets with the same data structure as IS
Output: N optimal classifiers set Y
set1′ = RS_Reduction(set1); set2′ = RS_Reduction(set2)

for (i=1; i< M; i++)
{
Substituting set1′ into Algorithmi( ) for machine learning;
//learning process is omitted
Import the test data set2′ into the learned algorithm Algi( ) to obtain the accuracy of the

prediction, recorded as ai.
//the calculation formula:

ai =

∑|set2′ |
j=1

Algi(cj) iff dj

dj

|set2′ |


Wherein cj ∈ Cset2′ , dj ∈ Dset2′ , |set2′| represents the number of sets, Algi

(
cj
)

represents the
conditional property of the j record Cj is substituted into algorithm i,

}
for (I = l; I < N; i++)

{
for (j = l; j< M; j++)
{

Import the classifier Algi( ) with the best accuracy in this cycle and its accuracy ai into
Y, and delete Algi( ) as well as M=M−1 in X

}
}

After obtaining the optimal classifier set Y, the method of ensemble learning can be
applied to making predictions for cold straightening. The integration strategy uses accuracy
and variance as weights, respectively. Accuracy is used as a weight for prediction first.
When the outcome is uncertain, variance is used as an alternative weight for prediction.

The integration strategy is: At the initial learning stage, the prediction data set is used
to learn the N algorithms generated in the multi-machine learning competition module, and
the prediction accuracy of the N algorithms is used as the respective weights. Secondly, the
prediction results in N algorithms are divided into two groups according to the occurrence
of cold straightening and non-occurrence of cold straightening. The weighted prediction
accuracy as well as the number of algorithms in the group are counted separately. If the
number of algorithms in the cold straightening group is greater than that in the no cold
straightening group, and the sum of the prediction accuracy of the cold straightening group
algorithm is greater than that of the no cold correction group algorithm, the prediction result
is cold straightening; Alternatively, if the number of algorithms in the cold straightening
group is fewer than that in the no cold straightening group, and the sum of the prediction
accuracy of the cold straightening group algorithm is also fewer than that of the no cold
straightening group algorithm, the prediction result is no cold straightening.

Otherwise, count the accuracy of the algorithm for the first five times separately,
calculate and compare the variance of each algorithm in the group, and the smaller variance
is the output of this forecast.

The specific algorithm pseudo code mentioned above is as follows:
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Algorithms 3 MML_decision

Input: Prediction data set: set3; Optimal classifiers set: Y;

Output: Final prediction result
Initialize the variable result;
for (i = 1; I < N; i++)

{
//Learn the N algorithms in set Y separately with the prediction dataset set3.
//1 means that cold straightening occurs, −1 means that no cold straightening occurs;

Calculate Ri = |ai ×Yi|; and ResultList += ai.
//Count the prediction result ai of each algorithm separately, and assign the accuracy Yi of the

algorithm in Y as a weight to ai. The calculation result Ri is added to the ResultList.
Coldstraightening = group(ResultList)
// Group N results in the ResultList according to cold straightening and no cold straightening, and

calculate the prediction accuracy of each group.
}
ColdstraighteningCount = Count(Coldstraightening)
// Count the number of algorithms that coldstraightening occurs andcoldstraighteningdoes not occur

respectively.
If

{(ColdstraighteningCount(1) > ColdstraighteningCount(−1) && (Coldstraightening(1) >
Coldstraightening(−1))

Result =1
Else if

(ColdstraighteningCount(1)< ColdstraighteningCount(−1)&&(Coldstraightening(1)<
Coldstraightening(−1))

Result = −1
}

Else
{
precisionList = Var(Y)

// Compute the variance of last five accuracy of each algorithm by group, and Y has the prediction
accuracy of N algorithms each time.

If(precisionList(1) > precisionList(−1))
Result = −1

Else
Result = 1

}
Output the prediction result: Result.
// The value of the prediction result is the magnitude of the average which represents whether
coldstraightening occurs
Update Y

4. Experimental Results and Analysis of the Steel Plate Cold Straightening Auxiliary
Decision-Making
4.1. Experimental Environment

This experiment uses the Windows10 system. Matlab7.1 and GrADS1.9 are used as
the experimental platform. In the algorithmic framework of the multi-machine learning
competitive strategy, the classification algorithm uses the SVM classification algorithm,
C4.5 decision tree algorithm [21], random forest [22], naïve Bayes classifier [23], ANN
artificial neural network classification algorithm [24] and k-near neighbor classification
algorithm [25].

4.2. Experimental Data Preparation

As shown in Table 2, since many of Baosteel’s subplates from May to July 2020 were
cold straightened [15], the data of subplates that were not cold straightened from January
to April was selected as the subject in this study.
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Table 2. Current situation of cold straightening from January to July 2020.

Cold Straightening Jan Feb Mar Apr May Jun Jul

TRUE 490 353 215 151 503 880 178
FALSE 630 693 326 193 114 94 42
Sum 1120 1046 541 344 617 974 220

The reduced attributes of the data are shown in Table 3.

Table 3. Finally yield nine attribute variables that contribute to the key influencing factors of
cold straightening.

Mark Variable Name Physical Meaning

X1 PH_EQUALITY Uniformity of the preheating section
X2 LENGTH Subplate length

X3 PRE_EXITTHICKNESS_MAX_RM The maximum value of the target value of the
rollout thickness at the roughing stage

X4 MEAS_TORQUETOP_MEAN_RM The average of the torque measurements at the
roughing stage

X5 PRE_BENDINGFORCE_MEAN_FM The average of the target value of the bending
roll force at the finishing stage

X6 MEAS_BENDINGFORCE_RANGE_FM Changes in the measurement of the bending
roll force at the finishing stage

X7 PRE_EXITTEMPERATURE_RANGE_FM Changes in the target value of the rolling
temperature at the finishing stage

X8 ENTRYTEMP_RANGE_RM Changes in the temperature before rolling at
the roughing stage

X9 EVENT The time interval is greater than 7 days and it
is produced in a single furnace

The model was cross-validated by the use of data from the first four months of 2020.
The selection strategy of training data and test data is shown in Figure 5 below:
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The results of the cross-validation are shown in Table 4.

Table 4. The results of the cross-validation.

N Train Test Models Good Defect

1 1/2− 3/13 3/14− 3/20

−8.5461496 + 0.0181917× X1−
0.020788× X2− 7.268501×

X3 + 0.0006369× X4 +
0.0255786× X5 + 0.0020323×

X6 + 0.0540281× X7−
7.0883774× X8 + 4.063× X9

98.8% 67%
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Table 4. Cont.

N Train Test Models Good Defect

2 1/2− 3/20 3/21− 3/26

−7.659139 + 0.017657× X1−
0.032719× X2− 18.797067×

X3 + 0.001265× X4 +
0.029409× X5 + 0.002721×

X6 + 0.048697× X7−
5.854059× X8 + 3.87× X9

100% (100%)

3 1/2− 3/26 4/2− 4/3

−7.39 + 0.02057× X1−
0.04098× X2− 17.83× X3 +

0.001469× X4 + 0.03021× X5 +
0.003151× X6 + 0.05464×

X7− 6.939× X8 + 3.78× X9

97.8% 100%

4 1/2− 4/3 4/4− 4/10

−7.05 + 0.02081× X1−
0.04119× X2− 18.31× X3 +

0.001401× X4 + 0.0294× X5 +
0.003752× X6 + 0.05509×

X7− 7.088× X8 + 4.162× X9

100% (100%)

5 1/2− 4/10 4/11− 4/15

−7.06 + 0.02058× X1−
0.04094× X2− 18.5× X3 +

0.001393× X4 + 0.02949× X5 +
0.003744× X6 + 0.05492×

X7− 7.035× X8 + 4.083× X9

100% (100%)

6 1/2− 4/15 4/18− 4/24

−6.98 + 0.02051× X1−
0.04155× X2− 18.56× X3 +

0.001394× X4 + 0.02962× X5 +
0.003759× X6 + 0.05556×

X7− 7.135× X8 + 3.92× X9

100% (100%)

7 1/2− 4/24 4/25− 4/30

−7.07 + 0.02024× X1−
0.04141× X2− 18.62× X3 +

0.001404× X4 + 0.02998× X5 +
0.003811× X6 + 0.05555×

X7− 7.113× X8 + 3.988× X9

100% (100%)

Then, we choose the optimal model:

f (x) = −19.93 + 0.01793× X1 + 0.0002346× X2− 0.03998× X3 + 0.002326× X4
+0.03703× X5− 0.01078× X6 + 0.02663× X7 + 0.004614× X8 + 3.779× X9

In the experiment, the calculation formulas of the classifier’s good hit rate and defective
hit rate are as follows:

Good product hit rate = Predict the number o f good products
The actual number o f good products × 100%

De f ective hit rate = Predict the number o f de f ective
The actual number o f de f ective × 100%

As shown in Table 5, by using the data from April to June 2020, the model predicts
that the good hit rate is 97.9% and the defective hit rate is 90.9%.

Table 5. Model accuracy confusion matrix.

Actual

Normal Defective Sum

Predict
normal 281

(97.9%)
1

(9.1%)
282

(94.6%)

defective 6
(2.1%)

10
(90.9%)

16
(5.4%)

sum 287
(100%)

11
(100%)

298
(100%)

The experimental results of this application indicate that the hit rate of good products
is 97.9% and the hit rate of defective products is 90.9% by adopting the cold straighten-
ing prediction algorithm of steel plates based on the multi-machine learning competition
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strategy to predict whether the subplates should be cold straightened. This method im-
proves the product quality of subplates effectively. Not only does this application solve
the decision-making problem of whether subplates should be cold straightened or not, but
also it reduces the costs of cold straightening of all products and the risk of product defects
caused by cold straightening. Consequently, this application has important meanings in
practical engineering application.

In order to compare the advantages and disadvantages of the MMLCS algorithm in
this paper with other classical algorithms, we set up a comparative experiment. A contrast
experiment which is used to predict the yield of steel plates is performed in the view of
the steel plate cold straightening auxiliary decision algorithm based on the multi-machine
learning competition strategy (MMLCS) and other classical machine learning decision
algorithms (SVM, decision tree, and naïve Bayes algorithm as examples).

The experimental results are shown in Figure 6. In terms of the good product hit
rate, naïve Bayes gets the highest hit rate (93.10%) among three classical machine learning
decision algorithms. In comparison, the MMLCS gets 97.90% in the good product hit
rate. In terms of the defective hit rate, naïve Bayes gets the best hit rate (88.60%) among
the classical machine learning decision algorithms in the experiment, while MMLCS gets
90.90% in the defective hit rate, which achieves a better performance. In conclusion, the
MMLCS steel plate cold straightening decision algorithm in this paper is better than the
other three classic machine learning decision algorithms in terms of the good product hit
rate and the defective hit rate.
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5. Conclusions

This paper aims at solving the problem of whether cold straightening is required
due to the influence of internal stress in the steel plate production process. To reduce the
production cost of the steel plate and improve the qualified rate, an auxiliary decision-
making method for cold straightening of steel plates is proposed. The algorithm adopts
the multi-machine learning competition strategy. First of all, in order to reduce data
dimension, the attributes of the conditional factors, which affect the internal stress and
whether steel plates required to be cold straightened, should be reduced. Secondly, the
competition of training multiple different learners on the data set produces the optimal
base classifier. Finally, the final classifier is generated by training the weights on the
optimal base classifier and combining it with a centralized strategy. Good application
results are conducive to reducing the production cost of the steel plate and improving
the qualified rate. In practical engineering, this research method can also form a series of
cold straightening prediction model libraries related to actual model products and achieve
the effect of intelligent production by establishing prediction models of subplates with
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different types. Additionally, product qualities are effectively improved and production
costs are significantly reduced. In sum, the method proposed in this paper is well worth
being popularized.
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