
Citation: Liu, M.; Yan, P.; Liu, P.;

Qiao, J.; Yang, Z. An Improved

Particle-Swarm-Optimization

Algorithm for a Prediction Model of

Steel Slab Temperature. Appl. Sci.

2022, 12, 11550. https://doi.org/

10.3390/app122211550

Academic Editors: Shuwen Wen,

Yongle Sun and Xin Chen

Received: 10 September 2022

Accepted: 6 November 2022

Published: 14 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Improved Particle-Swarm-Optimization Algorithm for a
Prediction Model of Steel Slab Temperature
Ming Liu 1,2, Peng Yan 3, Pengbo Liu 1,2 , Jinwei Qiao 1,2 and Zhi Yang 1,2,*

1 School of Mechanical & Automotive Engineering, Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250353, China

2 Shandong Institute of Mechanical Design and Research, Jinan 250353, China
3 Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education,

School of Mechanical Engineering, Shandong University, Jinan 250061, China
* Correspondence:yangzhi@qlu.edu.cn; Tel.: +86-13066769976

Abstract: Aiming at the problem of the low accuracy of temperature prediction, a mathematical model
for predicting the temperature of a steel billet is developed. For the process of temperature prediction,
an improved particle-swarm-optimization algorithm (called XPSO) is developed. XPSO was designed
based on a multiple swarm scheme to improve the global search capability and robustness; thus,
it can improve the low accuracy of prediction and overcome the problem of easy entrapment into
local optima. In the XPSO, the multiple swarm scheme comprises four modified components: (1) the
strategy of improving the positional initialization; (2) the mutation strategy for particle swarms;
(3) the adjustment strategy of inertia weights; (4) the strategy of jumping out local optima. Based
on widely used unimodal, multimodal and composite benchmark functions, the effectiveness of the
XPSO algorithm was verified by comparing it with some popular variant PSO algorithms (PSO, IPSO,
IPSO2, HPSO, CPSO). Then, the XPSO was applied to predict the temperatures of steel billets based
on simulation data sets and measured data sets. Finally, the obtained results show that the XPSO is
more accurate than other PSO algorithms and other optimization approaches (WOA, IA, GWO, DE,
ABC) for temperature prediction of steel billets.

Keywords: optimization; particle swarm optimization algorithm; reheating furnace; tempera-
ture prediction

1. Introduction

In the steel industry, the reheating furnace must reheat the material (slabs) to the
desired uniformity temperature profiles at the exit. However, the slab reheating furnace’s
operation is a complex physical and chemical process [1]. To better control and optimize the
furnace’s operations, there should be a suitable temperature prediction model to predict the
accurate temperatures for the slabs inside the furnace. Given the continuous development
of artificial intelligence techniques, the demand for a suitable temperature prediction model
is increasing [2]. Therefore, a suitable mathematical model which can predict the discharge
temperatures of billets accurately and quickly should be proposed for the control and
optimization of the reheating furnaces. In general, the prediction models can be divided
into two categories [3]: the mechanism models based on first principles [4] and the empiri-
cal models based on the production data and black-box approaches [5]. The first kind of
model needs to fully understand the physical and chemical processes inside the reheating
furnace—e.g., [1,6–8]. The computational requirements of these models vary widely de-
pending on the level of complexity [3]. Finally, the heat-transfer process is often summa-
rized by partial differential equations (PDEs). Usually, mechanism models are complicated
and nonlinear (such as those in ([9–14]). Hong et al. [13] investigated the sequential func-
tion specification coupled with the Broyden combined method (BC-SFSM) to obtain the
temperature field of a steel billet based on the inverse heat-conduction problem. The results

Appl. Sci. 2022, 12, 11550. https://doi.org/10.3390/app122211550 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211550
https://doi.org/10.3390/app122211550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2025-5233
https://orcid.org/0000-0002-6959-8886
https://doi.org/10.3390/app122211550
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211550?type=check_update&version=2

Appl. Sci. 2022, 12, 11550 2 of 17

illustrate that the majority of relative errors during the whole reheating time are less than
5%. Chen et al. [14] presented a novel method to obtain these parameters by combining a
"black box" test with a billet heat transfer model. The surface temperature and center tem-
perature’s relative error were 2.34% and 3.51%, respectively. The numerical computation of
PDEs will require a lot of computational time, which will exceed a practical time criterion.
Therefore, this kind of model cannot satisfy the requirements for an online system.

The empirical models are often determined by identification methods involving the
genetic algorithm (GA), support vector machines (SVMs), neural networks (NNs), par-
ticle swarm optimization (PSO) and other intelligent techniques ([15–18]). For instance,
Thanawat et al. [19] investigated a prediction model using the production data from
Ratchasima Steel Products Company. The GA method was used to identify the model’s
unknown factors. Tang et al. [20] presented the SVM predictive model for the temperature
control problem. The PSO was applied to determine proper parameters for the SVM model
and finally obtained good performance. Wang et al. [21] constructed a prediction model
of slab discharging temperature by combining GA with a BP neural network. The mean-
square error of the network was 72.3477, and the error was lower than 20 °C. Yang et al. [22]
used the relevance vector machine (RVM) method to predict the slab temperature. The
maximum prediction error of slab temperature was 10.46 °C. In general, the empirical
model is often simplified to a simple formula, so the calculation time is small enough to
satisfy online production [23]. The production data and the performance of the intelligent
algorithm used will determine the advantages and disadvantages of an empirical model.
As the industrial software and database techniques continue developing, more production
data are being obtained [24]. Thus, an intelligent algorithm with excellent performance is
indispensable, and it behooves us to study the intelligent algorithms carefully.

The PSO algorithm has the characteristics of high solution accuracy and a fast approach
to the optimal solution. However, the basic PSO varies in its ability to solve problems
in different application contexts. It also easily falls into local optima. Researchers have
studied various strategies for the improvement of PSO. For instance, Alsaidy et al. [25]
proposed the longest job to fastest processor PSO (LJFP-PSO) algorithm and the minimum
completion time PSO (MCT-PSO) algorithm for the task-scheduling problem. The effective
performance of the two algorithms was proved by simulation results. Yue et al. [26]
presented a novel multi-objective PSO that has ring topology for solving multimodal multi-
objective optimization problems. The ring topology is used to form stable niches and locate
multiple optima. Peng et al. [27] proposed a symbiotic PSO (SPSO) algorithm to control
a water-bath-temperature system. A multiple swarm scheme was proposed for the SPSO
algorithm. Three major components (create initial swarms, evaluating fitness values and
updating each particle) are used to escape from a locally optimal solution.

Inspired by these algorithms, we propose an improved PSO (named XPSO) algorithm
that uses the multiple swarm scheme in this paper. The scheme comprises four modified
components: (1) improving the positional initialization of the particle swarms: one ran-
domly generated and the other uniformly generated; (2) adding the mutation strategy for
the particle swarm to increase its population diversity; (3) adjusting the inertia weight
through a "stepped" adaptive model; (4) adding the strategy of escaping from the local
minimized point.

This paper is presented as follows: the prediction model of the slab temperature is
established in Section 2; the detailed strategies for improvement of XPSO are described
in Section 3; the simulation and discussion are given in Section 4; Section 5 summarizes
the conclusions.

2. The Prediction Model of the Slab Temperature
2.1. The Structure of a Reheating Furnace

The heat transfer processes in the furnace mainly consist of radiation heat transfer
and convection heat exchange. The main function of reheating furnaces is to help the slabs
reach the desired discharging temperatures for the next rolling process. The slab passes

Appl. Sci. 2022, 12, 11550 3 of 17

through the preheating zone, multistage heating zone and soaking zone from the furnace’s
inlet to the outlet, as shown in Figure 1. The multi-stage heating zone can be divided into
four subzones (upper zones 1 and 2; bottom zones 4 and 5), and the soaking zone is divided
into two subzones (upper zone 3, bottom zone 6). The key components of a subzone are a
series of regenerative burners, the corresponding furnace nozzle temperatures TNj and the
furnace zone temperature TPk. Here, TNj is easily obtained by the thermocouples nearby
the location of burner’s nozzle j and TPk =

1
n ∑n

j=1 TNj, which stands for the average value
of the nozzle temperatures TNj in zone k.

Nozzle

Upper zone 1 Upper zone 2 Upper zone 3

Bottom zone 4 Bottom zone 5 Bottom Zone 6

Heating zone 1 Heating zone 2 Soaking zonePreheating zone

Figure 1. Schematic diagram of a heating furnace’s structure.

2.2. The Prediction Model and Optimization Problem

The most important quality criterion of reheating furnace is the average outlet temper-
ature of the steel slab. There are many factors affecting the slab’s discharging temperature.
By analyzing the field data and some related research ([22,23]), we can confirm some key
factors: the initial temperature of the billet, T0; the furnace nozzle temperature, Tj; the
mean temperature of each zone, Tp; the reheating time of the billet in the furnace, θ; the
material of the slab, α; the thickness of the slab, d. Thus, the inputs of the prediction model
are X = [X1, X2, X3]

T , which consist of the slab’s physical parameters, X1 = [α, d, θ, T0]
T ;

the vector of the furnace nozzle temperatures, X2 = [TN1, TN2, · · · , TNm]T ; and the vector
of furnace zone temperatures, X3 = [TP1, TP2, · · · , TP6]

T . Notice, m is the total number
of burners in the reheating furnace. The outputs are the predicted temperature Y = TE,
which is the vector of the predicted temperatures of the slabs when discharged out from
the furnace. Finally, the formula of predicting model is constructed as:

Y = f (X, W) = w0d + w1α + w2T1
0 + w3T2

0 +
m

∑
i=1

TNiw(i+3)TNi +
6

∑
j=1

w(j+m+3)cos
(
TPjθ

)
+

6

∑
j=1

w(j+m+9)sin
(
TPjθ

)
(1)

where W = [w0, w1, · · · , wm+15] represents the vector of unknown weight parameters,
which will be determined by the proposed XPSO algorithm. The formula f is composed of
a polynomial and a Fourier function, which was designed by the author based on experi-
ence. To make the analytical response Y equal to the measured value Y∗, an optimization
problem should be established with the objective of minimizing the error between the
theoretically calculated values and the measured data. To alleviate overfitting and improve
generalization performance, the strategy of regularization is employed for the optimization
problem. Finally, the formula of the optimization problem is shown as follows.

Minimize J = ‖Y−Y∗‖2 + λ1‖W‖+ λ2‖W‖2

st. Y = f (X, W)
(2)

where Y∗ represents the measured temperature of the slab, and λ1, λ2 are the
regularization parameters.

Appl. Sci. 2022, 12, 11550 4 of 17

3. Improved Particle-Swarm-Optimization Algorithm
3.1. The Basic PSO Algorithm

The PSO algorithm originates from a researcher observing the social behavior of a flock
of birds or fish [28]. Each particle in the population is a potential solution to the objective
function. The particle has two attributes: velocity Vi =

[
vi1, vi2, · · · , vij, · · · , vND

]
and

position Xi = [xi1, xi2, · · · , xij, · · · , xND], where i = 1, 2, · · · , N—N is the size of particle
swarm; and j = 1, 2, · · · , D—D is the dimension of the solution space.

In each iteration, the information of individual particle is filtered to find the informa-
tion about the historically optimal position p of the individual and the historically optimal
position g of the population. The known information is brought into the velocity updating
equation, Equation (3), and the position updating equation, Equation (4), to adjust the
search direction of the population, so that the particle swarm approaches the global optimal
solution, which is the optimal position of the population.

vij(k + 1) = wvij(k) + r1c1
(

pi − xij(k)
)
+ r2c2

(
g− xij(k)

)
(3)

xij(k + 1) = xij(k) + vij(k + 1) (4)

where w represents the inertia weight; r1, r2 ∈ [0, 1] are two uniformly distributed random
values; c1, c2 are the acceleration parameters, which are non-negative constants; k represents
the current iteration; and k = 1, 2, 3, ..., G, where G is the maximum number of iterations.
The velocity updating of the particle is influenced by three factors: the current moment
particle velocity Vij(k), the particle’s self-experience ∆VP and the experience of particle
swarm ∆Vg. ∆VP is the part of the particle that learns from its historical information, and
∆Vg represents the part of the particle that learns from the historical information of other
particles within the population.

3.2. Improvement Strategies of the XPSO Algorithm

The basic PSO algorithm is a non-globally-convergent optimization algorithm [29]. To
reduce the premature probability of falling into a local optimal solution and improve the
convergence speed of the basic PSO, an improved PSO (named XPSO) algorithm is proposed
based on the multi-strategy co-evolutionary approach. Four specific improvements are
described as follows.

1. Improving the positional initialization of the particle swarm: one randomly generated
and the other uniformly generated.
In a basic PSO algorithm, all of the particles are randomly initialized. The expression
is given as follows:

XND =

lx11 x12 · · · x1D
x21 x22 · · · x2D

...
...

. . .
...

xN1 xN2 · · · xND

 (5)

An increase in the positional diversity of particle swarms can facilitate the exploration
of global range. However, increasing the diversity of particle swarms also makes it
difficult to converge to the global optimum every time. Hence, an improved approach,
based on the “double-edged sword” nature of particle swarm’s diversity, is proposed
to improve the algorithm’s stability. During the initialization of the particle swarm, a
dimension called X-Dim in the position matrix is randomly selected. The positional
information of the particle in X-Dim is generated according to a uniform distribution,
as shown in Equation (6).

xij =
Omax −Omin

N
∗ i (6)

where j is the randomly selected dimension; and Omax and Omin are the upper and lower
limits of the value range of independent variables in different dimensions, respectively.

Appl. Sci. 2022, 12, 11550 5 of 17

2. The mutation strategy is introduced into the position updating of particle swarm
to compensate for the decline in the overall diversity of particle swarm after im-
proved initialization.
Unlike some other meta-heuristic algorithms, standard PSO has no evolution opera-
tors such as crossover or mutation. The mutation strategy will be implemented by
screening the particles in each iteration. If the corresponding fitness function value
of someone particle is lower than the average fitness function value, the mutation
strategy is performed in the current iteration. The formula of positional mutation is:

x∗ij(k) = xij(k)− wvij(k)− w(g− pi) (7)

where x∗ denotes the position of the particle after mutation.
3. The adjustment of inertia weight is given to improve the flexibility of particle flight

speed change, and the idea of “stepped” adaptive change is injected into the updating
of inertia weight.
Inertia weight w is directly related to the convergence speed. Most researches use the
subtraction function as its updating formula for inertia weight [30]. Some others use
the “stepped” improvement method to update the inertia weight [31]. In our method,
the inertia weight is adjusted by combining the strategy of decreasing function and
the “stepped” improvement. The specific change is given as follows:

• A “three-step” strategy is proposed to switch the range [ws, we] of inertia weight
by determining the fitness function value of the best position so far. The switching
formula is given as follows:

[ws, we] =

[ws1, we1] f (g)� Fitness1
[ws2, we2] Fitness2 < f (g) < Fitness1
[ws3, we3] f (g)� Fitness2

(8)

where [ws, we] is the range of inertia weight; f (g) is the fitness function value
corresponding to the global optimal solution; Fitness1 and Fitness2 are the au-
tonomous set values. The values of ([ws1, we2], [ws2, we2] and [ws3, we3]) need
to be adjusted according to the conditions of the objective function in different
application contexts.

• After the ranges of the inertia weight [ws, we] have been determined, a decreasing
function is introduced to adjust the w. The switching condition is related to the
fitness function value of the best position so far. The update formula is given
as follows:

w =

r sin(wsπ)

4 , f (g)� Fitness3

ws − (ws − we)
√

K
G , f (g) < Fitness3

(9)

where r ∈ [0, 4) is a uniformly distributed random number; and ws and we are
the initial and final values of the range [ws, we] of the inertia weight, respectively.
Fitness3 is the autonomous set value, k is the current iteration and G is the
maximum iterations.

4. The strategy of jumping out local optimum is proposed.
A slope parameter tr is given to judge whether the particle swarm has fallen in the
local optimum. Here, tr is the count of the condition when Slope is less than the value
ε in five iterations. The slope is calculated as follows:

Slope =

(
fk(g)− f(k−5)(g)

)
5

(10)

If the value of tr equals the value of s, which is an autonomous set value, the particle
swarm is trapped in a local optimum. Then, the particle swarm will perform a

Appl. Sci. 2022, 12, 11550 6 of 17

“jumping out local optimum” operation, which is done to change its position. The
specific formula of a particle jumping out of a local optimum is given as follows:

xij(k) = xij(k)− r1c1
(

g− xij(k)
)
+ r2c2

(
bad− xij(k)

)
(11)

where bad represents the information of the global worst position. The core of this
strategy is that the particle swarm should be nearest to the global worst position while
staying away from the local optimum.

Finally, the pseudo-code of the XPSO algorithm is demonstrated in Algorithm 1.

Algorithm 1: The pseudo-code of the XPSO algorithm
1: Initialize the parameters: (N, G, D, Omax,Omin, Vmax, Vmin, t, s, ε)
2: Combine uniform and random distribution to initialize position matrix XN×D
3: Generate the initial velocity Vi of each particle randomly
4: Evaluate the fitness value of each particle
5: Set pi with a copy of Xi
6: Initialize g and bad with the best and worst fitness value among population
7: While k < G
8: If k ≥ 6
9: Update the slope of the fitness function curve
10: Slope = (f (g)k − f (g)k−5)/5
11: If Slope ≤ ε
12: t = t + 1
13: End If
14: End If
15: Update inertia weight ω by Equations (8) and (9)
16: For i = 1 : N
17: Update the velocity Vi
18: vij(k + 1) = wvij(k) + r1c1

(
pi − xij(k)

)
+ r2c2

(
g− xij(k)

)
19: Update the velocity Xi
20: If t = s
21: For m = 1 : 50
22: xij(k) = xij(k)− r1c1

(
g− xij(k)

)
+ r2c2

(
bad− xij(k)

)
23: End For
24: Else
25: xij(k + 1) = xij(k) + vij(k + 1)
26: End If
27: Calculate the fitness values of the new particle Xi
28: Execute position mutation
29: x∗ij(k) = xij(k)− wvij(k)− w(g− pi)

30: Calculate the fitness values of the new particle X∗

31: If Xi or X∗ is better than pi
32: Update pi
33: End If
34: If Xi or X∗ is better than g
35: Update g
36: End If
37: If Xi or X∗ is worse than bad
38: Update bad
39: End If
40: End For
41: k = k + 1
42: End While

Appl. Sci. 2022, 12, 11550 7 of 17

4. Simulations and Discussion

To verify the performance of the XPSO algorithm, some simulations are designed to
involve both the performance and application of the algorithm. To obtain an unbiased CPU
time comparison, all simulations were programmed by MATLAB R2017b and implemented
on a computer with an Intel i5-11400F GPU, 2.60 GHz, 16 GB RAM.

4.1. Validation of XPSO by Benchmark Test Functions

The XPSO algorithm is compared with some popular variant PSO algorithms (PSO [32],
IPSO [33], IPSO2 [30], HPSO [34], CPSO [35]) on a series of widely used optimization
benchmark functions. A set of benchmark functions were selected from papers ([36,37]).

The benchmark set consisted of three main groups of benchmark functions: 4 unimodal
(UM) functions, 2 multimodal (MM) functions and 3 composition (CM) functions. The
UM functions (f1–f4) with a unique global best can expose the intensification capacities of
different algorithms. The MM functions (f5–f6) can expose the diversification of algorithms.
The CM functions (f7–f9) were selected from the IEEE CEC 2005 competition [37], which
are also utilized in many papers to test the performances (balancing the exploration and
exploitation inclinations and escaping from local optima) of algorithms.

The mathematical formulation and characteristics of UM and MM functions are shown
in Table 1. Details of the CM functions are shown in Table 2. The parameters of both the
PSO algorithms and the optimization problem (2) were as follows. The specific parameter
combinations for the inertia weight were [ws1, we1] = [0.9, 0.4], [ws2, we2] = [0.65, 0] and
[ws3, we3] = [0.55, 0.05]. The maximum and minimum velocities of the particle were
Vmax = 0.1 and Vmin = −0.1, respectively. In addition, the acceleration coefficients c1 and
c2 were selected to be 2.5 and 1.5, respectively. The inertia weight of the HPSO varied
randomly in the range (0, 1). The parameters related to jumping out of local optimal were
s = 270 and ε = 0.001. The values of the regularization parameters in the optimization
problem were λ1 = 1.2, λ2 = 1.0.

Table 1. Descriptions of unimodal and multimodal benchmark functions.

Function Name Function’s Expressions Search Range Global opt. 1

f1 Sphere f1 = ∑n
i=1 x2

i [−100, 100]n 0
f2 Schwefel’s 1.2 f2 = ∑n

i=1 ∑i
j=1 x2

j [−100, 100]n 0
f3 Schwefel’s 2.21 f3 = max{|xi|, 1 ≤ i ≤ n} [−100, 100]n 0
f4 Quartic Noise f4 = ∑n

i=1 ix4
i + random[0.1) [−1.28, 1.28]n 0

f5 Generalized
Rastrigin f5 = ∑n

i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0

f6
Generalized

Penalized
Function 2

f6 = 0.1 sin2(3πx1) + 0.1 ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)

]
+0.1(xn − 1)2[1 + sin2(2πxn)

]
+ ∑n

i=1 u(xi, 5, 100, 4)
[−50, 50]n 0

1 Global opt.: global optimal solution.

The maximum number of iterations for all benchmark functions (f1–f9) was selected
as 8000. The dimensions of these benchmark functions (f1–f9) were selected as 10, 30 and
50. Thus, the performances of the six variant PSO algorithms can be compared in different
dimensions.

Each algorithm was run individually 10 times, and the average statistical error was
calculated. The mean of objective values (Mean) and standard deviation of its solving error
(S.D.) were chosen as the performance measures for each algorithm. The simulation results
are shown in Table 3 and Figures 2–10. Table 3 shows best values in bold.

Appl. Sci. 2022, 12, 11550 8 of 17

Table 2. Details of hybrid composition functions.

Function
(CEC2005-ID) Description Properties Range Global opt.

f7(C16) Rotated Hybrid Composition Function MM 1, R 2, NS 3, S 4 [−5, 5]n 120
f8(C18) Rotated Hybrid Composition Function MM, R, NS, S [−5, 5]n 10
f9(C21) Rotated Hybrid Composition Function MM, R, NS, S [−5, 5]n 360

1 MM: Multi-modal, 2 R: Rotated, 3 NS: Non-Separable, 4 S: Scalable.

Table 3. Results of benchmark functions (Dim = 10, 30, 50).

F 1 D 2 XPSO CPSO IPSO IPSO2 PSO HPSO
Mean 3 S.D. 4 Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

f1
10 1.29 × 10−102 2.89 × 10−102 3.42 × 102 2.07 × 102 5.81 × 10−8 2.39 × 10−8 1.07 × 10−3 2.38 × 10−4 7.95 × 10−9 1.63 × 10−8 2.33 × 10−8 6.15 × 10−8

30 6.41 × 10−57 1.92 × 10−56 4.40 × 102 2.25 × 102 4.15 × 10−6 1.22 × 10−6 0.31 0.41 7.51 × 10−6 4.04 × 10−6 4.22 × 10−7 2.57 × 10−7

50 1.59 × 10−8 3.89 × 10−8 4.57 × 102 2.80 × 102 1.93 × 10−5 5.87 × 10−6 6.73 13.42 2.00 × 10−5 1.30 × 10−5 1.02 × 10−6 3.08 × 10−7

f2
10 1.06 × 10−77 1.50 × 10−77 1.06 × 103 8.87 × 102 5.93 × 10−7 3.33 × 10−7 2.95 × 102 3.70 × 102 4.08 × 10−7 4.74 × 10−7 1.35 × 10−8 1.71 × 10−8

30 8.67 × 10−12 1.23 × 10−11 4.36 × 103 1.95 × 103 1.44 × 10−3 4.36 × 10−4 9.07 × 102 8.11 × 102 5.74 × 10−3 2.33 × 10−3 3.11 × 10−5 1.98 × 10−5

50 1.36 × 10−5 1.35 × 10−2 7.74 × 103 6.45 × 103 1.88 × 10−2 3.33 × 10−3 1.25 × 103 2.74 × 103 2.49 × 10−2 9.20 × 10−3 1.91 × 10−4 8.34 × 10−5

f3
10 1.11 × 10−21 1.91 × 10−21 4.59 1.13 2.70 × 10−4 1.47 × 10−4 6.41 × 10−2 7.51 × 10−2 4.45 × 10−4 2.61 × 10−4 8.41 × 10−4 7.47 × 10−4

30 1.03 × 10−19 1.79 × 10−19 6.15 1.65 9.01 × 10−3 2.77 × 10−3 0.71 0.16 3.03 × 10−2 1.62 × 10−2 1.96 × 10−2 1.99 × 10−2

50 6.84 × 10−5 1.37 × 10−4 4.87 0.65 0.23 0.22 5.76 0.41 0.36 0.33 0.13 0.11

f4
10 0.24 0.16 0.43 0.26 0.44 0.26 0.46 0.32 0.61 0.24 0.5 0.29
30 0.27 0.2 0.58 0.28 0.53 0.32 0.35 0.3 0.64 0.31 0.52 0.18
50 0.35 0.24 0.65 0.3 0.54 0.31 0.38 0.23 0.53 0.23 0.58 0.3

f5
10 12.93 3.98 12.08 4.46 10.45 4.43 9.3 3.4 10.94 4.09 9.83 4.16
30 18.05 4.16 48.43 17.81 26.96 6.91 24.81 6.5 27.16 9.67 28.56 6.13
50 20.9 2.54 67.23 18.56 38.51 11.94 34.18 4.93 39.99 14.36 33.73 10.42

f6
10 1.45 0.94 9.41 4.09 2.13 1.37 2.62 2.47 2.81 3.26 1.48 1.46
30 5.08 3.56 25.39 5.56 14.51 8.42 22.09 5.69 9.49 5.42 6.59 6.24
50 9.83 6.98 37.21 7.54 24.36 9.83 31.42 8.14 14.71 8.78 9.29 8.89

f7
10 196.35 26.50 502.96 179.38 381.96 94.03 731.48 80.86 362.11 36.18 428.34 59.63
30 542.93 46.56 867.86 204.51 584.27 122.68 1223.15 110.51 505.28 80.91 623.86 90.26
50 563.92 97.82 937.18 241.44 593.34 132.26 1378.35 129.68 599.16 106.17 651.98 126.37

f8
10 1090.72 41.53 1364.68 23.43 1135.18 22.51 1492.86 39.30 1136.88 65.80 1098.15 59.30
30 1147.03 123.61 1408.69 50.61 1182.64 70.86 1561.77 56.23 1194.76 120.68 1287.80 84.09
50 1167.73 134.83 1486.24 56.47 1202.59 132.75 1620.53 70.99 1249.79 131.05 1464.34 151.77

f9
10 1066.48 28.84 1387.39 19.11 1120.63 38.33 1538.21 9.21 1286.09 23.52 1287.69 39.38
30 1291.78 38.31 1440.31 31.75 1319.86 43.93 1604.27 41.32 1303.97 30.27 1309.14 52.25
50 1316.15 54.37 1485.75 41.98 1338.22 68.71 1633.61 82.42 1326.48 43.43 1524.77 68.02

1 F: Function, 2 D: dimensional, 3 Mean: mean of objective values, 4 S.D.: standard deviation.

According to Table 3, the XPSO algorithm is superior to other PSO algorithms in terms
of solution accuracy. Considering the UM benchmark functions, the results of (f1–f3) solved
by XPSO are better than those of the other algorithms. For f4, the best value of Mean was
obtained by the XPSO algorithm for the (10, 30, 50)-dimensional cases. The best values
of S.D for the (10, 30, 50)-dimensional cases were obtained by XPSO, HPSO and IPSO2.
Except f5 in the 10-dimensional case and f6 in the 50-dimensional case, the results for the
MM benchmark functions by XPSO are superior to those of the other algorithms. Based on
values of the Mean of hybrid CM functions (f7–f9) in Table 3, high-quality solutions can be
obtained by the XPSO algorithm.

The convergence curves of the mean of best function were plotted in Figures 2–10 to
enable clearer visualization of each algorithm’s performance. In Figures 2–10, the XPSO
algorithm does not show outstanding performance in the early stage of the solution, but its
search capability is better in the late stage of the solution, and it can significantly improve
the convergence speed in the late evolution. The reason is that the updating strategy of
inertia weight includes the formula based on chaotic mapping; consequently, the global
search has a high convergence speed for particles. In addition, the updating formula for
inertia weight switched in local search, which resulted a slow flying speed of particles but
improved the accuracy of the solution. Finally, it can be concluded that the XPSO algorithm
has excellent performance in numerical optimization problems and can be used to solve
problems in various application contexts.

Appl. Sci. 2022, 12, 11550 9 of 17

Comparison of performances for function f1 by XPSO and other PSO algorithms

0 2000 4000 6000 8000
10

-150

10
-100

10
-50

10
0

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

10
-60

10
-40

10
-20

10
0

10
20

(b) Dim =30

0 2000 4000 6000 8000
10

-60

10
-40

10
-20

10
0

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 2. Comparison of performances on f1 by XPSO and other PSO algorithms.

Comparison of performances for function f2 by XPSO and other PSO algorithms

0 2000 4000 6000 8000
10

-60

10
-40

10
-20

10
0

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

10
-10

10
-5

10
0

10
5

(b) Dim =30

0 2000 4000 6000 8000
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
6

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 3. Comparison of performances on f2 by XPSO and other PSO algorithms.

Comparison of performances for function f3 by XPSO and other PSO algorithms

0 2000 4000 6000 8000
10

-30

10
-20

10
-10

10
0

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

10
-15

10
-10

10
-5

10
0

10
5

(b) Dim =30

0 2000 4000 6000 8000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 4. Comparison of performances on f3 by XPSO and other PSO algorithms.

Appl. Sci. 2022, 12, 11550 10 of 17

Comparison of performances for function f4 by XPSO and other PSO algorithms

0 2000 4000 6000 8000
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

10
-4

10
-2

10
0

10
2

(b) Dim =30

0 2000 4000 6000 8000
10

-4

10
-2

10
0

10
2

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 5. Comparison of performances on f4 by XPSO and other PSO algorithms.

Comparison of performances for function f5 by XPSO and other PSO algorithms

0 2000 4000 6000 8000
10

0

10
1

10
2

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

10
1

10
2

10
3

(b) Dim =30

0 2000 4000 6000 8000

10
2

10
3

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 6. Comparison of performances on f5 by XPSO and other PSO algorithms.

Comparison of performances for function f6 by XPSO and other PSO algorithms

0 2000 4000 6000 8000
10

-2

10
0

10
2

10
4

10
6

10
8

10
10

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

(b) Dim =30

0 2000 4000 6000 8000
10

-2

10
0

10
2

10
4

10
6

10
8

10
10

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 7. Comparison of performances on f6 by XPSO and other PSO algorithms.

Appl. Sci. 2022, 12, 11550 11 of 17

Comparison of performances for function f7 by XPSO and other PSO algorithms

0 2000 4000 6000 8000

500

600

700

800

900

1000

1100

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

600

700

800

900

1000

1100

1200

1300

1400

(b) Dim =30

0 2000 4000 6000 8000

900

1000

1100

1200

1300

1400

1500

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 8. Comparison of performances on f7 by XPSO and other PSO algorithms.

Comparison of performances for function f8 by XPSO and other PSO algorithms

0 2000 4000 6000 8000

1100

1150

1200

1250

1300

1350

1400

1450

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

1250

1300

1350

1400

1450

(b) Dim =30

0 2000 4000 6000 8000

1000

1100

1200

1300

1400

1500

1600

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 9. Comparison of performances on f8 by XPSO and other PSO algorithms.

Comparison of performances for function f9 by XPSO and other PSO algorithms

0 2000 4000 6000 8000

800

1000

1200

1400

1600

1800

2000

2200

F
it

n
e

s
s

(a) Dim =10

0 2000 4000 6000 8000

Iteration

1600

1650

1700

1750

1800

1850

1900

1950

2000

(b) Dim =30

0 2000 4000 6000 8000

1700

1750

1800

1850

1900

1950

2000

(c) Dim =50

XPSO CPSO IPSO IPSO2 PSO HPSO

Figure 10. Comparison of performances on f9 by XPSO and other PSO algorithms.

4.2. Validation Of XPSO by Benchmark Test Functions

Firstly, 1280 simulation data sets were generated based on the existing mechanism model
to verify the validity of the XPSO algorithm. In total, 1200 data sets were randomly selected
as training sets and the remaining 80 as test sets. Here, the XPSO algorithm is compared with

Appl. Sci. 2022, 12, 11550 12 of 17

not only other PSO algorithms (PSO [32], IPSO [33], IPSO2 [30], HPSO [34], CPSO [35]), but
also the other optimization algorithms (WOA [38], IA [39], GWO [40], DE [41], ABC [42]).
Secondly, the actual data sets were collected from a reheating furnace in Angang’s building.
Fourty-three sets were randomly selected as the training sets. The remaining 10 sets were
used as the test sets.

4.2.1. Comparison of XPSO and Other PSO Algorithms

Due to the random initialization of the PSO algorithms, each PSO algorithm independently
ran 10 times. The relevant parameters for the PSO algorithms are shown in Table 4. Each
algorithm was evaluated by the mean, maximum, median, variance and standard deviation of
the errors. The simulation results are shown in Table 5 and Figures 11 and 12.

Table 4. Classical benchmark functions.

Symbol Name Size

N Particle swarm size 125
D Particle Swarm Dimension 35
G Maximum number of iterations 8000
ws Initial value of inertia weights 0.8
we Final value of inertia weights 0.05
c1 Acceleration coefficient 1 2.5
c2 Acceleration coefficient 2 1.5

Vmax Value of maximum particle’s velocity 0.1
Vmin Value of minimum particle’s velocity −0.1

Table 5. Classical benchmark functions.

Algorithm Mean Maximum Median Variance S.D.

XPSO 0.55 2.29 0.46 0.216 0.465
CPSO 3.9 13.99 3.41 8.098 2.846
IPSO 7 23.75 5.85 26.582 5.156

IPSO2 3.76 13.58 3 8.388 2.896
PSO 3.58 11.65 2.77 6.818 2.611

HPSO 0.78 2.94 0.61 0.446 0.668

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration

10
2

10
4

10
6

10
8

10
10

F
it
n
e
s
s

XPSO

CPSO

IPSO

IPSO2

PSO

HPSO

Figure 11. Comparison of fitness for XPSO and other PSO algorithms.

Appl. Sci. 2022, 12, 11550 13 of 17

0 10 20 30 40 50 60 70 80

Test point

0

5

10

15

20

25

CPSO

HPSO

IPSO

IPSO2

PSO

XPSO

Figure 12. Prediction error of XPSO and other PSO algorithms.

In Figure 11, the XPSO algorithm clearly has a faster search speed than other algorithms
in the early iterations and can quickly move to convergence. Table 5 shows that XPSO is
also more accurate in terms of computational accuracy at the later stages of the iterations.
Figure 12 ensures the accuracy of the proposed XPSO method for temperature prediction.
The IPSO algorithm gave the worst results, for which the maximum error value was almost
24 °C. The mean and median prediction errors by the XPSO algorithm were 0.55 and 0.46 °C,
and 99% of the prediction errors by the XPSO algorithm were within 2 °C.

4.2.2. Comparison of XPSO and Other Optimization Algorithms

In this section, the XPSO algorithm is compared with the other optimization algorithms
(WOA [38], IA [39], GWO [40], DE [41], ABC [42]) that have been proposed in recent years.
The parameters of these algorithms are listed in Table 6. Each algorithm was tested 10 times
independently to reduce statistical errors. The mean, maximum, median, variance and
standard difference of simulation results were recorded and are shown in Table 7. The
best results are shown in bold type. The convergence graph of each algorithm is shown
in Figure 13. The slab temperature prediction errors of the XPSO algorithm and other
optimization algorithms are shown in Figure 14.

Table 6. Parameters of other optimization algorithms.

Algorithms Population Maximum Iteration Dim Other

WOA 125 8000 35 r1, r2 ∈ [0, 1] are random numbers
IA 125 8000 35 pm = 0.7, α = β = 1, δ = 0.2, ncl = 10

GWO 125 8000 35 r1, r2 ∈ [0, 1]are random numbers
DE 125 8000 35 F0 = 0.4, CR = 0.1

ABC 125 8000 35 α = 1

Table 7. Results of XPSO and other optimization algorithms.

Algorithm Mean Maximum Median Variance S.D.

XPSO 0.55 2.29 0.46 0.216 0.465
WOA 4.53 28.27 3.45 18.94 4.3519

IA 6.92 27.52 6.43 28.0032 5.2918
GWO 2.28 13.39 1.2 6.6249 2.5739

DE 2.3 10.53 2.1 2.8971 1.7021
ABC 6.59 27.23 9.79 24.2055 4.9199

Appl. Sci. 2022, 12, 11550 14 of 17

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration

10
2

10
4

10
6

10
8

10
10

F
it
n

e
s
s

XPSO

WOA

IA

GWO

DE

ACO

Figure 13. Comparison of XPSO with other optimization algorithms.

0 10 20 30 40 50 60 70 80

Test point

0

5

10

15

20

25

30

ABC

DE

GWO

IA

WOA

XPSO

Figure 14. Prediction error of XPSO and other optimization algorithms.

Table 7 proves that the solution of the XPSO algorithm gives the best value. In
Figure 13, the XPSO algorithm is more successful than all of the other optimization ap-
proaches, and the algorithm determined the global optimal solution after approximately
500 generations. As shown in Figure 14, the temperature prediction errors by the XPSO
algorithm were much lower than the errors by the other optimization algorithms. The
WOA algorithm gave the worst results; its maximum error value was almost 29 °C. In
summary, the proposed XPSO algorithm exhibited fast search performance and accuracy
when predicting the billet temperature based on simulation data sets. The results and
figures show that this prediction model of billet temperature is credible and reliable. Its
accurate prediction is expected to satisfy the future control needs of industrial reheating fur-
nace systems, which will let operators adjust production plans in time to ensure efficiency
and reliability.

4.2.3. Validation of the Temperature Prediction Model With Measured Data

The proposed XPSO algorithm was applied to predict slabs’ discharging temperatures
based on actual data sets from Angang (company). The algorithm was independently run
20 times, and then the average prediction error was calculated. The predicted temperatures
are compared with the actual temperatures in Figure 15. The errors between prediction
results and measured data |Y−Y∗| are shown in Table 8.

Appl. Sci. 2022, 12, 11550 15 of 17

Table 8. Prediction errors between calculation results and measured data.

Points 1 (°C) 2 (°C) 3 (°C) 4 (°C) 5 (°C) 6 (°C) 7 (°C) 8 (°C) 9 (°C) 10 (°C) Mean (°C)

XPSO 5.43 2.91 8.93 7.32 3.47 5.17 1.17 5.09 4.09 6.43 4.99

1 2 3 4 5 6 7 8 9 10

test point

1190

1195

1200

1205

1210

1215

1220

1225

1230
te

m
p
e
ra

tu
re

prediction temperature

actual temperature

Figure 15. The slab temperature prediction by the XPSO algorithm.

From Figure 15 and Table 8, the minimum error of the XPSO algorithm can be seen to
be 1.17 °C, and the average error was 4.99 °C. For this actual reheating furnace company,
the error between the calculation results and measured data should be lower than 10 °C.
Thus, the accuracy of the proposed method is high enough. As the actual discharging
temperature was between 1150–1250 °C, the relative error was only 0.4%. Finally, the slab
temperature prediction by the XPSO algorithm has achieved the desired effect.

5. Conclusions

In this paper, the XPSO algorithm was proposed to establish a prediction model of
slab temperature in a reheating furnace. A novel weight-updating strategy that combines
a decreasing function and the adaptive "stepped" strategy was introduced into the XPSO
algorithm, so it can greatly improve the search capabilities at a later stage. The validity
and feasibility of the XPSO were verified by nine classical benchmark functions, simulation
data sets generated by the existing mechanism model and actual data sets from Angang.
The following conclusions are given.

1. The benchmark results indicate that the XPSO algorithm has a superior performance
to other PSO algorithms (PSO, IPSO, IPSO2, HPSO, CPSO).

2. The XPSO algorithm, which can accurately predict the billet temperature (99% of the
prediction errors were less than 2 °C) while ensuring faster convergence, was more
successful than all of the other optimization approaches (WOA, IA, GWO, DE, ABC).

3. The prediction model based on the XPSO algorithm can predict more accurate dis-
charging temperatures for the operators. Consequently, the paper verifies the feasi-
bility of the XPSO algorithm and the success of the establishment of the prediction
model of slab temperature, and provides a theoretical basis for subsequent research.

Author Contributions: Conceptualization, M.L., P.Y. and. Z.Y.; methodology, M.L.; software, M.L.
and P.L.; validation, M.L. and J.Q.; formal analysis, J.Q.; investigation, P.L. and Z.Y.; resources, M.L.
and P.L.; data curation, M.L.; writing—original draft preparation, M.L.; writing—review and editing,
M.L. and Z.Y.; visualization, Z.Y.; supervision, P.Y. and Z.Y.; project administration, P.Y. and Z.Y.;
funding acquisition, Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the PhD research startup foundation of Qilu University of
Technology, grant number (81110535), and the Industry-University-Research Collaborative Inno-
vation Fund (grant number 2020-CXY46)—Development of an automated system for casting post-
processing processes.

Appl. Sci. 2022, 12, 11550 16 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gu, M.; Chen, G.; Liu, X.; Wu, C.; Chu, H. Numerical simulation of slab heating process in a regenerative walking beam reheating

furnace. Int. J. Heat Mass Transf. 2014, 76, 405–410. [CrossRef]
2. Gao, Q.; Pang, Y.; Sun, Q.; Liu, D.; Zhang, Z. Modeling approach and numerical analysis of a roller-hearth reheating furnace with

radiant tubes and heating process optimization. Case Stud. Therm. Eng. 2021, 28, 101618. [CrossRef]
3. Hu, Y.; Tan, C.; Broughton, J.; Roach, P.A.; Varga, L. Model-based multi-objective optimisation of reheating furnace operations

using genetic algorithm. Energy Procedia 2017, 142, 2143–2151. [CrossRef]
4. Pantelides, C.C.; Renfro, J.G. The online use of first-principles models in process operations: Review, current status and future

needs. Comput. Chem. Eng. 2013, 51, 136–148. [CrossRef]
5. Staalman, D.F.; Kusters, A. On-line slab temperature calculation and control. Manuf. Sci. Eng. 1996, 4, 307–314.
6. Ji, W.; Li, G.; Wei, L.; Yi, Z. Modeling and determination of total heat exchange factor of regenerative reheating furnace based on

instrumented slab trials. Case Stud. Therm. Eng. 2021, 24, 100838. [CrossRef]
7. Emadi, A.; Saboonchi, A.; Taheri, M.; Hassanpour, S. Heating characteristics of billet in a walking hearth type reheating furnace.

Appl. Therm. Eng. 2014, 63, 396–405. [CrossRef]
8. Tang, G.; Wu, B.; Bai, D.; Wang, Y.; Bodnar, R.; Zhou, C.Q. Modeling of the slab heating process in a walking beam reheating

furnace for process optimization. Int. J. Heat Mass Transf. 2017, 113, 1142–1151. [CrossRef]
9. Kim, M.Y. A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating

furnace. Int. J. Heat Mass Transf. 2007, 50, 3740–3748. [CrossRef]
10. Singh, V.K.; Talukdar, P. Comparisons of different heat transfer models of a walking beam type reheat furnace. Int. Commun. Heat

Mass Transf. 2013, 47, 20–26. [CrossRef]
11. Morgado, T.; Coelho, P.J.; Talukdar, P. Assessment of uniform temperature assumption in zoning on the numerical simulation of a

walking beam reheating furnace. Appl. Therm. Eng. 2015, 76, 496–508. [CrossRef]
12. Casal, J.M.; Porteiro, J.; Míguez, J.L.; Vázquez, A. New methodology for CFD three-dimensional simulation of a walking beam

type reheating furnace in steady state. Appl. Therm. Eng. 2015, 86, 69–80. [CrossRef]
13. Hong, D.; Li, G.; Wei, L.; Yi, Z. An improved sequential function specification coupled with Broyden combined method for

determination of transient temperature field of the steel billet. Int. J. Heat Mass Transf. 2022, 186, 122489. [CrossRef]
14. Chen, D.; Xu, H.; Lu, B.; Chen, G.; Zhang, L. Solving the heat transfer boundary condition of billet in reheating furnace by

combining “black box” test with mathematic model. Case Stud. Therm. Eng. 2022, 40, 102486. [CrossRef]
15. Kim, Y.I.; Moon, K.C.; Kang, B.S.; Han, C.; Chang, K.S. Application of neural network to the supervisory control of a reheating

furnace in the steel industry. Control. Eng. Pract. 1998, 6, 1009–1014. [CrossRef]
16. Laurinen, P.; Röning, J. An adaptive neural network model for predicting the post roughing mill temperature of steel slabs in the

reheating furnace. J. Mater. Process. Technol. 2005, 168, 423–430. [CrossRef]
17. Liao, Y.; Wu, M.; She, J.H. Modeling of reheating-furnace dynamics using neural network based on improved sequential-

learning algorithm. In Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany,
4–6 October 2006; pp. 3175–3181.

18. Tan, C.; Wilcox, S.; Ward, J. Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass.
J. Energy Inst. 2006, 79, 19–25. [CrossRef]

19. Pongam, T.; Khomphis, V.; Srisertpol, J. System modeling and temperature control of reheating furnace walking hearth type in
the setting up process. J. Mech. Sci. Technol. 2014, 28, 3377–3385. [CrossRef]

20. Tang, Z.; Yang, Y. Two-stage particle swarm optimization-based nonlinear model predictive control method for reheating furnace
process. ISIJ Int. 2014, 54, 1836–1842. [CrossRef]

21. Aoxiang, W.; Xiaohua, L.; Xiaolin, W. Temperature optimization setting model of the reheating furnace on 1700 line in tangsteel.
In Proceedings of the 2018 Chinese Control Additionally, Decision Conference (CCDC), Shenyang, China, 9–11 June 2018;
pp. 4099–4103.

22. Yang, Y.; Liu, Y.; Liu, X.; Qin, S. Billet temperature soft sensor model of reheating furnace based on RVM method. In Proceedings
of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25 May 2011; pp. 4003–4006.

23. Yi, Z.; Su, Z.; Li, G.; Yang, Q.; Zhang, W. Development of a double model slab tracking control system for the continuous reheating
furnace. Int. J. Heat Mass Transf. 2017, 113, 861–874. [CrossRef]

24. Chen, Y.W.; Chai, T.Y. Modelling and prediction for steel billet temperature of heating furnace. Int. J. Adv. Mechatron. Syst. 2010,
2, 342–349. [CrossRef]

http://doi.org/10.1016/j.ijheatmasstransfer.2014.04.061
http://dx.doi.org/10.1016/j.csite.2021.101618
http://dx.doi.org/10.1016/j.egypro.2017.12.619
http://dx.doi.org/10.1016/j.compchemeng.2012.07.008
http://dx.doi.org/10.1016/j.csite.2021.100838
http://dx.doi.org/10.1016/j.applthermaleng.2013.11.003
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.06.026
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.02.023
http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.06.004
http://dx.doi.org/10.1016/j.applthermaleng.2014.11.054
http://dx.doi.org/10.1016/j.applthermaleng.2015.04.020
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122489
http://dx.doi.org/10.1016/j.csite.2022.102486
http://dx.doi.org/10.1016/S0967-0661(98)00098-7
http://dx.doi.org/10.1016/j.jmatprotec.2004.12.002
http://dx.doi.org/10.1179/174602206X90913
http://dx.doi.org/10.1007/s12206-014-0750-x
http://dx.doi.org/10.2355/isijinternational.54.1836
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.05.093
http://dx.doi.org/10.1504/IJAMECHS.2010.037100

Appl. Sci. 2022, 12, 11550 17 of 17

25. Alsaidy, S.A.; Abbood, A.D.; Sahib, M.A. Heuristic initialization of PSO task scheduling algorithm in cloud computing. J. King
Saud -Univ.-Comput. Inf. Sci. 2020, 34, 2370–2382. [CrossRef]

26. Yue, C.; Qu, B.; Liang, J. A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective
problems. IEEE Trans. Evol. Comput. 2017, 22, 805–817. [CrossRef]

27. Peng, C.C.; Chen, C.H. Compensatory neural fuzzy network with symbiotic particle swarm optimization for temperature control.
Appl. Math. Model. 2015, 39, 383–395. [CrossRef]

28. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,
Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

29. Kennedy, J. The particle swarm: Social adaptation of knowledge. In Proceedings of the 1997 IEEE International Conference on
Evolutionary Computation (ICEC’97), Indianapolis, IN, USA, 13–16 April 1997; pp. 303–308.

30. Ravi, K.; Rajaram, M. Optimal location of FACTS devices using improved particle swarm optimization. Int. J. Electr. Power Energy
Syst. 2013, 49, 333–338. [CrossRef]

31. Zhang, L.; Zhao, L. High-quality face image generation using particle swarm optimization-based generative adversarial networks.
Future Gener. Comput. Syst. 2021, 122, 98–104. [CrossRef]

32. Ouyang, A.; Tang, Z.; Zhou, X.; Xu, Y.; Pan, G.; Li, K. Parallel hybrid pso with cuda for ld heat conduction equation. Comput.
Fluids 2015, 110, 198–210. [CrossRef]

33. Gao, Z.; Lu, H. Logistics Route Optimization Based on Improved Particle Swarm Optimization. In Proceedings of the Journal of
Physics: Conference Series, Diwaniyah, Iraq, 21–22 April 2021; Volume 1995, p. 012044.

34. Wu, J.; Long, J.; Liu, M. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and
genetic algorithm. Neurocomputing 2015, 148, 136–142. [CrossRef]

35. Liu, B.; Wang, L.; Jin, Y.H.; Tang, F.; Huang, D.X. Improved particle swarm optimization combined with chaos. Chaos, Solitons
Fractals 2005, 25, 1261–1271. [CrossRef]

36. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
37. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem Definitions and Evaluation Criteria

for the CEC 2005 Special Session on Real-Parameter Optimization; KanGAL Report Number 2005005; Nanyang Technological
University: Singapore, 2005.

38. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
39. Hong, G.; Zong-Yuan, M. Immune algorithm. In Proceedings of the 4th World Congress on Intelligent Control and Automation

(Cat. No. 02EX527), Shanghai, China, 10–14 June 2002; Volume 3, pp. 1784–1788.
40. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
41. Arslan, M.; Çunkaş, M.; Sağ, T. Determination of induction motor parameters with differential evolution algorithm. Neural

Comput. Appl. 2012, 21, 1995–2004. [CrossRef]
42. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

http://dx.doi.org/10.1016/j.jksuci.2020.11.002
http://dx.doi.org/10.1109/TEVC.2017.2754271
http://dx.doi.org/10.1016/j.apm.2014.05.040
http://dx.doi.org/10.1016/j.ijepes.2012.12.008
http://dx.doi.org/10.1016/j.future.2021.03.022
http://dx.doi.org/10.1016/j.compfluid.2014.05.020
http://dx.doi.org/10.1016/j.neucom.2012.10.043
http://dx.doi.org/10.1016/j.chaos.2004.11.095
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00521-011-0612-8
http://dx.doi.org/10.1007/s10898-007-9149-x

	Introduction
	The Prediction Model of the Slab Temperature
	The Structure of a Reheating Furnace
	The Prediction Model and Optimization Problem

	Improved Particle-Swarm-Optimization Algorithm
	The Basic PSO Algorithm
	 Improvement Strategies of the XPSO Algorithm

	 Simulations and Discussion
	Validation of XPSO by Benchmark Test Functions
	Validation Of XPSO by Benchmark Test Functions
	Comparison of XPSO and Other PSO Algorithms
	Comparison of XPSO and Other Optimization Algorithms
	 Validation of the Temperature Prediction Model With Measured Data

	Conclusions
	References

