Development of Daily and Extreme Temperature Estimation Model for Building Structures Based on Raw Meteorological Data
Abstract
:1. Introduction
2. Hourly Meteorological Data Analysis Based on Cubic Spline Function Method (FFT)
2.1. Selection of Original Meteorological Data and Spline Function Method
2.2. The Principle and Implementation of Cubic Spline Function FFT Method
2.2.1. The Principle of Cubic Spline Function
2.2.2. Realization of Cubic Spline Function
- (1)
- Assuming n interpolation nodes as input, and a = x1 < x2 << xn = b. The corresponding function values are f1, f2,, fn, the boundary condition is f0, fn, the desired value is x0.
- (2)
- Calculating hj = xj+1 − xj (j = 1, 2,, n − 1).
- (3)
- Calculating μi, λi, di.
- (4)
- Calculating μn, λ0, d0, dn
- (5)
- Solving Equation (7) or Equation (10) by using the chasing method.
- (6)
- Outputting the expression of the cubic polynomial in each interval.
- (7)
- Using the Hanning window FFT algorithm to optimize the cubic spline curve.
- (8)
- Confirming the closed interval [xj, xj+1] of x0, and calculatng the interpolation s(x0).
2.3. Hourly Temperature Analysis
3. Establishment of Standard Daily Meteorological Model
3.1. Standard Daily Meteorological Model
3.2. Extreme Daily Meteorological Model
3.3. The Analysis of Daily Temperature Difference
3.3.1. The Analytical C:\Users\usuario\Users\Jerry\AppData\Local\youdao\DictBeta\Application\7.2.0.0703\resultui\dict\?keyword=Method of Daily Temperature Difference
3.3.2. The Analysis of Daily Temperature Differences in Different Recurrence Intervals in Different Months
4. The Establishment of Meteorological Model of Standard Year for Buildings
4.1. The Temperature Meteorological Model of Standard Year
4.2. Annual Temperature Analysis
5. Conclusions
- (1)
- As the daily temperature difference follows the extreme value type I distribution, the daily temperature differences with different recurrence intervals or in extreme weather were obtained by statistical analysis. The results from this paper can contribute to refine the Load code
- (2)
- Code for the design of building structures.
- (3)
- The temperature meteorological model of a standard year reacts to the change in regulation of the annual temperature distribution and offers parameters for the analysis of annual temperature effect.
- (4)
- The annual temperature difference calculated with the method offered by this paper is close to the value offered by the standard. This means the analytical C:\Users\usuario\Users\Jerry\AppData\Local\youdao\DictBeta\Application\7.2.0.0703\resultui\dict\?keyword=method offered by this paper is reasonable. Moreover, the calculated annual temperature difference with different recurrence interval sand in extreme weather can be used for the analysis of building structures in different recurrence intervals or in extreme weather.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein-Tank, A.M.G.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.; Zhang, H.; Zhao, J.; Shan, Y.; Zhang, Z.; Guo, X.; Wu, R.; Deng, G. Effects of spring and summer extreme climate events on the autumn phenology of different vegetation types of Inner Mongolia, China, from 1982 to 2015. Ecol. Indic. 2019, 111, 105974. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Brimblecombe, P. Air pollution and architecture, past, present and future. J. Archit. Conserv. 2000, 6, 30–46. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P.; Harris, I. Predicting long term freeze-thaw risks on Europe built heritage and archaeological sites in a changing climate. Sci. Total Environ. 2007, 377, 273–281. [Google Scholar] [CrossRef]
- Dong, Z.; Li, X.; Yan, P.; Yang, R. Study of the influence of shrinkage, creep and temperature difference on super high-rise structural deformation. Eng. Mech. 2013, 30, 165–190. [Google Scholar]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Climate change and hazard zonation in the circum-arctic permafrost regions. Nat. Hazards 2002, 26, 203–225. [Google Scholar] [CrossRef]
- GB50009-2012[S]; The Standard of the People’s Republic of China: Load Code for the Design of Building Structures. China Architecture & Building Press: Beijing, China, 2012.
- Meløysund, V.; Lisø, K.R.; Siem, J.; Apeland, K. Increased Snow Loads and Wind Actions on Existing Buildings: Reliability of the Norwegian Building Stock. J. Struct. Eng. 2006, 132, 1813–1820. [Google Scholar] [CrossRef]
- Jain, V.K.; Collins, W.L.; Davis, D.C. High-accuracy analog measurements via interpolated FFT. IEEE Trans. Instrum. Meas. 1979, 28, 113–122. [Google Scholar] [CrossRef]
- Zhang, F.; Geng, Z.; Yuan, W. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system. IEEE Trans. Power Deliv. 2001, 16, 160–164. [Google Scholar] [CrossRef]
- Gallo, D.; Langella, R.; Testa, A. Desynchronized processing technique for harmonic and interharmonic analysis. IEEE Trans. Power Deliv. 2004, 19, 28–34. [Google Scholar] [CrossRef]
- Qian, H.; Zhao, R.; Chen, T. Interharmonics analysis based on interpolation FFT algorithm. Proc. CSEE 2005, 25, 87–91. [Google Scholar]
- Xiong, A. Special Meteorological Data Set of Building Thermal Environment in China; China Architecture and Building Press: Beijing, China, 2005. [Google Scholar]
- TB10002.1-2005[S]; The Industry Standards of the People’s Republic of China, Fundamental Code for Design on Railway Bridge and Culvert. China Railway Publishing House: Beijing, China, 2005.
- Ungar, S. Is strange weather in the air? A study of U.S. national network news coverage of extreme weather events. Clim. Chang. 1999, 41, 133–150. [Google Scholar] [CrossRef]
- Zhai, P.; Sun, A.; Ren, F.; Liu, X.; Gao, B.; Zhang, Q. Changes of climate extremes in China. Clim. Chang. 1999, 42, 203–218. [Google Scholar] [CrossRef]
- Thomas, R.K.; David, R. Climate extremes: Selected review and future research directions. Clim. Chang. 1999, 42, 309–325. [Google Scholar]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef]
- Beard, L.M.; Cardell, J.B.; Dobson, I.; Galvan, F.; Hawkins, D.; Jewell, W.; Kezunovic, M.; Overbye, T.J.; Sen, P.K.; Tylavsky, D.J. Key technical challenges for the electric power industry and climate change. IEEE Trans. Energy Convers. 2010, 25, 465–473. [Google Scholar] [CrossRef]
- Roberto, S.; Szklo, A.S.; Pereira de Lucena, A.F.; Borba, B.S.M.C.; Nogueira, L.P.P.; Fleming, F.P.; Troccoli, A.; Harrison, M.; Boulahya, M.S. Energy sector vulnerability to climate change: A review. Energy 2012, 38, 1–12. [Google Scholar]
- Ward, D.M. The effect of weather on grid systems and the reliability of electricity supply. Clim. Chang. 2013, 121, 103–113. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electr. Power Syst. Res. 2015, 127, 259–270. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of Regional climate model Projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef]
Month | Hours | Mean Value | Variance | Standard Deviation | 50 Year Return Value | Extreme Weather Value | Month | Hours | Mean Value | Variance | Standard Deviation | 50 year Return Value | Extreme Weather Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
July | 1 | 25.54 | 3.38 | 1.84 | 29.33 | 29.83 | January | 1 | −5.28 | 9.18 | 3.03 | −11.52 | −12.34 |
2 | 24.90 | 3.65 | 1.91 | 28.84 | 29.35 | 2 | −5.62 | 9.03 | 3.00 | −11.81 | −12.62 | ||
3 | 24.14 | 4.28 | 2.07 | 28.40 | 28.96 | 3 | −6.11 | 9.20 | 3.03 | −12.36 | −13.18 | ||
4 | 23.72 | 4.79 | 2.19 | 28.23 | 28.82 | 4 | −6.70 | 9.56 | 3.09 | −13.07 | −13.90 | ||
5 | 23.86 | 4.44 | 2.11 | 28.21 | 28.77 | 5 | −7.27 | 10.14 | 3.18 | −13.83 | −14.69 | ||
6 | 24.31 | 3.91 | 1.98 | 28.38 | 28.91 | 6 | −7.71 | 10.78 | 3.28 | −14.47 | −15.36 | ||
7 | 24.97 | 3.77 | 1.94 | 28.97 | 29.50 | 7 | −7.89 | 11.20 | 3.35 | −14.79 | −15.69 | ||
8 | 25.78 | 4.15 | 2.04 | 29.98 | 30.53 | 8 | −6.87 | 11.85 | 3.44 | −13.96 | −14.89 | ||
9 | 26.65 | 4.85 | 2.20 | 31.19 | 31.79 | 9 | −5.41 | 13.91 | 3.73 | −13.09 | −14.09 | ||
10 | 27.54 | 5.79 | 2.41 | 32.50 | 33.15 | 10 | −4.06 | 15.14 | 3.89 | −12.07 | −13.12 | ||
11 | 28.43 | 6.86 | 2.62 | 33.83 | 34.53 | 11 | −2.83 | 15.78 | 3.97 | −11.01 | −12.09 | ||
12 | 29.28 | 7.73 | 2.78 | 35.01 | 35.76 | 12 | −1.74 | 16.69 | 4.09 | −10.16 | −11.26 | ||
13 | 30.07 | 8.12 | 2.85 | 35.94 | 36.71 | 13 | −0.82 | 17.87 | 4.23 | −9.53 | −10.67 | ||
14 | 30.73 | 8.21 | 2.86 | 36.63 | 37.40 | 14 | −0.12 | 18.51 | 4.30 | −8.98 | −10.14 | ||
15 | 31.17 | 8.69 | 2.95 | 37.25 | 38.04 | 15 | 0.22 | 18.48 | 4.30 | −8.64 | −9.80 | ||
16 | 31.00 | 8.61 | 2.93 | 37.05 | 37.84 | 16 | −0.09 | 16.87 | 4.11 | −8.55 | −9.66 | ||
17 | 30.43 | 8.22 | 2.87 | 36.34 | 37.11 | 17 | −0.78 | 14.71 | 3.84 | −8.68 | −9.71 | ||
18 | 29.62 | 7.30 | 2.70 | 35.19 | 35.92 | 18 | −1.66 | 12.49 | 3.53 | −8.94 | −9.90 | ||
19 | 28.74 | 6.14 | 2.48 | 33.85 | 34.52 | 19 | −2.59 | 10.66 | 3.26 | −9.32 | −10.20 | ||
20 | 27.96 | 5.14 | 2.27 | 32.63 | 33.25 | 20 | −3.39 | 9.72 | 3.12 | −9.81 | −10.66 | ||
21 | 27.39 | 4.55 | 2.13 | 31.78 | 32.36 | 21 | −3.96 | 10.01 | 3.16 | −10.48 | −11.33 | ||
22 | 26.95 | 4.09 | 2.02 | 31.12 | 31.66 | 22 | −4.39 | 10.49 | 3.24 | −11.06 | −11.94 | ||
23 | 26.60 | 3.73 | 1.93 | 30.58 | 31.10 | 23 | −4.75 | 10.50 | 3.24 | −11.42 | −12.30 | ||
24 | 26.25 | 3.61 | 1.90 | 30.16 | 30.67 | 24 | −5.05 | 9.89 | 3.15 | −11.53 | −12.38 |
Month | Mean Value | Standard C:\Users\usuario\Users\Jerry\AppData\Local\youdao\DictBeta\Application\7.2.0.0703\resultui\dict\?keyword=Deviation | The Daily Temperature Difference with 10 Years Recurrence Interval | The Daily Temperature Difference with 20 Years Recurrence Interval | The Daily Temperature Difference with 50 Years Recurrence Interval | The Daily Temperature Difference in Extreme Weather |
---|---|---|---|---|---|---|
January | 9.2 | 3.6724 | 14.8 | 17.2 | 20.3 | 22.6 |
February | 11.8 | 2.5364 | 15.7 | 17.4 | 19.5 | 21.1 |
March | 11.8 | 4.2237 | 18.3 | 21.0 | 24.6 | 27.2 |
April | 13.0 | 4.1063 | 19.3 | 22.0 | 25.4 | 28.0 |
May | 12.6 | 4.5861 | 19.6 | 22.6 | 26.4 | 29.3 |
June | 13.0 | 3.6358 | 18.6 | 20.9 | 23.9 | 26.2 |
July | 8.3 | 2.6888 | 12.4 | 14.2 | 16.4 | 18.1 |
August | 9.4 | 1.9732 | 12.4 | 13.7 | 15.4 | 16.6 |
September | 13.3 | 3.9548 | 19.3 | 21.9 | 25.2 | 27.7 |
October | 11.5 | 4.0917 | 17.7 | 20.4 | 23.8 | 26.4 |
November | 11.7 | 3.3483 | 16.8 | 19.0 | 21.8 | 23.9 |
December | 10.5 | 3.3849 | 15.7 | 17.9 | 20.7 | 22.9 |
Month | Mean Value | The Reference Temperature with 10 years Recurrence Interval | The Annual Temperature Difference with 10 years Recurrence Interval | The Reference Temperature with 50 years Recurrence Interval | The Annual Temperature Difference with 50 years Recurrence Interval | The Reference Temperature Offered by the Standard | The Annual Temperature Difference Offered by the Standard | The Reference Temperature in Extreme Weather (100 years) | The Annual Temperature Difference in Extreme Weather (100 years) | |
---|---|---|---|---|---|---|---|---|---|---|
January | maximum | 0.7 | 7.1 | 47.3 | 13.3 | 52.2 | — | 49.0 | 15.9 | 54.1 |
minimum | −8.5 | −11.8 | −13.1 | −13.0 | −13.5 | |||||
July | maximum | 31.7 | 35.5 | 39.1 | 36.0 | 40.6 | ||||
minimum | 23.4 | 21.1 | 20.3 | — | 20.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yang, Y.; Zou, J.; Yang, W. Development of Daily and Extreme Temperature Estimation Model for Building Structures Based on Raw Meteorological Data. Appl. Sci. 2022, 12, 11582. https://doi.org/10.3390/app122211582
Yang J, Yang Y, Zou J, Yang W. Development of Daily and Extreme Temperature Estimation Model for Building Structures Based on Raw Meteorological Data. Applied Sciences. 2022; 12(22):11582. https://doi.org/10.3390/app122211582
Chicago/Turabian StyleYang, Jianyu, Yongda Yang, Jiaming Zou, and Weijun Yang. 2022. "Development of Daily and Extreme Temperature Estimation Model for Building Structures Based on Raw Meteorological Data" Applied Sciences 12, no. 22: 11582. https://doi.org/10.3390/app122211582
APA StyleYang, J., Yang, Y., Zou, J., & Yang, W. (2022). Development of Daily and Extreme Temperature Estimation Model for Building Structures Based on Raw Meteorological Data. Applied Sciences, 12(22), 11582. https://doi.org/10.3390/app122211582