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Abstract: Previous network feature extraction methods used for network anomaly detection have
some problems, such as being unable to extract features from the original network traffic, or that they
can only extract coarse-grained features, as well as that they are highly dependent on manual analysis.
To solve these problems, this paper proposes a fine-grained and highly practical dynamic application
fingerprint extraction method. By putting forward a fine-grained high-utility dynamic fingerprinting
(Huf) algorithm to build a Huf-Tree based on the N-gram (every substring of a larger string, of a fixed
length n) model, combining it with the network traffic segment-IP address transition (IAT) method
to achieve dynamic application fingerprint extraction, and through the utility of fingerprint, the
calculation was performed to obtain a more valuable fingerprint, to achieve fine-grained and efficient
flow characteristic extraction, and to solve the problem of this method being highly dependent on
manual analysis. The experimental results show that the Huf algorithm can realize the dynamic
application of fingerprint extraction and solve the existing problems.

Keywords: application fingerprinting; N-gram model; fine-grained analysis; flow processing; feature
extraction

1. Introduction

Anomaly detection is a very important network security method. It can detect anoma-
lies by extracting network features, establishing a behavior standard model, and calculating
sample offset. In the real network environment, huge raw traffic will be generated, which
contains a large number of data packets. These data packets often contain a lot of valuable
information and can be analyzed by what the operations terminal is doing. However, most
of the previous anomaly detection methods can only analyze the features generated by
specific systems and cannot directly extract the features from the original network traffic.

The feature that can uniquely mark network behavior and identify a certain network
behavior is defined as the application fingerprint [1]. The fingerprint is a relatively broad
concept in network security. Any feature that is different from other applications and can
identify applications can be defined as a fingerprint. It is necessary to use application
fingerprint to identify smartphone applications. Taylor et al. [2] use application fingerprint
to identify some information of smartphone applications.

In [3–11], it can be found that the application fingerprint can be implemented in various
ways, and its purpose is to extract features to uniquely mark the communication behavior
of an application. The target object of fingerprint extraction can be TCP messages, HTTPS
encrypted packets, log events, Application Protocol data units, and others. Elements in a
fingerprint can consist of message types, statistical data, or others. Application fingerprints
can be expressed by sequences, vectors, state graphs, and logical expressions. The extracted
application fingerprints are mainly used to process encrypted traffic, mostly for traffic
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classification and anomaly detection, and for network security problems such as application
identification and user behavior analysis.

In addition, it can be found from the literature that most of these application finger-
prints are generated by manual analysis, and a few are generated by the clustering algorithm.
This reflects the high dependence on manual analysis in actual fingerprinting extraction.

Some relevant literature in the recent years [12–16] combines network behavior analy-
sis with natural language processing. The basic idea is to understand network communica-
tion as a knowledge exchange between client and server, similar to language communica-
tion between people, so the packet of communication can be regarded as a “language” of
computer communication. Extraction and communication on both sides of the “language”
need to be conducted in a certain way, and normally this kind of communication is the
process of scheduling, which is produced following the time of data. Therefore, the most
direct representation is a sequence or a sequence of elements in the sequence, so the order
is also the kind of characteristics of elements, and in the sequence characteristics of said
method, each item represents different information, such as packet size, packet payload,
user sessions of logs, messages, packet number, etc. Although the sequence considers the
order of each element, it does not represent the dependencies between items, so to under-
stand the communication process from the perspective of natural language processing, it is
necessary to represent the relations between the elements before and after.

The N-gram (every substring of a larger string, of a fixed length n) model [17] is a
common representation model in natural language processing. The N-gram model analyzes
from the perspective of semantics, where words are interdependent of each other, and
the occurrence of the current word is related to the previous N words and has nothing
to do with the previous N + 1 words, which is the meaning of the N-gram model. The
most important thing in the N-gram model is the relationship between the probability of
the current word and the first N words. Therefore, the expression form can be similar to
a sequence, state graph, or tree, which will be introduced in the following paragraphs.
Duessel et al. [18] adopted the N-gram model with HTTP Requests as elements in the model
and represented the N-gram model in the form of a tree. Wang et al. [19] also adopted the
N-gram model to express network behavior and also used HTTP Requests as elements to
express the N-gram model in the form of sequence.

Therefore, using the N-gram model in natural language processing can more accurately
describe the process of communication between the two ends, especially taking the message
type as the element of the model.

The characteristics of network behavior analysis in recent years are from coarse grained
to fine grained. Coarse grained and fine grained are relative concepts. They are distin-
guished according to the level of detail in the division of project modules, said to be
fine-grained. Relative to fine grained, the larger each module (or sub-module) is, the
coarser the work it is responsible for, which is called coarse grained. Some methods can
directly analyze raw network traffic but can only extract coarse-grained features, not fine-
grained features of a single mobile terminal. Moreover, anomaly detection can only rely
on manual analysis methods of static datasets to obtain features, which is not suitable for
dynamic and real network environments with huge data traffic. According to the existing
problems, this paper proposes the fine-grained high-utility dynamic fingerprinting (Huf)
algorithm to focus on solving the above problems.

Given the existing problems, this paper proposes an approach to the fine-grained
high-utility dynamic application fingerprinting extraction to solve them. In this paper, the
original network traffic is taken as the analysis target, and the characteristics of the original
network traffic are extracted by analyzing the communication session—a fingerprint is
applied to solve the problem that the original network traffic cannot be directly dealt
with by anomaly detection, and the fine-grained anomaly detection can be realized by
a fingerprint. Then, the frequent item set mining algorithm is improved to realize the
automatic extraction of network features and solve the problem that feature extraction
depends on manual analysis.
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Extracting the characteristics of network traffic has always been the focus of network
behavior analysis. Modeling a large number of independent data packets is the premise
of traffic processing. The Huf algorithm proposed in this paper can realize dynamic
application fingerprint extraction, solve the problem that anomaly detection cannot process
the original network dataset and solve two problems that rely on manual feature extraction,
and implement dynamic data stream processing.

This paper consists of six sections: Section 1 is an introduction; Section 2 is a description
of the problem, including the proposal and innovation of the problem and the process of
the proposed method; Section 3 is the preprocessing of network traffic in the new method
proposed in this paper; Section 4 is the efficient and dynamic fingerprint extraction method
proposed in this paper; Section 5 is the experimental analysis; Section 6 is the conclusion of
this paper.

2. Problem Description

The goal of this paper is to automatically extract application behavior features by
analyzing network raw traffic directly obtained in the network. The application finger-
print object adopted in this paper is the most basic form of network traffic data packets.
Korczynski and Duda [20] proposed stochastic fingerprints for application traffic flows
conveyed in Secure Socket Layer/Transport Layer Security (SSL/TLS) sessions, TLS en-
cryption protocol data packets, and other relevant non-encryption protocol data packets
Transport Control Protocol/User Data Protocol(TCP/UDP), Hyper Text Transfer Protocol
(HTTP), etc. Fingerprint elements are message types that perform different functions under
different protocols. The N-gram model of natural language processing is used to describe
the application fingerprint. The extraction methods use a high-utility mining method with
frequent item set of real-time online access, without artificial analysis and extraction.

To achieve this goal, the following problems need to be solved.

2.1. Division of Network Traffic

It can be seen from the above that the previous features were mainly based on manual
analysis. Network traffic is a continuous data flow with a large amount of unstructured data.
The necessary step before feature extraction is to divide the data stream into several small
fragments. Zhang et al [21] proposed a novel unsupervised approach to deal with unknown
applications. Bhatiaa et al. [22] provides a way to divide network traffic into flow, session,
and dialog step by step according to timestamp and IP address. However, the application
fingerprint that needs to be extracted is the fine-grained application fingerprint. Only
processing according to time interval will lead to incomplete or overlapping fingerprint
extraction, so fine-grained application fingerprints cannot be extracted. In addition, a large
number of fragments of the application fingerprint in the extraction process will greatly
occupy the time and space of algorithm calculation. therefore, the division here is focused
on finding “breakpoints”. This “breakpoint” is determined not only by time but by other
relevant attributes such as IP address, protocol type, etc., so that a complete fine-grained
application fingerprint can be extracted.

2.2. Dynamically Process Traffic

Data will not be processed in a static dataset, and all data can be scanned and pro-
cessed only once to meet the requirements of huge network traffic. In this way, when
the network behavior changes, data can be obtained in time. To meet the requirements
of dynamic processing, the proposed algorithm uses a tree based on the N-gram model
to save candidate sets and then extracts the application fingerprint from the structure of
the tree.

2.3. Application Fingerprints with Typical Characteristics Need to Be Extracted

Network communication is conducted according to the corresponding protocol, which
means that most application fingerprints are common structures, such as the “three-way
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handshake”, which is the way almost all application communication takes place. If the
feature is only extracted from the usage frequency, it will be universal and cannot be used
for the next traffic classification. Therefore, the unique features that set each app apart from
the others were extracted.

2.4. Solutions

In response to the above problems, the solution in this paper is as follows: preprocess
the original network traffic obtained directly from the network and focus on finding
“breakpoints” when dividing network traffic; this “breakpoint” no longer only depends on
time, but it is determined by other corresponding IP addresses, protocol types, and other
related attributes so that a complete fine-grained application fingerprint can be extracted.
The algorithm proposed in the dynamic processing uses a tree based on the N-gram model
to save the candidate set, and then extracts the application fingerprint from the structure of
this tree. The last step is to extract the unique features of each application that distinguish
it from other applications.

The Huf algorithm proposed in this paper can solve the problem. The Huf algorithm
is a fine-grained and efficient dynamic fingerprint extraction method. Its structure is shown
in Figure 1. It can be seen that the process of extracting application fingerprints can be
divided into two parts: network traffic preprocessing and frequent set mining to obtain
application fingerprints. This paper performs data preprocessing in Section 3 and performs
fine-grained and efficient dynamic fingerprint extraction in Section 4.
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Figure 1. Huf algorithm.

3. Data Processing

It is difficult to deal with unstructured data with a huge amount of data and no typical
characteristics. Network traffic is a continuously generated data flow. Before extracting
features, the necessary step is to divide the data flow, obtain several small fragments,
and further process them. This section first analyzes the relevant content of the TLS
Protocol, takes the communication message as the analysis object, marks each message,
and then describes the communication process between the client and the server. Then, it
analyzes the characteristics of domain names of various application categories, extracts
representative domain names, and provides relevant domain name data for exception
analysis for further manual analysis of exceptions. In the fourth section, we introduce the
process of fine-grained efficient dynamic fingerprint extraction.
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Frequent project set mining is an algorithm for discovering relationships between inde-
pendent items. An improved frequent project set mining algorithm applied to fingerprint
extraction is proposed, which has three characteristics: first, the method can process dy-
namic data, dynamically extract feature fingerprints from continuously generated network
data, find the “breakpoint” that divides network traffic, and extract the entire application
fingerprint; second, in data analysis, the sequential dependence of messages is the key
content of application behavior, and the application fingerprint is established through the
N-gram model; third, the utility of the message is used as a screening criterion.

3.1. SSL/TLS Encryption Protocol and Communication Process

This section analyzes TLS1.2, a Transport Layer Protocol that works over TCP. TLS
version 1.2 consists of two layers: the TLS Recording Protocol and the TLS Handshake
Protocol. The TLS Recording Protocol works under the TLS Handshake Protocol and
provides basic functionality. The TLS Logging Protocol defines four specific protocol
formats, which are the Handshake Protocol, the Alert Protocol, the Change Password
Specification Protocol, and the Application Data Protocol. The upper-layer TLS handshake
protocol is primarily used for negotiation sessions.

The TLS Handshake Protocol is superior to the TLS Recording Protocol. When the
client and server initiate communication for the first time, the two parties agree on the
protocol version, encryption algorithm, digital certificate, etc., and complete the following
functions. First is the Hello Message exchange and agreement to carry out algorithms,
random numbers, and other information on the server, and check the session recovery.
Second, the two sides exchange necessary key parameters, allowing the client and server
to directly exchange the Hello Message, the server in the algorithm, the random number,
and other information on the agreement, and check the session resumption. Third is the
exchange of digital certificates and related parameters so that the client and server can
authenticate each other. Fourth, the master key is generated from the pre-master key and
random numbers are exchanged with each other. Last, it must be ensured that the client
and server can verify each other’s parameters and that the parameters will not be tampered
with by attackers.

When the client and server need to use TLS Protocols to establish communication,
they must follow the TLS Handshake Protocol to establish communication, which can be
divided into three phases.

3.1.1. Establish Communication

The client sends a ClientHello Message to the server. After receiving the request,
the server sends a ServerHello Message. Both the ClientHello Message and ServerHello
Message contain the information necessary to establish communication.

3.1.2. Exchange Keys and Certificate

The two parties need to exchange keys and certificates. There are four types of
messages related to keys: Server Certificates, Server Key Exchanges, Client Certificates, and
Client Secret Exchanges. In addition, there is a “Change Password Specification” message
and a “Certificate Request” message to complete some functions. Figure 2 describes the
process in detail.

3.1.3. Data Transmission

In this phase, the data that the user needs to transfer are transferred in the application
data format.

The communication process shown in Figure 2 is the first complete communication
process between the client and server. The actual use of encrypted communication is a
continuous process. Exchanging keys and certificates for each communication consumes
resources and is unnecessary. The server will retain the session ID of communication with
the client for a while and wait for the client to continue using the previous session. If
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the session ID of the client cannot be found in the existing list of the server, the server
initiates a new session and performs a complete handshake. Figure 3 shows a simplified
TLS communication process.
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As shown in Figures 2 and 3, different messages are required at different stages of
communication establishment. Each message has a specific format and performs certain
functions. In practical applications, programmers generally implement the communica-
tion between client and server according to protocol requirements, but also make some
adjustments according to function requirements, for example, omitting some unneces-
sary messages or combining multiple packets to improve communication efficiency. The
diversity of messages in communication and the flexibility in practice makes it possible
to extract fingerprint features. Table 1 lists all message types and functions of the TLS
Handshake Protocol.

The notations in the right-most column of Table 1 are used to describe the communica-
tion process. The research object of this paper is encrypted traffic, but in actual network
data, common protocols are used to complete some unimportant communication between
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client and server. The entire network data is a mixture of encrypted and non-encrypted
protocols. Figure 4 shows the hierarchy of common protocols in the network.

Table 1. The messages of TLS Protocol.

Protocol Message Type Message Function Notation

Change Cipher Spec
Protocol ChangeCipherSpec

Both the client and server can send a message to
inform each other that the data to be transmitted will
be encrypted with the new key.

21:

Alert Protocol

Closure Alerts Notify the other party that no more data will be sent
under the current connection. 22:1

Error Alerts
The communication parties immediately close the
current connection and clear related information,
such as the key and session ID.

22:2

Handshake Protocol

Hello Messages

Hello Request
Sent by the server to inform the client that a new
communication negotiation process should
be established.

23:1

ClientHello
This message is sent when the client needs to
establish a connection with the server or as a response
to a Hello Request.

23:2

ServerHello The server responds to the Client Hello packet sent by
the client. 23:3

Hello Extensions When the client has an extension type, the Hello
Extensions will appear in response to ClientHello. 23:4

Server Certificate The server sends a digital certificate to the client. 23:5

Server Key Exchange The server sends the Server Certificate to the client as
a supplement to the Server Certificate. 23:6

Certificate Request The server requests a digital certificate from the client. 23:7

Server Hello Done Server sends a message to the client indicating the
end of ServerHello. 23:8

Client Certificate The client sends a digital certificate to the server
when required by the server. 23:9

Client Key Exchange The client sends pre-master secret to the server. 23:10

Certificate Verify Server authenticates the digital certificate of the client. 23:11

Finished (encrypted handshake message) Indicates that the authentication succeeds, usually
after a ChangeCipherSpec message. 23:12

Application Data Protocol Application data Data transmission. 24:
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The protocols in Figure 4 are labeled for description, as shown in Table 2.

Table 2. Protocols’notation.

Network Layer Protocol Notation

Application layer (30:)

HTTP 31:

POP 32:

IMAP 33:

TLS/SSL (20:)

Change Cipher Spec Protocol 21:

Alert Protocol 22:

Handshake Protocol 23:

Application Data Protocol 24:

Transport layer (10:)
TCP(11:)

(SYN) 11:01

(ACK) 11:02

(SYN, ACK) 11:03

(FIN, ACK) 11:04

(PSH, ACK) 11:05

(RST, ACK) 11:06

UDP 12:

This section describes the communication process between the client and server by
analyzing TLS protocol contents and analyzing communication messages. After marking
each message, one can prepare for fingerprinting extraction.

3.2. Network Traffic Segment

Packets constitute the data in the network, and each packet has a fixed attribute.
Figure 5 shows a segment of network traffic captured in the actual QQ communication
process, which also contains some data packets from other applications.

In the actual process of obtaining traffic, the traffic packets sent and received by the
terminal must be a mixture of multiple applications, which makes it possible to divide
traffic based on IP address transition (IAT).

The network traffic obtained here contains a large number of encrypted packets,
which can be directly obtained by processing only six limited attributes: time, source,
destination, protocol, length, and info. Here, to define any packets the following is used:
pi = [t, I Isrc, IPdst, prt, l, In f o]. Based on the data packet attributes that can be di-
rectly obtained, this section analyzes the sequence of data packets to obtain encrypted
traffic fingerprints.

Data packets generated when multiple applications installed on a terminal exchange
data with the server are sent sequentially. Within a time interval T = [tstart, tend], define
the data flow Tf = (p1, p2, · · · , pN) generated (N is the number of packets obtained). Any
packet contains six attributes: pi = [t, IPsrc, IPdst, prt, l, In f o].

The object to be dealt with is the data flow defined above. Given a data flow Tf of
mixed data from multiple applications, the proposed method should accomplish two tasks:

• Process the data stream Tf and divide the packet sequence seqT = {p1, p2, · · · , pN}
into several small data stream segments according to the relevant attributes and
message analysis:

STf =
{
〈p1, p2, · · · , pI〉,

〈
pi+1, pi+2, · · · , pj

〉
, · · · ,

〈
pj+1, pj+2, · · · , pN

〉}
• Based on data stream fragments, the dynamic extraction of fine-grained fingerprint

features is realized through the method. The specific method is described in Section 3.
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The extracted application fingerprint is a message sequence containing encrypted
messages: seqM= msg1, msg2, · · · , msgM.
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This paper proposes a new method for the division of data flow Tf , which is no
longer based on the simple time interval but on the six basic attributes of packets to
find the “breakpoint” of network traffic, to achieve the purpose of accurate division of
network traffic.

In the process of sending and receiving data packets, network devices complete an
“action” in a time interval, similar to that in an operating system. The CPU is divided into
several time slices, and each time slice processes one process. This “action” is equivalent
to the application fingerprint that can be extracted. Therefore, in dividing data flows, the
determination of “breakpoints” is based on this feature of network devices processing data.
The “breakpoint” is determined according to the partitioning performance of each attribute
of network traffic, that is, the optimal partitioning attribute. Among the six basic attributes
shared by network packets, three attributes can be used as network traffic partitioning: time,
source IP address, and destination IP address. In this paper, network traffic is considered
as a whole to determine the “breakpoint”, and the partition performance of these three
attributes in dividing network traffic is proved from the perspective of information entropy
in information theory.

This paper introduces information entropy to calculate the information value contained
in a sample. The basic idea is that if each element in a sample has a specific rule, it can
be determined according to statistical methods, and its change content can be predicted
in advance, which means that the information value of this sample is not high, and the
information entropy contained in it is small. On the contrary, if all elements of the sample
are disordered and the specific situation is unpredictable, the amount of information
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contained in the sample will be large, and the information entropy will naturally be larger.
Equation (1) is the definition of information entropy:

H(X) = −∑
x∈X

p(x) log p(x) (1)

The network traffic classification process is to divide the packets according to the
properties of continuous discretization into information entropy smaller fragments, and
each fragment contains less information entropy, which means that the element is regular
and will repeat. This is the same as the nature of the application of a fingerprint; the
information entropy is small and it will repeat traffic division and be representative. In
addition, it can be used as an application fingerprint to identify traffic. Information gain is
used as the measurement standard when selecting partition attributes. Information gain is
the change that occurs before and after the dataset is partitioned, and (2) is the definition of
information gain:

In f oG = H(X)− ∑
i∈X

i · H(X)i (2)

The classification process can be described in a tree structure, in which H(X) represents
the entropy of attributes of the parent node and H(X)i represents the entropy of attributes
of several child nodes. The larger the information gain In f oG is, the more information is
contained before classification. The more impure the sample elements are, the smaller the
information entropy after classification is, and the purer the sample elements of the child
nodes will be. Each sample is more representative of the applied fingerprint, so the division
based on IP address is better than the division based on time.

In network traffic, network packets are continuous-discrete samples and network
traffic is Tf packet sequence seqT = {p1, p2, · · · , pi, · · · , pN}, while pi= (∆ti, {IP src, IPdst}),
∆ti is the time difference between adjacent packets and {IP src, IPdst} is the IP addresses
at both ends of communication for unified analysis, regardless of the order. Therefore,
according to the method of time interval division, the information gain of the obtained
samples is:

In f oG(T) = H(∆T)− ∑
i∈pi

i∆H({IPsrc, IPdst}) (3)

H(∆T) is the network traffic time interval of information entropy, as shown in (4):

H(∆T) = − ∑
∆ti∈T

p(∆ti) log p({∆ti}) (4)

H({IPsrc, IPdst}) is the information entropy in the ith partition, which can be calculated
as follows:

H({IPsrc, IPdst}) = −∑
i

p(MTi) log p(MTi) (5)

Another division method is based on IP address division {IPsrc, IPdst}. The calculation
method is as follows:

In f oG({IPsrc, IPdst}) = H({IPsrc, IPdst})− ∑
i∈∆T

i·H(∆Ti) = −∑
i

p(MTi) log p(MTi)− ∑
i∈pi

i·(− ∑
∆ti∈T

p(∆ti) log p(∆ti)) (6)

In the actual division process, only the data flow is divided into small fragments. The
information entropy only proves that the method of division by IP address proposed in
this paper, IAT, is more complete and accurate than that by time interval. Specific results of
two different division methods for network data flow are calculated in the experimental
part based on actual network communication data according to Formulas (3) and (6).

The following defines IAT: Given a data stream seqT =
{

p1, p2, · · · , pi, pj, · · · , pN

}
,

any data packet pi has an attribute time and IP address pair (∆ti, {IP src, IPdst}) . If any of
the IP address pairs {IP src, IPdst} of two adjacent packets pi, pj change, the data stream is



Appl. Sci. 2022, 12, 11585 11 of 30

divided into two
{

p1, p2, · · · , pi, pj, pj+1, · · · , pj

}
segments. The sequence exchange of IP

addresses is not considered as the change of IP addresses.
A segment of network traffic obtained by IP address is classified into N-gram types

based on message types. Here, it is first expressed in sequence, and each message is
represented by a label defined above. For example, 42 packets in Figure 3 can be divided
into 17 segments, as shown in Figure 6.
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Some of the fragments in Figures 2–5 contain only one data packet. Most of such
fragments are caused by the out-of-order and retransmission of data sent by the terminal.
In this way, the obtained fragments of network traffic are meaningless and are represented
by labels in Tables 1 and 2, as shown in Table 3.

3.3. DNS Domain Text Clustering

The Domain Name System (DNS) is a database that maps IP addresses to domain
names. The DNS server performs this function. Among the obtained network data packets,
DNS messages are a few unencrypted messages with certain meanings. The domain names
of DNS packets are extracted for text analysis, which can realize automatic network traffic
analysis and largely replace some manual analysis. In addition, the corresponding URL
can be quickly obtained in traffic classification and anomaly detection, which is convenient
for further manual analysis and control in the massive network data flow. Part of the
name is derived from the actual meaning of natural language, and part can be used as a
combination of letters to represent a certain meaning. By mining domain name information,
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one can extract effective text information from the domain name, which is of great help to
the analysis of encrypted traffic.

Table 3. Network traffic segment.

Number Network Traffic Segment

1 〈11 : 02, 11 : 02〉
2 〈11 : 02〉
3 〈11 : 05, 11 : 02, 11 : 05, 11 : 02〉
4 〈11 : 02, 31 : 05, 11 : 02〉
5 〈24 :, 24 :, 11 : 02, 24 :, 24 :, 11 : 02, 24 :, 24 :〉
6 〈11 : 02, 11 : 05〉
7 〈11 : 02〉
8 〈11 : 02〉
9 〈 32 :, 11 : 02, 32 :〉
10 〈−〉
11 〈11 : 02〉
12 〈−〉
13 〈11 : 01, 11 : 03, 11 : 02〉
14 〈11 : 05, 11 : 02, 11 : 05, 11 : 02, 11 : 05, 11 : 02〉
15 〈31 : 05, 11 : 02, 11 : 05, 31 : 05〉
16 〈11 : 01〉
17 〈11 : 02〉

This section analyzes the characteristics of domain names of each application category
and extracts representative domain names to provide domain name data for exception
analysis and further manual exception analysis. Domain name analysis uses incremental
clustering to process dynamic data streams, including RS extraction, and generation of
related-word set, feature vector generation, and domain name clustering. Figure 7 shows
the process.
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Given a domain name as shown in “str1.str2. · · · .strn”, according to”. “to extract
string of “str1.str2. · · · .strn” to generate string set, defined as an item in domain name
correlation set RS.

Network data flows usually generate multiple DNS messages, so RS consists of
multiple components, RS =

{
RS1, RS2, · · · , RSi, · · ·

}
, and because the new DNS message

is generated continuously, RS will continue to expand. For one type of other DNS-message-
generated domain correlation set, RS =

{
RS1, RS2, · · · , RSi, · · ·

}
, based on the RS built

DNS, DNS is graphed with the vertex and edge of the relationship between domain name
and domain names. In the DNS graph, vertices represent strings in domain names, and
edges represent relationships between domain names. Edges are added according to the
domain name correlation set RS. In a domain name correlation set, edges can be added,
and the direction is from the high-level domain name to the lower-level domain name, thus
forming the directed DNS graph.
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Different from natural language, the domain name can be any combination of the
characters, so as the network traffic constantly produces, there will be a new domain name
constantly generated, which means that the new node will continue to produce to solve this
problem, and to a certain extent reduce the computational complexity, as well as needs to
obtain a large number of DNS messages and complete the extraction of node information.
After the DNS graph is established, the importance of nodes is used as the feature vector of
DNS messages.

The PageRank algorithm was first used in the Google search engine. In order to
accurately rank web pages, the number and quality of links in web pages are used to
measure the importance of web pages. The directed graph G = (V, E) constructed by DNS
messages is similar to the web-page ranking in search engines, in order to find important
node information. Assume that n is the number of nodes, V and E represent vertices and
edges, and the PageRank value G(i) of vertex i is shown in (7):

G(i) = ∑
(i,j)∈E

G(j)
Kj

(7)

Calculate the PageRank value of each node, and use G to represent the PageRank
value of all nodes, as shown in (8):

G = (G(1), G(2), · · · , G(n))T (8)

Assume that A is the adjacency matrix of graph G, as shown in (9):

Aij =

{
1
Ki

, i f (i, j) ∈ E
0, i f (i, j) /∈ E

(9)

Then, (7) can be converted into (10):

G = ATG (10)

In reality, the process of users surfing the Internet is relatively complex. The PageRank
algorithm assumes that surfing the Internet is a random process. In order to make A meet
this condition, Equation (10) is improved, as shown in (11):

G = ((1− f )
E
n
+ f AT)G (11)

E is the full 1 matrix, f is the attenuation factor, and (11) can be converted into:

G = (1− f )e + f ATG (12)

Therefore, (7) can be expressed as follows:

G(i) = (1− f ) + f ∑
(i,j∈E)

G(j)
Kj

(13)

The calculation process of PageRank is a cyclic process. Given an initial value, the
PageRank value of the node is calculated. When the change is less than the threshold value,
the calculation is stopped. Calculating the PageRank value of the domain name can extract
important domain names, the appearance of these important domain names often has
certain meaning, and new domain names through manual analysis can have important
roles in helping in anomaly detection.

The generation of the network DNS message is continuous. In order to process the
newly generated messages in real time, the single-pass incremental clustering algorithm
is adopted. Firstly, the eigenvalues of vectors of each class are calculated as the cluster
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centers, and the similarity is used as the judgment criterion whenever a new message is
generated, as shown in (14):

Sl(M, n) =
|M ∩ n|

M
(14)

M is the clustering center vector, and n is the feature of DNS messages. The classi-
fication of DNS messages is determined through similarity calculation. After a certain
period, a new DNS is generated, and the clustering center is recalculated according to the
clustering result.

4. Fine-Grained High-Utility Dynamic Fingerprinting Extraction

According to the preprocessing of the network traffic in Section 3, several segments of
the network traffic are obtained. The N-gram model is used to represent the results after
the partition, and the label is used to represent the results, as shown in Table 3. In this
way, the partition results can retain the complete application fingerprint to the maximum
extent. Network behavior is a constantly changing data flow. To obtain the changes in new
network behavior in time, it is necessary to obtain application fingerprints dynamically
online, which requires that network traffic can only be processed once.

In Section 4, the problem to be solved is that application fingerprints with typical
features can be dynamically obtained. Based on a frequent set mining algorithm, a fine-
grained efficient dynamic application fingerprint extraction method Huf is proposed. The
Huf algorithm focuses on two parts: one is to calculate the utility of application fingerprints,
and the other is to build an N-gram tree structure to mine application fingerprints with
high-utility values according to the tree structure.

4.1. The Utility of Fingerprinting

The process of obtaining the most typical key exchange in the communication process
can more accurately describe the communication process. The TCP Triple Handshake
Protocol accounts for more than 80% of the total number of packets. It is difficult to analyze
except for differences in length. The number of TLS-related messages is about 10%. Every
time an encrypted communication process is established, the communication between the
client and the server requires a complete key and certificate exchange process, which has a
great impact on the analysis of communication behavior. That is, the smaller number of
message types have strong behavior analysis capabilities. Therefore, the differentiation
ability of such messages to data flows is defined as utility, which can be understood as
the value of the message itself. Similar to natural language processing, there are some
frequently used words in natural languages, such as “de”, “le”, and “me”, which are not
helpful for the next algorithm.

Here, combined with the evaluation of the importance of vocabulary in natural lan-
guage processing algorithms, the Term Frequency-Inverse Document Frequency (tf-idf)
algorithm defines the utility.

In the sequence representation s =〈pl , pm, · · · , pn〉 of an N-gram model, the utility of a
term pm is defined as:

u(pm) = ϕ(npm , l)× φ(nd, npm
d ) (15)

The number of messages pm in sequence s is npm , and the length of s is l. The proportion
of pm in sequence s is ϕ

(
npm , l

)
, which is defined as follows:

ϕ(npm , n) =
npm

n
(16)

The total number of fingerprints is nd, npm
d is the fingerprint containing the message

pm, and φ
(

nd, npm
d

)
is defined as the following:

φ(nd, npm
d ) = ln

nd

npm
d + 1

(17)
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A large number of data flow fragments in Table 3 are useless, for example, a data
flow fragment with only one packet. Table 3 shows only a small part of the data flow. To
illustrate the utility’s calculation, assume that the Table 3 below lists all the fragments of
the data flow.

Table 4 describes the utility calculation process. When network traffic is collected for
a long enough time, a large-scale utility using a fingerprint is calculated by a statistical
method, which is similar to natural language. A large enough corpus ensures the accuracy
of the tf-idf algorithm. Data stream fragments are directly associated with transactional
databases in the frequent item set mining.

Table 4. Transaction database.

TID Transaction Database (Item, Quantity)

1 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 11 : 02〉
2 〈23 : 3, 23 : 5, 23 : 8, 11 : 02, 23 : 10, 11 : 02, 21 :, 24 :〉
3 〈11 : 02, 24 :, 24 :, 11 : 02, 24 :, 24 :, 11 : 02, 24 :, 24 :〉
4 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 11 : 02, 23 : 3, 23 : 5, 23 : 8〉
5 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 23 : 3, 23 : 5, 23 : 8, 11 : 02, 23 : 10, 21 :, 23 : 12〉
6 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 11 : 02, 23 : 10, 21 :, 23 : 12〉
7 〈11 : 02, 24 :, 24 :, 11 : 02, 23 : 12〉
8 〈21 :, 11 : 02, 24 :, 11 : 02, 24 :, 24 :, 11 : 02, 24 :, 24 :〉

Calculate the utility of message 23:2 in Table 4 for a fingerprint TID = 4:

u(23 : 2) = ϕ(n23:2, n)× φ(nd, n23:2
d ) =

1
8
× ln

8
5
= 0.575

The average utility of sequence s =〈pl , pm, · · · , pn〉 calculates the average utility of the
whole fingerprint according to the utility of the message, which is defined as follows:

au(s) =
∑X∈(l,m,··· ,n) u(PX)

l(pX)
(18)

The utility still calculates the entire fingerprint with the application fingerprint of
TID = 4:

au(sTID=4) = u(11:01)+u(11:03)+u(11:02)+u(23:2)+u(11:02)+u(23:3)+u(23:5)+u(23:8)
l(sTID=4)

= 0+0+0+0.575+0.087+0.087+0.087
8 = 0.105

Tables 5 and 6 show the calculation results of each fingerprint.

Table 5. The average-utility of transaction database.

TID Transaction Database (Item, Quantity) Average Utility

1 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 11 : 02〉 0.051
2 〈23 : 3, 23 : 5, 23 : 8, 11 : 02, 23 : 10, 11 : 02, 21 :, 24 :〉 1.259
3 〈11 : 02, 24 :, 24 :, 11 : 02, 24 :, 24 :, 11 : 02, 24 :, 24 :〉 0.616
4 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 11 : 02, 23 : 3, 23 : 5, 23 : 8〉 0.120
5 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 23 : 3, 23 : 5, 23 : 8, 11 : 02, 23 : 10, 21 :, 23 : 12〉 0.189
6 〈11 : 01, 11 : 03, 11 : 02, 23 : 2, 11 : 02, 23 : 10, 21 :, 23 : 12〉 0.124
7 〈11 : 02, 24 :, 24 :, 11 : 02, 23 : 12〉 0.386
8 〈21 :, 11 : 02, 24 :, 11 : 02, 24 :, 24 :, 11 : 02, 24 :, 24 :〉 0.450

Table 6. The utility of items.

Item 11:01 11:02 11:03 21: 23:2 23:3 23:5 23:8 23:10 23:12 24:

Utility 0 0 0 0.212 0.254 0.236 0.236 0.236 0.236 0.288 0.821



Appl. Sci. 2022, 12, 11585 16 of 30

4.2. Constructing N-gram Huf-Tree of Huf Algorithm

Applications on a terminal device need to send data, so seemingly unrelated indepen-
dent data packets are connected. This paper uses the method based on association rules
to discover the relationship between independent packets. The number of data packets is
huge and cannot be completed manually. Therefore, the mining method based on frequent
sets proposed in this paper realizes the automatic acquisition of data packet sequences, that
is, the behavior pattern of communication.

Apriori is the first classical frequent item set mining algorithm in the world, which
laid the foundation for many classical algorithms later. The main process of the Apriori-like
algorithm is to find all candidate sets, and then remove the candidate sets that do not
meet the requirements by pruning [23]. This algorithm needs to scan the database many
times to generate a large number of candidate sets, which has a large space and time
complexity and has a great impact on the efficiency of the algorithm. To improve the
process, scan the database only once, and reduce the space and time complexity, many
kinds of studies have proposed improvement methods, which are generally summarized
as after scanning the data objects once, creating an “intermediate storage” to temporarily
store the selected candidate set. All subsequent analysis is directed to this “intermediate
store”. The difference is that these documents use different structures to represent this
“intermediate storage”, such as LQS-Tree [24], EFP-Tree [25], MED-Tree [26], WMFP-SW-
Tree [27], IHAUI-Tree [28], MAS-Tree [29], and HUWAS-Tree [30]. These are all variants
of FP-Tree in the FP-Growth algorithm, an algorithm adapted from Apriori. The dynamic
mining algorithm of the frequent episode generally uses the tree structure to replace several
scans of sample data.

The Apriori algorithm contains two thresholds, which are important indicators of the
algorithm and are used to measure the selection of frequent item sets. One is minimum
support, which represents the minimum probability of the occurrence of an item in a
transaction database, and the other is minimum confidence, which defines the probability
of the occurrence of another item in a set of items when one item is present. Association
rules use these two indicators to determine the relationship between item sets, which can
be understood as a certain relationship between two items when they appear together with
a large probability.

In general, the process for defining frequent item set mining is as follows.
The transaction database D = (I1, I2, · · · , In) represents a set of several items, and each

item can be represented by TID. The support degree of frequent item set FI = (X1, X2, · · · , Xm)
in D is represented by the proportion of frequent item set X1, X2, · · ·Xm in D = (I1, I2, · · · , In),
that is, Psup = (X1, X2, . . . , Xm). The confidence is used in the next prune operation and
represents the probability of the term X, i.e., P, when I contains Z. The Apriori algorithm
is used to complete the mining of frequent item sets through continuous connection and
pruning. The process of the Apriori algorithm is shown as follows:

1. Scan transaction database D = (I1, I2, · · · , In), and a 1-item set generates item
FIS1 =

(
FI1

1 , FI1
2 , · · · , FI1

n
)

in the transaction database that represents compliance support.
2. Start the connection from a 2-item set. The new item set is connected to the existing

item set:

(a) Suppose the k-1-item set FISk−1 =
(

FIk−1
1 , FIk−1

2 , · · · , FIk−1
l

)
is connected to

generate the k-item set FISk =
(

FIk
1 , FIk

2 , · · · , FIk
l

)
.

(b) The confidence degree of the candidate k-item set FISk =
(

FIk
1 , FIk

2 , · · · , FIk
l

)
is calculated and pruned to remove the item set that does not meet the confi-
dence degree.

3. Repeat the above steps to generate a new item set until there is only one item in the
item set, then stop the loop.

One of the most important features of network data flow is the continuous generation
of data packets, which is an incremental process. Many existing kinds of literature carry out
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feature extraction on static datasets after obtaining datasets, and these methods obviously
cannot realize the online dynamic processing and analysis of data packets. Dynamic
analysis can extract new features in time and monitor network data in real-time, so the
method proposed in this paper can extract features dynamically. Above, the communication
process between the client and server is extracted by establishing a sequential transaction
database of data flow. In this section, the method of processing dynamic data flow by
constructing the Huf-Tree is mainly proposed. A threshold ε is first set to determine whether
to retain a candidate, as defined below.

The minimum threshold of average utility determines whether to join the Huf-Tree,
which is expressed in proportion:

mau =
ε× SDU

TID
(19)

Assuming that the threshold “ε = 50%” is selected, Table 6 is used as an example:

mau =
ε× SDU

TID
=

1
8
× 50%× (0 + 0 + 0 + 0.212 + 0.254 + 0.236 + 0.236 + 0.236 + 0.288 + 0.821) = 0.157

The target data to be processed in this paper are network data flow, which can be
regarded as an incremental process InP = (SDB1, SDB2, · · · , SDBn, · · ·). The process of
constructing the Huf-Tree is shown in Figure 8.
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The process shown in Figure 8 is the process of generating an application fingerprint
high-utility sequence, which can be divided into four phases:

• The data are preprocessed and the incremental representation
InP = (SDB1, SDB2, · · · , SDBn, · · · ) of data flow is generated;

• The initial Huf-Tree is built, which takes SDB1 as the initial database;
• When a new SDBn is generated, each item is gradually added to update the Huf-Tree;
• New application fingerprints are generated based on the threshold at intervals.

The utility list is used to store the data related to the Huf-Tree. In essence, it is an array
used to retrieve fingerprint s =< p1, p2, · · · , pn >.

The construction process of Huf-Tree is briefly introduced according to Table 7.
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Table 7. Utility list.

Item Utility Sum Link

11:01 0 1 -
11:02 0 7 -
11:03 0 1 -
11:03 0.212 1 -
23:2 0.254 1 -
23:3 0.236 1 -
23:5 0.236 1 -
23:8 0.236 1 -
23:10 0.288 1 -
23:12 0.236 -

24: 0.821 -

1. According to the data preprocessing part generated using a fingerprint, and gradually
adding each path, the first path to add in the process is shown in Figure 9:
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2. Add each application fingerprint step by step. If there are duplicate fingerprints, some
paths need to be merged, as shown in Figure 10.
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3. Every once in a while, according to the preset threshold, the application fingerprint
that meets the condition is extracted and the messages need to be sorted, as shown
in Table 8:

Table 8. The ordered utility list.

Item Utility Sum

24: 0.821 14
23:2 0.254 4
23:3 0.236 3
23:5 0.236 3
23:8 0.236 3
23:10 0.236 3
23:12 0.288 23

21: 0.212 4
11:01 0 4
11:02 0 18
11:03 0 4

Based on the transaction database information shown in Table 8, find the paths where
24: is located: <23:3, 23:5, 23:8, 11:02, 23:10, 11:02, 21:, 24:>; <11:02, 24:, 24:, 11:02, 24:, 24:,
11:02, 24:, 24:>; and<21:, 11:02, 24:, 11:02, 24:, 24:, 11:02, 24:, 24:>. Then, calculate the average
utility for each path, 0.249, 0.154, and 0.479, and keep <23:3, 23:5, 23:8, 11:02, 21:, 24:> and
<21:, 11:02, 23:, 11:02, 24:, 24:, 11:02, 24:, 24:>.

It can be seen from Figure 10d that the structure of the Huf-Tree is very complex,
which is only a Huf-Tree of a small section of the data stream. When new data flows are
continuously processed, the generated Huf-Tree will be very large, so the structure of the
Huf-Tree needs to be merged. Since each node of the Huf-Tree is based on the N-gram
model, the order of nodes cannot be exchanged. Therefore, in the prune stage, this paper
adopts two steps to prune: removing low-utility nodes and merging paths. The process is
shown in Figure 11.
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Figure 11. Huf-Tree prune. (a) Delete nodes. (b) Path merge.

In order to ensure the integrity of the application fingerprint, the nodes in the middle of
the application fingerprint cannot be deleted, but can only be deleted successively from the
root node. Figure 11a is the result after deleting node <11:01, 11:02, 11:03, 21:>. Figure 11a
merged the right-most path from the root node to the adjacent path. The same path of
nodes is required to merge, with different nodes as children.

4.3. Dynamic Fingerprinting Extraction Algorithm Based on Huf-Tree

This section mainly proposes a dynamic application fingerprinting extraction algo-
rithm based on Huf-Tree. The Huf algorithm mainly consists of three parts: data prepro-
cessing, building Huf-Tree, and mining high-utility sequence, as shown in Figure 12:
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In order to ensure the integrity of the application fingerprint, the nodes in the middle 

of the application fingerprint cannot be deleted, but can only be deleted successively from 
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This section mainly proposes a dynamic application fingerprinting extraction algo-

rithm based on Huf-Tree. The Huf algorithm mainly consists of three parts: data prepro-

cessing, building Huf-Tree, and mining high-utility sequence, as shown in Figure 12: 
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The specific algorithm is described in Algorithm 1, Algorithm 2 and Algorithm 3:
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Algorithm 1: Data Preprocessing

Input: network packet Tf ;
Output: Application fingerprint library Ttid;

(1) IAT generates an application fingerprint: Tf → TIAT

(2) Generate a fingerprint library based on the application fingerprint: TIAT → Ttid

(3) Compute the utility of the messages in Ttid: u(pm), ϕ
(
npm , l

)
, φ
(

nd, npm
d

)
;

(4) Calculate the average utility of Ttid:au(s).

Algorithm 2: Huf

Input: SDB1, SDB2, · · · , SDBn, · · · , ε;
Output: Huf-Tree Thu f ;

(1) SDB1 = 〈pl , pm, · · · , pn〉, Generate the utility list: LT ;
(2) Create ROOT nodes and insert nodes in sequence: ROOT → THu f ;
(3) Insert each fingerprint P: pl , pm, · · · , pn → THu f ;
(4) If the new fingerprint coincides with the existing path, it is merged with the existing

path LT ;
(5) Delete nodes whose value is smaller than the threshold and connect their child nodes

to ROOT;
(6) The duplicate nodes of the ROOT node are merged into path P, and the different nodes

become child nodes;

Repeat (1)~(6), insert SDB2, · · · , SDBn.

Algorithm 3: Mining High Utility

Input: Huf-Tree Thu f , LT , ε;
Output: Fingerprint sequence Fp;

(1) Compute Utility of LT , sort results to generate L′T ;
(2) Keep nodes greater than the threshold: au(s) > ε

(3) Generate an application fingerprint: Fp = ( f p1, f p2, · · · , f pn).

5. Experimental Analysis

This section is mainly based on the problem analysis, data preprocessing, and finger-
print extraction in the previous Sections 2–4. The following contents are divided into four
parts. The first part is the non-invasive model, which only analyzes the situation of user
equipment by grabbing network data without requiring the installation of specific software.
The second part is the IAT traffic segment experiment, which performs information gain
analysis of data flow division. The third part is the fingerprinting integrity experiment,
mainly to analyze whether the acquired fingerprints are complete and accurate, and the
fourth part is the high-utility fingerprinting extraction experiment.

5.1. Non-Invasive Model

Limited by hardware, mobile terminals represented by smartphones seldom install
corresponding security software, and users sometimes doubt the monitoring software itself.
Moreover, with the popularity of mobile payment, mobile terminals have greater risks. In
order to complete the security monitoring of terminal devices without affecting the use
of users and without requiring the installation of specific software, this paper proposes a
non-invasive model that analyzes the situation of user devices only by capturing network
data, as shown in Figure 13.

In the model shown in Figure 13, the monitor is connected to the Internet and the
mobile device. The detector sends WiFi signals to enable the mobile device to communicate
with the server. The monitor has a packet capture function and can obtain the communica-
tion data between the mobile terminal and the server. In practical application, the monitor
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is generally an industrial computer integrated with wireless WiFi, wired network card,
packet capture, and analysis functions. However, in the experimental analysis stage of
the laboratory, computers and wireless network cards with promiscuous mode are used
first, and packet capture is realized by Wireshark, which is also the packet capture tool
used in the most relevant literature. The mobile device uses two Android mobile phones,
which form the same structure as Figure 13. Wireshark is used for data processing, and the
specific calculation is implemented by MATLAB and C programming.
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The datasets adopted in the experiment are divided into two types. The first type
is the public dataset, which comes from Netresec, a Swedish network security company.
It published a lot of datasets, so only one dataset (WRCCDC-PCAPS from the Western
Regional Collegiate Cyber Defense Competition) is selected as part of the public dataset in
this experiment.

The second type of dataset is the network data captured by Wireshark in the actual
environment. The experimental data captured are two smartphones equipped with the
Android system, on which common software is installed. According to the classification of
each application market, this paper installs the four most common categories of software on
smartphones, including video, news, communication, and life, such as QQ, WeChat, email
clients, the news client, etc. This paper puts forward the application for communication
sessions through the frequent item set mining method of fingerprints. In the past there was
no relevant research on this topic, so there was no ability for comparison with previous
methods. This section outlines an experiment from the extracted fingerprint to analyze the
integrity and accuracy of the analysis. The specific datasets are shown in Table 9.

Table 9. Dataset.

Name Property or Category Time (min) Packet Number

Dataset1 Background traffic 30 1755
Dataset2 Video 5 115,106
Dataset3 News 5 139,193
Dataset4 Communication 5 73,912
Dataset5 Daylife 5 76,269
Dataset6 Mixed traffic 5 68,537
Dataset7 Mixed traffic 10 102,846
Dataset8 Mixed traffic 15 182,292
Dataset9 Public data 20 82,354

Dataset10 Public data 40 28,884

Dataset1 refers to the case that the smartphone obtains data packets when the user
does not run any installation program. The smartphone sends a few data packets when it is



Appl. Sci. 2022, 12, 11585 23 of 30

silent, mainly the push of some messages and the data sent by the operating system itself.
The purpose of collecting such data is to observe the data used by non-users and measure
the impact on the data used by users. There are only 1755 data points in 30 min, which is
very few compared with the mixed data collected in 15 min, so this part of the data can
be ignored. Dataset2, Dataset3, Dataset4, and Dataset5 are traffic collection situations that
only run software of related categories. Dataset6, Dataset7, and Dataset8 are mixed traffic
that run all applications to collect traffic. The difference is that the time is 5 min, 10 min,
and 15 min. Dataset9 and Dataset10 are public datasets for online attack and defense
competitions. The experiment consists of three parts: IAT traffic partition, application
fingerprint extraction integrity analysis, and efficient application fingerprint extraction
results analysis.

5.2. IAT Traffic Segment Experiment

The first step is traffic partitioning. According to the IAT address partitioning method
proposed above, the following table shows the number of application fingerprints after
partitioning. As can be seen from Table 10, the average length of a fingerprint has a relation
with the number of packets and application category, such as that the video class fingerprint
is long, because the video class sends traffic that is bigger, and users in general will finish
loading the video they are watching. When a large amount of data are collected and more
application analogies are used, the advantages of IAT address division will gradually
expand, and the average fingerprint length will rapidly decrease. With a shorter fingerprint
length, the extracted features will be more typical, and the traffic classification effect will
be better.

Table 10. Dataset.

Name Time (min) Packet Number Application
Fingerprint Number

Average
Fingerprint Length

Dataset1 30 1755 441 3.97
Dataset2 5 115,106 6830 16.85
Dataset3 5 139,193 9104 15.28
Dataset4 5 73,912 7643 9.67
Dataset5 5 76,269 6986 10.91
Dataset6 5 68,537 7366 9.30
Dataset7 10 102,846 13,857 7.42
Dataset8 15 182,292 149,683 1.21
Dataset9 20 82,354 7395 11.13

Dataset10 40 28,884 3735 7.73

As can be seen from Table 10, the information gain of data stream division by IAT is
higher than that by time division. The reason is that the data stream divided by time has
great contingency, the slice repeatability is small, the information entropy is still large, and
the nodes are not pure. Therefore, the repeatability of the application fingerprint is very
high, and only dozens of application fingerprints can be extracted from the possibly large
data stream. Moreover, when the data volume is large enough, the more applications are
used, the more frequent the switching and switching between addresses, the shorter the
fingerprint obtained, the greater the possibility of repetition, the more pure the node infor-
mation is, and the greater the information gain will be. This indicates that the application
fingerprint classification effect is better.

First, calculate the information entropy of the entire network traffic, as shown in
Formula (20).

H(M) = − ∑
x∈M

p(x) log p(x) = − ∑
x∈M

Nx

N
log

Nx

N
(20)

where M is the message type, including TCP, HTTP, POP, and TLS. Then, the information
entropy of the whole data stream can be obtained by calculating the probability of different
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types of messages under different protocols. First, the data packet is divided according to
the IAT method, and then the information entropy of the divided data stream is calculated,
as shown in Formula (21).

HIAT({IPsrc, IPdst}) = ∑
j

Hj({IPsrc, IPdst}) = ∑
j
(−∑

i
p(MTi) log p(MTi)) (21)

Hj({IPsrc, IPdst}) is the information entropy of each segment in the network traffic,
and the corresponding information gain is the following:

In f oG({IPsrc, IPdst}) = H(M)− HIAT({IPsrc, IPdst}) (22)

To compare with the division of time intervals, the number of fragments divided
by the two methods should be as close as possible. If the number of fragments divided
by IAT is NIAT , the corresponding time interval is N

NIAT
. The information entropy of the

corresponding data stream divided by the time interval is shown in Equation (23):

H(
N

NIAT
) = − ∑

∆ti∈ N
NIAT

p(∆ti) log p(∆ti) (23)

The information gain divided by the time interval is shown in Equation (24):

In f oG(T) = H(M)− H(
N

NIAT
) (24)

The information gains of the two methods are calculated according to the above
methods, and the results are shown in Table 11. To compare with the effect of time division,
we use the same number of fragments for the same dataset.

Table 11. Dataset.

Name Packet
Number

Application
Fingerprint Number

Total Information
Entropy of Data

Time
Division IAT Information Gain

(Time, IAT)

Dataset1 1755 441 3.24 2.64 1.39 0.60 1.85
Dataset2 115,106 6830 5.06 3.83 1.62 1.23 3.44
Dataset3 139,193 9104 5.14 3.95 1.93 1.19 3.22
Dataset4 73,912 7643 4.87 3.88 1.74 0.99 3.13
Dataset5 76,269 6986 4.88 3.84 1.34 1.04 3.54
Dataset6 68,537 7366 4.84 3.87 1.45 0.97 3.39
Dataset7 102,846 13,857 5.01 4.14 1.43 0.87 3.58
Dataset8 182,292 149,683 5.26 5.18 1.14 0.08 4.12
Dataset9 82,354 7395 4.92 3.86 1.76 1.06 3.16

Dataset10 28,884 3735 4.46 4.07 1.46 0.39 3.00

It can be seen from Table 11 that the information gain of data stream division by IAT is
higher than that by time division. The reason is that the data stream divided by time has a
lot of contingency, the repeatability of the divided slice is very small, the entropy of the
divided information is still large, and the nodes are not pure. Because the “breakpoint”
of the data stream can be found accurately by IAT, the repeatability of the application
fingerprint is very high. There are only dozens of application fingerprints extracted from
potentially large data streams. When the data volume is large enough, more applications
are used, and the switching between addresses is frequent. The shorter the fingerprints that
are obtained, the more likely they are to be repeated, and the purer the node’s information
is, so the information gained will be greater. This indicates that the application fingerprint
classification effect is better.
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5.3. Fingerprinting Integrity Experiment

Network packets are mostly encrypted data. Due to the huge amount of data, manual
marking can only be used as part of the work, mainly through the text clustering of DNS
messages to achieve data marking. In the experiment, an application is continuously used
to compare with existing DNS messages to determine the type of data. Figure 14 shows the
data packets when WeChat started.
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This part of the experiment is to verify the accuracy of fingerprinting extraction,
mainly to analyze the comparison between the divided data stream fragment and the
standard application fingerprint. The experiment needs to be manually marked first
because the amount of data is huge, and the marking cannot be completely accurate.
Therefore, through the observation and analysis of the above dataset many times, typical
application fingerprints of various application categories are analyzed. Table 12 lists the
partial fingerprints of various applications with the highest frequency.

Table 12 shows some application fingerprints obtained by manual analysis. For
example, the application fingerprints shown in lines 13–18 show the data packets captured
by users using video applications. The network device has a limit on the size of data
packets when sending data, and if the size exceeds the limit, they are divided into several
packets and sent in sequence. A video will be divided into different types of packets,
TCP or UDP, by network devices. This puts forward two evaluation criteria to analyze
the address below division after obtaining the effect of the segments of data flow. The
first standard is a fragment in the application fingerprints in artificial analysis to obtain
the proportion. In the evaluation criteria as shown in (25), the analysis of the evaluation
standard is divided into good segments of data flow and the relationship between the real
application fingerprinting.

DS_FP =
DS ∩ FPs

FPs
(25)

DS refers to the number of data flow fragments after the repetition is removed, and FP
refers to the number of application fingerprints obtained by manual analysis. Figure 15
shows the division of data flows in each dataset.
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Table 12. Fingerprinting type.

Number Fingerprinting

1. 23 : 5, 23 : 6, 23 : 8, 11 : 02, 23 : 3
2. 12 :, 11 : 02, 12 :, 12 :, 12 :
3. 11 : 02, 23 : 3, 11 : 02, 23 : 7, 23.8
4. 23 : 10, 21 :, 23 :, 12 :
5. 23 : 10, 21 :, 23 :, 12 :, 11 : 01, 11 : 03, 11 : 02, 23 : 2
6. 23 : 5, 23 : 8, 23 : 3
7. 23 : 3, 11 : 02, 11 : 02, 24 :
8. 23 : 6, 23 : 8, 11 : 02, 23 : 3, 23 : 5
9. 23 : 5, 23 : 6, 23 : 8, 23 : 3

10. 21 :, 23 : 12, 24 :, 11 : 02
11. 21 :, 23 : 12, 11 : 02, 24 :, 24 :
12. 11 : 02, 23 : 3, 11 : 02, 23 : 5, 23 : 6, 23 : 8
13. 31 :, (11 : 02)n
14. 24 :, (11 : 02)n
15. 23 : 3, 21 :, 23 : 16, (11 : 02)n
16. 31 :, (12 :)n
17. (12 :)n, (11 : 02)n
18. 23 : 10, 21 :, 23 : 12, (11 : 02)n
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It can be seen from the analysis in Figure 15 that when the number of packets is small
or the application type is single, the segmented data flow fragment type is small. When the
dataset is mixed data, the more traffic that is captured, the closer the fingerprint obtained
by manual analysis is. The next step is to analyze the part of the grab fragment that does
not overlap with the application fingerprint, and (26) is used as the evaluation criterion:

FP_DS =

∑
i

FPi

DS
(26)

∑
i

FPi is the proportion of various application fingerprints in the divided data segments.

This evaluation index analyzes the situation of data flow segments that are different from
application fingerprints in the traffic. This paper defines such data flow segments that
are not application fingerprints as “fragments” of the data stream, aiming to find out the
reasons for sending these irregular packets. The analysis of these packet fragments that do
not belong to the fingerprint can be of great help to the preprocessing of the data stream
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and can remove a lot of interference and noise. Figure 16 shows the “fragments” of the
data stream after the traffic division of each data set.
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As shown in Figure 16, a relatively high FP_DS scenario is using a single category of
network traffic. In this case, network devices send data packets of the same application in a
centralized manner, and data packets are retransmitted and rarely out of order. The reason
why TCP data packets are retransmitted is that TCP data packets are retransmitted. The
cause of Dataset6, Dataset7, and Dataset8 fragments is that multiple applications send a
large number of data packets at the same time, and network devices send data packets to
different IP addresses. As a result, there are many fragments with only one or two data
packets. Another reason for fragments is the jump of IP addresses. Due to the problems of
the server and network structure, different resources will be distributed on different servers,
so even a communication session within a period will be sent by different IP addresses,
which also causes the data stream to be divided into short fragments.

5.4. High-Utility Fingerprinting Extraction Experiment

This experiment mainly analyzes the application of fingerprinting extraction based on
utility. Firstly, the utility of different message types in different datasets is analyzed, and
the influence of data stream size and class on the evaluation of message utility is analyzed.
Then, the high-utility application fingerprint extracted by the Huf algorithm is be analyzed.
In this paper, the tf-idf algorithm is used to evaluate the utility of the application. Figure 17
shows tf-idf values of the main types of packets under different datasets.

Figure 17 shows that the category and number of packets have a great influence on the
utility of packets. When the number of packets obtained is large enough, the packets tend
to be stable. This is similar to natural language processing, which requires a large amount
of text to form a huge corpus to ensure the accuracy of the calculation.

The following is the analysis of the Huf algorithm to automatically obtain the effect of
application fingerprinting. The Huf algorithm aims can take the place of manual analysis
based on the application fingerprints of the session from the network traffic. First of all,
obtaining the fingerprint must be accurate, and the requirement is to obtain as much as
possible the application fingerprints that contain artificial analysis results. The second
step is to reserve a small number of application fingerprints. Compared with TCP and
UDP, encrypted messages account for only a small number of network data flows, because
they are the part where the client establishes a connection with the server, and the server
will maintain the connection for a long time in the future. Therefore, another criterion for
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evaluating the Huf algorithm is the retention of these important few application fingerprints.
Finally, the last step is to obtain the application of the fingerprint in the manual analysis
that does not include the sample. The error extract fingerprint should be as far away as
possible; otherwise, it will cause a certain influence on future traffic classification. This
paper used the three standard evaluations of the above three kinds of situations. One
first needs to access the application of fingerprint artificial analysis, which can be divided
into two parts: FPe that contains the encrypted message and FPu that does not contain the
encrypted message. The evaluation index is shown in (27).

MetricHu f =
FPc

Hu f

FPe + FPn
×

FPe
Hu f

FPe
×

FPHu f

FPHu f − FPc
Hu f

(27)

FPHu f , FPc
Hu f , and FPe

Hu f are the total number of application fingerprints, the number
of correct classifications, and the number of encrypted messages obtained according to the
Huf algorithm, respectively. The higher the value of MetricHuf is, the better the effect of the
Huf algorithm is. The experiment is conducted on the above dataset, and the results are
shown in Figure 18.
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It can be seen from Figure 18 that when the Dataset1–Dataset5 obtained in the exper-
iment have few data packets or the application is a single category, MetricHuf is unstable
and irregular. When the data packets collected are large and the time is long, MetricHuf will
be stable within a certain range.

6. Conclusions

Extracting network traffic features is always the focus of network behavior analy-
sis, and modeling a large number of independent data packets is the premise of traffic
processing. The Huf algorithm proposed in this paper can realize dynamic application
fingerprinting extraction, which solves the two problems that anomaly detection cannot
process original network datasets and relies on manual extraction of features, and realizes
dynamic data flow processing. The application fingerprint extracted by the Huf algorithm
has two functions in anomaly detection. The first function is to provide features for traffic
classification in the next stage, and the second function is to establish a profile model in
anomaly detection together with the fingerprint and classified network traffic. In this paper,
the original network data are taken as the analysis object to achieve fine-grained anomaly
detection of mobile terminals. The application fingerprint extracted in this paper is the
basis of anomaly detection modeling.

In this paper, we use the association analysis algorithm in data mining to mine the
relationship between independent data packets. We built a Huf-Tree to realize dynamic
application fingerprint mining and calculated the utility of fingerprints to obtain more
valuable fingerprints. In this paper, we still have some problems. The IAT in this paper is
only divided based on IP addresses, and there is a lot of room for improvement. If the data
flow is divided accurately, the subsequent algorithm will obtain better results. For fine-
grained anomaly detection methods, the analysis of outlier types needs further research.
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