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Abstract: Columnar inclusion is a versatile and cost-effective technique for improving weak soils.
Currently, most approaches are based on the “equal strain” assumption to calculate the deformation
of soft ground reinforced by columnar inclusions. In this study, a new model to simulate the behavior
of column-reinforced soft soil under equal stress conditions based on the variational principles
is proposed. The proposed model satisfies the force equilibrium and deformation compatibility
simultaneously, which is seldom fulfilled in traditional empirical methods or other analytical models.
The corresponding analytical solution is obtained and its accuracy is verified by comparing it with
the numerical solutions using finite element analysis. The comparisons of the proposed solution
with an existing solution show that the proposed solution can provide very close agreement over
a wide range of parameters while the existing solution is only able to provide a reasonable agreement
for a certain range of stiffness ratio of the column and soft ground. In addition, a parametric study
is made to illustrate the influence of various parameters on ground settlement predictions. The
parametric study indicated that, by increasing the ratio of elastic modulus between the stone column
and surrounding soils and the ratio between the radius of the stone column and the space of the
stone column, the load transfer effect has been significantly improved, and the ground settlement
becomes smaller. Furthermore, the Poisson’s ratio of the surrounding soil also has a very significant
effect on ground settlement, while the effect of the Poisson’s ratio of the stone column on ground
settlement is less significant compared with that of the surrounding soil.

Keywords: analytical solution; ground settlement; variational principles; column-reinforced foundation

1. Introduction

Soil improvement is becoming increasingly important due to the lack of quality land
for the development of structures and transport infrastructure [1–4], and at the same time,
the need for rapid construction of embankments for highways and railways over soft
ground [5–8]. There are various methods of soil improvement, and among these methods,
columnar inclusion is one of the most effective techniques [8,9]. The columnar inclusions
such as stone columns, sand compaction piles, jet grout columns, etc., are common and
efficient techniques to improve the soft and weak ground with low bearing capacity, high
compressibility, and large settlement [10,11]. Previous studies have shown that columnar
inclusions can significantly enhance the bearing capacity [12–16], reduce the amount of
settlement [17,18], accelerate consolidation [19,20], improve slope stability [21], and avoid
liquefaction of soil [22–24].

The role of columnar inclusion in limiting settlement is essential in some cases, for
example, road embankments and land reclamations. Many theoretical or semi-empirical
approaches have been proposed to study the behavior of column-reinforced foundations
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and to evaluate ground settlement [25]. The simplest analytical approach to columnar
inclusion is known as the “equilibrium method”. This approach is based on elasticity
theory and has been depicted by Aboshi et al. [26]; it assumes that vertical equilibrium
between the columns and the soils satisfied vertical equilibrium with oedometric con-
ditions in the soil and ignores the axial friction was ignored [27]. Furthermore, Balaam
and Booker [28] proposed a method that can be used to get a closed-form analytical solu-
tion. Subsequently, Balaam and Booker [29] proposed an iterative approach that requires
a numerical implementation to obtain a solution. Based on a semi-experiential approach,
Priebe [30] developed one of the most popular design methods in European practice to
estimate the settlement of subsoil reinforced with an end-bearing stone column. In ad-
dition, Pulko and Majes [31] proposed an analytical method to analyze the behavior of
rigid foundations resting on soft soil stabilized by a large number of end-bearing stone
columns. Zhang et al. [32] proposed an analytical solution to calculate the deformation of
the composite foundations reinforced with stone columns by considering the radial expan-
sion of the stone column among the surrounding soil near the top portion of the column.
However, these methods can only provide results with equal vertical strain based on the
“equal strain” assumption. For the case with different vertical strains, the approaches with
the “equal strain” assumption cannot provide the actual behavior of the column-reinforced
foundations. Zhao et al. [33] indicated that, for the column-reinforced embankment, the de-
formations of the stone column and surrounding soil are different, and cannot be described
by the “equal strain” assumption.

Alamgir et al. [34] first paid attention to this problem and provided the deformation
analysis on the reinforced foundation with columnar inclusion subjected to a uniform
surcharge. The deformation field proposed by Alamgir et al. was used by many following
researchers to study the behavior of column-reinforced foundations. In particular, Deb and
Mohapatra [35] and Zhao et al. [33,36] adopted Alamgir et al.’s solution for the deforma-
tion of the reinforced foundation to analyze the column-supported embankment, taking
into account the effect of soil arching from the embankment. The analytical method of
Alamgir et al. provided a technique to consider the effects of the column modulus on the
settlement process and the stress distribution on the ground surface, which provide useful
information for further analysis of soil arching in the embankment. However, the deforma-
tion pattern of the reinforced foundation in Alamgir et al. was assumed to follow a certain
shape function, from which strain and stress were derived. Comparison of the settlement
predicted by this method with finite element analysis was satisfactory for certain values
of column modulus. However, it was found by further investigations that the predicted
settlement may be very different from finite element analysis in certain situations.

The reason for the shortcomings of Alamgir et al.’s solution is that an empirical
function assumption was assumed for the deformation of the foundation soil. To over-
come the above drawbacks, a rigorous analytical solution needs to be proposed. In this
study, a rigorous analytical solution is proposed for the deformation of column-reinforced
foundations under equal stress conditions. Unlike Alamgir et al.’s approach, in which
a deformation shape function is assumed empirically, the proposed solution is derived
based on the variational principles. Therefore, the proposed solution satisfies the equilib-
rium and compatibility conditions simultaneously and provides a more accurate defor-
mation pattern of the composite foundation. Finite element analyses are first performed
to verify the accuracy of the proposed solution. The solution is then compared with the
physical observations of a previous experimental study. A detailed parametric study is then
carried out using the proposed solution for the behavior of column-reinforced foundation
over a wide range of column modulus and spacing.

2. Model Formulation and Analysis

A general situation for column-reinforced foundations is shown in Figure 1a. It is
assumed that a uniform load is applied at the ground surface. The columnar inclusions
are installed in the soft ground and rest on the bedrock which is assumed to be a rigid
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base. The columns of radius rc are arranged in a square pattern with spacing s as shown in
Figure 1b.
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The behavior of the column-reinforced foundation is generally represented by a cylin-
drical unit cell containing a single column with surrounding soil as shown in
Figures 1b and 2. Based on the equivalence of contributory area, the equivalent diam-
eter, de, of the unit cell is given as:

de = k · s (1)

where s is the spacing of the columns, and k is a constant that depends on the arrangement
pattern of the columns. k is equal to 1.05, 1.13, and 1.29 for a triangular, square, and
hexagonal pattern of columns, respectively [28].

2.1. Existing Solution for Deformation Analysis of the Column-Reinforced Foundation

Alamgir et al. [34] proposed a procedure to analyze the deformation of the column-
reinforced foundation by assuming a deformation shape function for the surrounding soil
as follows:

w(r, z) = wc(z) + αc(z)
[

r
rc

− exp βc

(
r
rc

− 1
)]

(2)
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where w(r, z) is the surrounding soil deformation at depth z and radial distance r. wc(z)
is the deformation of the column at depth z. rc is the diameter of the column. αc(z)
are the deformation parameters to be determined as described by Alamgir et al. using
the boundary conditions such as the zero shear stress at the outside boundary and the
deformation compatibility of the soil and the column. The resulting deformation shape is
shown in Figure 3.
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2.2. Mathematical Modeling

The solution proposed by Alamgir et al. [34] is important for providing the settle-
ment profile at the ground surface of the column-reinforced foundation. However, the
limitation is that this solution relies on the assumed deformation shape function, which
was constructed using simple functions. Therefore, the solution does not satisfy the
stress equilibrium condition of the model. To overcome this limitation, an improved solu-
tion is proposed by using the variational principles, for which the deformation shape
is obtained naturally. In addition, the equilibrium condition is also ensured by the
variational principles.

In this study, the soil is assumed to behave as a linearly elastic homogeneous con-
tinuum, with a constant modulus Es and a constant Poisson’s ratio νs, unaffected by the
presence of columns, and remaining unchanged throughout the loading process. It is also
assumed that the column material behaves as a linearly elastic homogeneous material
with a deformation modulus Ec and a constant Poisson’s ratio νc. Furthermore, it is as-
sumed that the interface between soil and column remains intact and does not slip, and the
displacements of the column and the soil at the interface are equal. Since the unit cell is
symmetric, only half of the model is considered in the analysis, as shown in Figure 4 in
which the depth is equal to H and the radius of the column is rc. The radius of the entire
model is de/2, which is determined by Equation (1) with the spacing of the columns, s,
based on the area equivalence assumption.
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When the stress, σi, is applied to the column, and the stress, σo, is applied to the
surrounding soil, the column-reinforced soil starts to deform. As linear elastic behavior is
assumed, the total potential energy Π of the entire system can be introduced as

Π = ∏
c
+

de
2∫

rc

2π∫
0

H∫
0

1
2
(σzεz + σrεr + τrzγrz)rdrdzdθ −

2π∫
0

de
2∫

rc

σoW(r, 0)rdrdθ (3)
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where Πc is the total energy of column inclusion, including the internal and external energy,
and σz, σr, τrz, εz, εr, γrz are the stresses and corresponding strains of a small element of the
soil continuum. W(r, 0) is the vertical displacement at the surface of the surrounding soil at
the location of (r, 0) in the cylindrical coordinate system.

The constitutive equations in an axisymmetric condition can be written as
σr
σθ

σz
τrz

 =
(1 − ν)E

(1 + ν)(1 − 2ν)


1 ν

1−ν
ν

1−ν 0
ν

1−ν 1 ν
1−ν 0

ν
1−ν

ν
1−ν 1 0

0 0 0 1−2ν
2(1−ν)




εr
εθ

εz
τrz

 (4)

Because the peripheral displacement equals zero due to the axisymmetric condition,
the corresponding strain can be described as

εr =
∂u(r, z)

∂r
, εθ =

u(r, z)
r

, εz =
∂W(r, z)

∂z
, γrz =

∂u(r, z)
∂z

+
∂W(r, z)

∂r
(5)

where u(r, z) and W(r, z) represent the radial displacement and the vertical displacement,
respectively.

To simplify the analysis, the following assumptions are adopted [37].

(1) The radial displacement u is assumed to be equal to zero everywhere throughout the
soil column model. Because the radial displacement is negligible compared to the
vertical displacement under vertical load conditions.

(2) The vertical displacement of the surrounding soil W is expressed by the vertical
surface displacement w(r) and the shape function φ(z) as

W(r, z) = w(r)φ(z) (6)

where the boundary conditions can be assumed as φ(0) = 1 and φ(H) = 0.
Inserting Equations (6) and (4) into Equation (3) yields the following equation:

∏ = ∏c +
∫ de

2
rc

∫ 2π
0

∫ H
0

 (1−νs)Es
2(1+νs)(1−2νs)

(
dφ
dz

)2
w2

+ Es
4(1+νs)

φ2
(

dw
dr

)2

dzdθrdr

−
∫ rc

0

∫ 2π
0 σ0wdθrdr

(7)

By minimizing the function Π with respect to w based on the variational principles,
the following governing equation is obtained.

kw − G( d2w
dr2 + 1

r
dw
dr ) = σo rc ≤ r ≤ de

2 (8)

where 
k = (1−νs)Es

(1+νs)(1−2νs)

H∫
0

(
dφ
dz

)2
dz

G = Es
2(1+νs)

H∫
0

φ2dz
(9)

By minimizing the total potential energy Π of Equation (7) with respect to φ, the
following equation is obtained:

− m
d2φ

dz2 + nφ = 0 (10)
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where m = (1−νs)Es
(1+νs)(1−2νs)

∫ de
2

rc
w2rdr

n = Es
2(1+νs)

∫ de
2

rc

(
dw
dr

)2
rdr

(11)

By introducing a new parameter η, the following equation can be obtained:

n
m

=
( η

H

)2
(12)

Substitute Equation (12) into Equation (10), and the following equation can be derived:

d2φ

dz2 −
( η

H

)2
φ = 0 (13)

Equation (11) implies that m and n depend on the surface displacement function w.
At the same time, w depends on the variable η. Therefore, the surface function w and
shape function φ are coupling together. To uncouple these functions, Vallabhan et al. [38]
proposed an iterative method to solve Equations (8) and (12) simultaneously.

Jones et al. [39] solved Equation (13) with the boundary conditions φ(0) = 1 and
φ(H) = 0, then revealed that the solution is the shape function in Equation (14).

φ(z) =
sinh[η(1 − z/H)]

sinh(η)
(14)

Equation (14) is a general form for φ(z), and Vlasov et al. [40] proposed an approximate
form of the shape function φ(z) in a thin layer as follows:

φ(z) = 1 − z/H (15)

According to Equation (8), the function, w(r), is the solution for a second-order variable
coefficient differential equation, which consists of two parts, namely the homogeneous
solution and the specific solution. The homogeneous solution is given by the Bessel
function, which can be readily obtained. For the specific solution, the constant σo

k satisfies
this equation. Therefore, its general solution is derived as{

w(r) = C1K0(a × r) + C2 I0(a × r) + σo
k

a =
√

k
G

(16)

where I0 and K0 are the zero-order modified Bessel functions of the first and the second
kind, respectively. Only the deformation of the surrounding soil is considered in the above-
derived solution. On the other hand, the columnar inclusion also has deformation, which
is related to the deformation of the surrounding soil.

For the columnar inclusion, a unit cell is selected and the free body diagram for
an infinitesimal element is shown in Figure 5. From this figure, the differential equation of
columnar inclusion can be written as follows:

πr2
c (σc + dσc − σc) = 2πrcτrzdz

γrz = φ dw
dr

τrz = Gsγrz
Gs =

Es
2(1+ν)

(17)

where rc is the radius of column inclusion, Es and Gs are Young’s modulus, and the shear
modulus of the surrounding soil.
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Figure 5. The unit cell of column inclusion: (a) sketch of the columnar inclusion, (b) force equilibriums
for an element of the columnar inclusion.

Equation (17) can be re-written as the following equation:

dσc

dz
=

2Gs
.

wφ

rc
(18)

Substitute the boundary condition σ0
c = σi,

σc = σi +
2aGs h

rc η
[C2 I1 (a × rc)− C1K1 (a × rc)]

[
coth(η)−

cosh(η(1 − z
h ))

sinh(η)

]
(19)

From Equation (19), the settlement of columnar inclusion can be obtained.Sc =
σih
Mc

+ 2aGsh2

rcηMc
(C2 I1(a × rc)− C1K1(a × rc))(cot(η)− 1

η )

Mc =
(1−ν)Ec

(1+ν)(1−2ν)

(20)

It is assumed that there will be no slip happening between the column inclusion and
the surrounding soil. Since the unit cell is symmetric, the following boundary conditions
can be substituted into Equation (16):{

Sc = w(rc)
dw
dr

∣∣∣r= de
2
= a × C2 × I1(a × de

2 )− a × C1 × K1(a × de
2 ) = 0 (21)

The coefficients C1 and C2 can be obtained from Equation (21) (the detail can be seen
in Appendix A) and the deformation of the surrounding soil can be derived.

3. Comparison with the Finite Element Method

To verify the newly proposed method, the finite element method (FEM) is used as
a baseline. By comparing the calculated ground settlement between the FEM and the
proposed method, the accuracy of the proposed method can be verified.
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3.1. FEM Model

For the finite element analysis, the commercial software PLAXIS 2D (V22.02) is used.
Based on the axisymmetric assumption, the mesh covering the solution regions is shown in
Figure 6. The model was constructed using 822 15-noded triangular elements, and each
element has 12 integration points at which the stress and strain are calculated. The load is
divided into two parts, including σi = 1000 kPa, which acts as a uniform pressure on top of
the column inclusions, and σo = 100 kPa, which is applied as a uniform pressure at the top
of the surrounding soil. The boundary conditions of the FE model are consistent with those
considered in the proposed theoretical method, that is, the base of the FE model is assumed
to be rigid and therefore constrained vertically and horizontally, and the outer boundary is
constrained in the horizontal direction and free in the vertical direction.
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In this FEM model, the surrounding soil and the columnar inclusion are assumed to
be linear elastic. The values of the corresponding parameters are shown in Table 1.

Table 1. Material parameters of column inclusion and soil.

Ec (kPa) νc Es (kPa) νs

1,000,000 0.2 1000 0.4
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3.2. Comparison with the Proposed Method

The settlement profiles of the ground surface along the radial distance calculated by
Alamgir et al.’s [34] method, the FEM method, and the proposed method are plotted in
Figure 7. As shown in this figure, there is a very good agreement between the predictions
of the proposed method and the predictions of the FE analysis, although the proposed
method slightly underestimates the predictions. The reason is that, for the proposed
method, the pile is assumed to have only undergone axial compression, ignoring the
axial shear deformation. In addition, the vertical displacement of the surrounding soil
W is decomposed into the product of two univariate functions, which will decrease the
degree of freedom of the model. However, for the FEM, with the number of elements
used in this study, the model approaches the actual behavior, leading to larger predicted
values of settlement. For the results coming from Alamgir et al.’s method, except that
the settlement at the top of the column is close to that of the FEM solution, the estimated
settlements of the surrounding soil are much larger than those calculated by the other
two methods. The reason is that an over-simplified deformed shape function was adopted
by Alamgir et al. As shown in this comparison, Alamgir et al.’s method gives overestimated
settlement values for this case.
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Figure 7. Settlement profile of the composite ground by three different methods.

4. Case History Study

Malekpoor and Poorebrahim [41] conducted a series of large-scale laboratory model
experiments to explore the behavior of Compacted Lime-Well-graded Soil (CL-WS) rigid
stone columns in soft soils. These tests were performed on composite specimens to eval-
uate the effect of different parameters, such as column diameter, slenderness ratio, area
ratio, etc. To simulate the actual behavior of the CL-WS column-treated ground in the field,
loads were applied over the entire area of the composite specimen to evaluate the increase
in stiffness of the treated ground. When the entire area is loaded, settlement levels up to
15 mm were achieved at the top of the unit cell confinement, as shown in Figure 8.



Appl. Sci. 2022, 12, 11574 11 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 20 
 

ratio, etc. To simulate the actual behavior of the CL-WS column-treated ground in the 

field, loads were applied over the entire area of the composite specimen to evaluate the 

increase in stiffness of the treated ground. When the entire area is loaded, settlement levels 

up to 15 mm were achieved at the top of the unit cell confinement, as shown in Figure 8. 

 

Figure 8. Laboratory test setups. 

The properties of the soil and the columns were well recorded. However, the prop-

erties of the sand pad were not provided. When simulating the performance of column-

reinforced soil using the proposed model, the deformation of the sand pad cannot be ig-

nored. However, the deformation of the sand pad in the proposed method is relatively 

small since the sand is assumed to be in one-dimensional compression, and the stiffness 

of sand is assumed to be relatively large while the thickness is very small. The parameters 

of sand were calibrated from the back-analysis of the experiment. The properties of the 

materials are shown in Table 2. 

Table 2. Physical and mechanical properties of materials used. 

Material E (kPa) ν 

Clay 12,000 0.41 

Sand 20,000 0.3 

Column 200,000 0.21 

Firstly, the effect of the slenderness ratio, H/D, (the ratio between length, H, and di-

ameter, D, of column) on the composite specimens is compared, as shown in Figure 9.  

The results of laboratory model experiments, the proposed method, and FEM are 

quantitatively compared regarding the settlement up to 15 mm corresponding to the load 

intensity in the laboratory tests for different slenderness ratios. The results from the finite 

element analyses and experiments are very close, with differences ranging from 9.4 to 

12%. This dissimilarity arises probably due to the overestimation of the stiffness of the 

sand pad. Throughout the derivation, the soil layer was assumed to be homogeneous and 

isotropic. This assumption no longer holds due to the presence of the sand pad. At the 

same time, the deformation of the sand pad cannot be ignored. Therefore, the deformation 

of the sand pad is assumed to be axial compression deformation, which increases the 

Figure 8. Laboratory test setups.

The properties of the soil and the columns were well recorded. However, the properties
of the sand pad were not provided. When simulating the performance of column-reinforced
soil using the proposed model, the deformation of the sand pad cannot be ignored. How-
ever, the deformation of the sand pad in the proposed method is relatively small since
the sand is assumed to be in one-dimensional compression, and the stiffness of sand is
assumed to be relatively large while the thickness is very small. The parameters of sand
were calibrated from the back-analysis of the experiment. The properties of the materials
are shown in Table 2.

Table 2. Physical and mechanical properties of materials used.

Material E (kPa) ν

Clay 12,000 0.41

Sand 20,000 0.3

Column 200,000 0.21

Firstly, the effect of the slenderness ratio, H/D, (the ratio between length, H, and
diameter, D, of column) on the composite specimens is compared, as shown in Figure 9.

The results of laboratory model experiments, the proposed method, and FEM are
quantitatively compared regarding the settlement up to 15 mm corresponding to the load
intensity in the laboratory tests for different slenderness ratios. The results from the finite
element analyses and experiments are very close, with differences ranging from 9.4 to 12%.
This dissimilarity arises probably due to the overestimation of the stiffness of the sand pad.
Throughout the derivation, the soil layer was assumed to be homogeneous and isotropic.
This assumption no longer holds due to the presence of the sand pad. At the same time,
the deformation of the sand pad cannot be ignored. Therefore, the deformation of the sand
pad is assumed to be axial compression deformation, which increases the stiffness of the
sand pad, resulting in the calculated settlements of the proposed method being smaller
than those of the FEM and the experiments.
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Figure 9. Effect of the slenderness ratio on the load intensity—settlement of composite specimens:
(a) H/D = 8, (b) H/D = 6, (c) H/D = 4 (for 10% area ratio between the area of the column (Ac) and the
total area within the unit cell (A) of 10%, and 100 mm column diameter).

The experimental procedure was also extended to evaluate the effect of model size on
CL-WS column performance by changing the column diameter from 50 mm to 150 mm.
Figure 10 shows the relationship between load intensity L and settlement St of a column
with an area ratio equal to 10% and H/D = 6. A comparison of the results shows that the
differences between them vary from 5.5% to 17%.
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Figure 10. Effect of the diameter of the column on the load intensity—settlement of composite
specimens: (a) D = 150 mm, (b) D = 125 mm, (c) D = 100 mm, (d) D = 75 mm, (e) D = 50 mm.
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Figure 11 shows the variation of load intensity L versus settlement St for different
area ratios, H/D = 6 and D = 100 mm. A comparison of the results reveals that the differ-
ences between them vary from 0.02 to 21.2%. With increasing area ratios, the difference
decreases gradually.
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Figure 11. Effect of the area ratio (Ar) on the load intensity-settlement of composite specimens:
(a) Ar = 5%, (b) Ar = 10%, (c) Ar = 15%, (d) Ar = 20%.

5. Parametric Study

For the fully penetrated column foundation, there are two key parameters influenc-
ing the settlement, including the ratio of elastic modulus between the column and the
surrounding soil, Ec/Es, the ratio between the radius of the column, and the radius of the
model rc/(de/2). To study the effect of these parameters on the ground settlement, a series
of parametric studies were conducted. The properties of the column and the surrounding
soil are shown in Table 3. The pressure on the surrounding soil, σs, is 500 kPa, and the
pressure on the stone column, σc, is 4000 kPa.

Figure 12 shows the ground settlement profiles for the fully penetrated column with
various elastic modulus ratios. With an increasing elastic modulus ratio, the ground
settlement becomes smaller. However, with the rate of the elastic modulus ratio increasing
faster, the rate of settlement decrease becomes slower. In addition, by increasing the elastic
modulus ratio, the supporting effect from the column to the soil becomes weaker as the
settlement level increases more with the distance from the column.
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Table 3. The reference parameters.

Material Property Value

Surrounding soil
Modulus of elasticity, Es: kPa 4000

Poisson’s ratio, νs: 0.3

Stone column

Modulus of elasticity, Ec: kPa 400,000

Poisson’s ratio, νc: 0.2

Length, H: m 10

Radius of stone column, rc: m 0.3

Radius of model, de/2: m 5
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Figure 12. Ground settlement of the unit cell for the fully penetrated column with various elastic
modulus ratios.

Figure 13 shows the ground settlement profiles for the fully penetrated column with
various ratios between the radius and the spacing of the columns. With the increasing ratio
between the radius and the spacing of the columns, the ground settlement becomes smaller.
However, contrary to the previous phenomenon, the supporting effect is more obvious as
the settlement does not increase with distance as much as in Figure 12.

The Poisson’s ratio of the soil also plays an important role in the ground settlement of
the column-reinforced foundation. As shown in Figure 14, the Poisson’s ratio has a very
big impact on the ground settlement. With an increase in Poisson’s ratio of soil, the ground
settlement decreases very quickly.

Compared with the Poisson’s ratio of the soil, the Poisson’s ratio of the column has
a smaller effect on the ground settlement, as shown in Figure 15. The reason is that the
area replacement ratio is only 0.36%. Therefore, the changing of the Poisson’s ratio of the
column produces a much smaller effect. With the increase in the area replacement ratio, the
effect of Poisson’s ratio of the column will be more pronounced.
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Figure 15. Ground settlement of the unit cell for the fully penetrated column with different Poisson’s
ratios of the column.

According to the previous results, with increasing Young’s modulus and Poisson’s
ratio, the ground settlement decreases. The reason is that, for the limited lateral deformation
and mainly the deformation caused by axial compression, the constraint modulus plays
a major role.

M =
E(1 − ν)

(1 + ν)(1 − 2ν)
(22)

From Equation (22), the constraint modulus is a monotonically increasing function
with respect to Young’s modulus and Poisson’s ratio as shown in Figure 16. With increasing
Young’s modulus and Poisson’s ratio of surrounding soils and columns, the correspond-
ing constraint modulus of surrounding soils and columns increases, which leads to the
increasing axial stiffness of the model and, therefore, reducing deformation.
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The equivalent diameter of, de, of the unit cell also influences the ground settlement,
and the corresponding results are shown in Figure 17. As shown in the figure, increasing de
by 10% will produce a 12% increase in deformation.
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6. Conclusions

In this study, a new method to calculate the ground settlement of column-reinforced
foundations is proposed based on the variational principles. Compared with a previous
empirical method, the proposed method has better physical meanings, and the derivation
strictly follows the theory of the variational principle. Consequently, this method can
be applied to a larger range of soil and column properties, as well as geometries in real
practice. By comparing the finite element results and experimental data, it is verified that
this method provides relatively accurate results.

In addition, a parametric study is presented to show the effects of influencing factors.
From the study, by increasing the elastic modulus ratio between the column and the
surrounding soil, and the ratio between the radius and the spacing of the stone columns,
the supporting effect has been significantly improved, and the ground settlement becomes
smaller. Furthermore, the equivalent diameter also affects the ground settlement, and
with increasing the equivalent diameter, the ground settlement will increase accordingly.
However, increasing the elastic modulus ratio between the column and the surrounding
soils can only decrease the ground settlement close to the column, and the supporting
effect becomes less as the distance from the column increases. In contrast, by increasing
the ratio between the radius and the spacing of the columns, the overall settlement can
be effectively reduced. In addition, the Poisson’s ratio of the surrounding soil has a very
significant effect on ground settlement. Compared with the soil, the effect of the Poisson’s
ratio of the column on the ground settlement can be ignored because the area replacement
ratio is very small.

The proposed method is a basic model that, in future work, the researchers could
combine with other superstructures, for example, embankments, to form a more compre-
hensive system. With this system, other factors, such as soil arching and stress intensity,
can be further explored.
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Appendix A

For the coefficients, C1 and C2 in Equation (16), by substituting the boundary condition
in Equation (21) into Equation (16), the following equation can be derived:

C1(K0(a ∗ rc)− b ∗ I1(a ∗ rc)) + C2(I0(a ∗ rc) + b ∗ K1(a ∗ rc)) =
σih
Mc

− σo
k

−a ∗ C1 ∗ K1(a ∗ de
2 ) + a ∗ C2 ∗ I1(a ∗ de

2 ) = 0
b = 2aGsh2

rcηMc
∗ (cot(η)− 1

η )

(A1)

At the same time, the functions w(r) and φ(z) are coupled together. To decouple
these two functions, the initial value of η can be assumed, then the shape function φ(z)
can be obtained using Equation (14). The next step is to substitute the shape function into
Equation (9), then the m and n can be represented by η.k = (1−νs)Esη∗(sinh(η)∗cosh(η)+η)

2(1+νs)(1−2νs)Hsinh(η)2

G = Es H(sinh(η)∗cosh(η)−η)

4(1+νs)sinh(η)2η

(A2)

The coefficient, a, will then be obtained. By substituting the a and η into Equation (A1),
the coefficients, C1 and C2 will be obtained.

The above procedure needs just one iteration. If a more precise result is to be obtained,
the updated function w(r) may be substituted into Equation (11). By using Equation (12) to
update η, the error between the updated η and previous η can be calculated. The iteration
will be terminated when the error meets the threshold.
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