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Abstract: To get a better electromagnetic performance of an axial flux permanent magnet brushless DC
motor (AFPMBLDC), an AFPMBLDC with arc-shaped magnets and its multi-objective optimization
design are researched. Firstly, the main design parameters of the AFPMBLDC are proposed, and
the initial designs are carried out according to the given requirements. Furthermore, the pole arc
coefficient, permanent magnet thickness, permanent magnet arc radius, and air-gap length are
selected as optimization factors. Then, an orthogonal experiment table is established, in which the
flux density, no-load back EMF, harmonic distortion rate, and output torque ripple are selected as
optimization targets. The Taguchi optimization method is adopted to optimize the performance
indexes and the optimal parameters are obtained. Finally, the optimized model is constructed, and
some simulations are carried out to verify the optimal design. The research results have shown
that the air-gap flux density of the optimized AFPMBLDC is reduced to 31.8%, the total harmonic
distortion rate of no-load back EMF is less than 7.5%, and the torque ripple is reduced to 4.3%.

Keywords: axial flux permanent magnet brushless DC motor; permanent magnet; axial flux motor;
multi-objective optimization; torque ripple

1. Introduction

An axial flux permanent magnet brushless DC motor (AFPMBLDC) has the advantages
of a short axial length, small size, light weight, and high power density [1,2]. In the past
two decades, the AFPMBLDCs have been widely researched throughout the world. In [3,4],
we found that the AFPMBLDC can provide a larger output torque compared with the radial
flux brushless DC motor. However, the torque ripple cannot be neglected due to the high
cogging torque. Thus, some design methods, such as fractional slot winding, stator skewed
slot, and best pole slot fit method, are adopted to optimize the output torque [5,6]. However,
the above methods are only aimed at a single design method, which only improves the
output torque of AFPMBLDC, leaving the problems of low efficiency and large losses [7,8].

In order to improve the comprehensive performance of permanent magnet motors, a
variety of optimization design methods have been proposed [9,10]. Generally, optimization
design methods are divided into global optimization and local optimization [11,12]. Global
optimization algorithms include the particle swarm optimization algorithm, genetic algo-
rithm, ant colony algorithm, and simulated annealing algorithm, etc. The literatures [13–18]
used particle swarm optimization algorithm to optimize the parameters so that the perma-
nent magnet motor has the characteristics of small coupling and simple control. Li Zhe et al.
used the particle swarm reduction algorithm to optimize the parameters, which greatly
reduced the torque ripple and made the motor run more smoothly [19]. The authors of [20]
optimized the surface-mounted permanent magnet synchronous motor using a genetic al-
gorithm improved by combining pattern search method. Ying Xie and Qin fen Lu improved
the accuracy and speed of the genetic ant colony algorithm [21]. Guo Liang and Li Ji xing
et al. used the particle swarm optimization algorithm to improve the materials utilization of
a permanent magnet motor [22]. In [23,24], a hybrid genetic simulated annealing algorithm
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and conformal mapping approach were applied for multi-objective analysis to optimize
the motor, respectively. In [25], the authors performed a multi-objective optimization of
a permanent magnet motor based on a forbidden search algorithm and a finite element
method. In [26], the efficiency, size, and quality of a PMG were optimally designed using a
non-dominated ranking genetic algorithm technique, which allows an arbitrary selection
of the number of optimization objectives. The establishment of the objective function of
these global optimization algorithms is complex and the solution cycle is generally long,
which makes it difficult to achieve a fast and efficient search for the optimal combination of
the parameters of the motor.

The local optimization methods include the magnetic network method, gradient de-
scent method, and finite element method [27]. Wang Xiao yuan et al. used the finite element
method to make an analysis of the temperature field of the coreless disk motor to optimize
the motor winding [28–30]. Yu Shen bo et al. used the equivalent magnetic network method
to establish the equivalent network model considering the magnetic leakage coefficient
and air-gap magnetic density to solve the time-consuming problem of AFPMBLDC [31].
Sheng Yi fa and Tang Zhao hui et al. used the gradient descent method to correct the motor
setting value for the weak magnetic control [32,33]. Although the above local optimization
methods are simple to calculate and have good convergence, they can only optimize for a
single objective and cannot achieve multi-objective optimizations. Compared with local
optimization methods, the Taguchi optimization method has the merits of achieving mul-
tiple objectives simultaneously and finding the optimal combinations of multi-objective
optimization by fewer experiments [34–36]. Lu Yang et al. applied Taguchi method to
optimize a new type of permanent magnet synchronous motor with parameters, such as
the tooth slot torque and torque ripple coefficient [37,38]. Wen Jia bin et al. also the applied
Taguchi method to optimize a permanent magnet synchronous motor with parameters
such as efficiency and cogging torque [39].

In summary, an intelligent algorithm can improve the optimized results of AFPM-
BLDC with arc-shaped magnets to some extent. Therefore, in this paper, the pole arc
coefficient, permanent magnet thickness, permanent magnet arc radius, and air-gap length
of the AFPMBLDC are reasonably selected as optimization variables based on the Taguchi
method. Furthermore, the flux density, no-load back EMF, and output torque are used as
optimization targets. Then, an orthogonal experiment matrix is established to obtain the
influence weight of each optimization variable on each optimization target. Finally, the
optimal combination of the variables is obtained according to the optimization target. The
analysis model is constructed, and the performances are simulated and analyzed using the
finite element method. The effectiveness of the optimization design method is proved by
comparing the results with the performances of the initial AFPMBLDC.

2. Structure and Main Parameters
2.1. Structure

Figure 1 shows the three-dimensional exploded view of the AFPMBLDC. It is charac-
terized by the use of arc-shaped magnets to ameliorate the air-gap magnetic field waveform.
The magnet section is shown in Figure 2, which is surrounded by the lower-end face, the
upper-end face, the left edge, and the right edge. The left and right edges are vertical to the
lower-end face. The lower-end face is connected to the rotor core, and the upper-end face
is arc-shaped. F0 is the midpoint of the arc of the upper end face. The initial arc radius of
the upper-end face is Rinitial, and the optimized arc radius is Roptimization. The arc radius
optimization design method, Roptimization, will be discussed in detail later.
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2.2. Main Parameters
2.2.1. No-Load Back EMF

Assume that the inner diameter of the magnet is Di and the outer diameter is Do. In
this article, the inner and outer diameters of the permanent magnet are consistent with the
inner and outer diameters of the motor. The magnet section is shown in Figure 3. Between
the inner radius Ri and the outer radius RO of the magnet, by taking any length, and when
dC is rotated at an angular velocity Ω with angle dθ, then the average induced electromotive
force generated by a single effective conductor at a certain pole angle is

e = Ω
∫ Do/2

Di/2
Bδ(θ)ldl =

1
8
(D2

o − D2
i )ΩBδ(θ) (1)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 13 
 

initial arc radius of the upper-end face is Rinitial, and the optimized arc radius is Roptimization. 

The arc radius optimization design method, Roptimization, will be discussed in detail later. 

1

2

3

4

 Stator
Winding

s

Permanent Magnets

Rotor

 

Figure 1. Structure of the Proposed AFPMBLDC. 

Upper end face

Left edge Right edge

Roptimation

F1 F2

F0

F1' F2'

Lower end 

face

Rinitial

 

Figure 2. Permanent magnet section. 

2.2. Main Parameters 

2.2.1. No-Load Back EMF 

Assume that the inner diameter of the magnet is Di and the outer diameter is Do. In 

this article, the inner and outer diameters of the permanent magnet are consistent with 

the inner and outer diameters of the motor. The magnet section is shown in Figure 3. 

Between the inner radius Ri and the outer radius RO of the magnet, by taking any length, 

and when dC is rotated at an angular velocity Ω with angle dθ, then the average induced 

electromotive force generated by a single effective conductor at a certain pole angle is 

/2
2 2

/2

1
( ) ( - ) ( )

8

o

i

D

o i
D

e B ldl D D B  =  =   (1) 

 

Figure 3. Magnet section. 

If the number of coil turns per phase is Nx, the winding coefficient is Kx, and the 

number of parallel branches of the winding is a, then the peak induced electric potential 

per phase winding Ema can be calculated by 

2 2av

ma ( )
2 480

x x x x

o i

E N K N B
E D D

a


= = −

 
(2) 

Figure 3. Magnet section.

If the number of coil turns per phase is Nx, the winding coefficient is Kx, and the
number of parallel branches of the winding is a, then the peak induced electric potential
per phase winding Ema can be calculated by

Ema =
Ex NxKx

2a
=

πNxBδav

480
(D2

o − D2
i ) (2)

where Bδav is the average air-gap magnetic density of the motor at one pole pitch, Bδav = αiBδ;
αi is the pole arc coefficient.
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2.2.2. Electromagnetic Power

The electrical load at the minimum diameter Amax is as follows:

Amax =
2NxKt Ima

πDi
(3)

where Kt is the armature winding energization coefficient; Aav is average electrical load:

Aav =
2ImaNx

πa(Di + Do)
(4)

The phase current Ima of a AFPMBLDC can be expressed as

Ima =
Aavπa(Di + Do)

2Nx
(5)

Assuming that the motor is in the m-phase and the rated speed of the motor is n, the
output electromagnetic power of the AFPMBLDC can be obtained as follows:

Pem =
π2KxmnBδ AavD3

i (β + 1)2(β− 1)
120

(6)

where β is the ratio of the motor’s outer diameter to inner diameter, and the value is
√

3;
thus, the outer diameter Do of AFPMBLDC can be written by

Do = 3

√
120β3Pem

π2KxmnαiBδav Aav(
√

3 + 1)
2
(
√

3− 1)
(7)

2.2.3. Electromagnetic Torque

The electromagnetic torque of the motor can be expressed as

Tem =
πKxmαiBδ Aav(

√
3 + 1)

2
(
√

3− 1)
4

(8)

The AFPMBLDC parameter preliminary design is completed. The rated speed, rated
power, rated voltage, and rated current are 4800 r/min, 300 W, 24 V, and 10 A, respectively.
The pole arc coefficient, permanent magnet thickness, permanent magnet arc radius, and
air-gap length are preliminarily set as 0.6, 3.0 mm, 1.8 mm, and 0.6 mm. The specific data
are shown in Table 1.

Table 1. Main parameters of AFPMBLDC.

Parameter Initial Value

Rated speed, n/(r·min−1)
Rated power, P/W

4800
300

Rated voltage, UN/V 24
Rated current, I/A 10

Motor outer diamete, Do/mm
Motor inner diameter, Di/mm

65
25

Pole arc coefficient, αi 0.6
Thickness of permanent magnet, l/mm
permanent magnet arc radius, r/mm

Air-gap length, h/mm

3.0
18
0.6
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3. Multi-Objective Optimization
3.1. Taguchi’s Method

Taguchi algorithm is a local optimization algorithm. It can quickly explore the optimal
combination of parameters for multi-objective optimization using the minimum number of
experiments and the minimum experimental data, and has the advantages of high efficiency,
fast convergence, global selection, and robustness [40]. It has been studied and applied in
the field of motor optimization in recent years.

The step flow of Taguchi method is shown in the Figure 4.
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3.2. Multi-Objective Optimization Design
3.2.1. Orthogonal Experimental Design

The multi-objective optimization was carried out for the AFPMBLDC with arc-shaped
magnets and the following three objectives were selected as indicators: flux density, no-load
back EMF, and output torque. The optimized flux density is expected to be stronger and the
total harmonic distortion rate of no-load back EMF is expected to be smaller. The optimized
parameters are selected as “A”, representing the pole arc coefficient; “B” representing
permanent magnet thickness; “C” representing permanent magnet arc radius; and “D”
representing air-gap length.

The level value of the optimized parameters is selected according to the experience
parameters of the motor design and the actual processing technology. The parameter ranges
of the pole arc coefficient, magnet thickness, magnet arc radius, and air-gap length are
shown in Table 2, and the four values of horizontal values are shown in Table 3.

Table 2. Parameters of the model.

Parameter Value

Polar arc coefficient 0.6–0.9
Permanent magnet thickness 2.0–3.5
permanent magnet arc radius 18–24

Air-gap length 0.5–1.5
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Table 3. Parameters of the model.

Optimization Parameters A B C D

Horizontal influence factor 1 0.6 2.0 18 0.5
Horizontal influence factor 2 0.7 2.5 20 0.8
Horizontal influence factor 3 0.8 3.0 22 1.2
Horizontal influence factor 4 0.9 3.5 24 1.5

Based on the four variable optimization parameters selected above, a range of four
level factors were determined for each parameter, an orthogonal table was established. If
the traditional single-variable optimization method was used; 44 = 256 experiments are
required, while only 4 × 4 = 16 experiments are required to achieve the multivariable and
multi-objective optimization design of the motor using Taguchi’s method. The orthogonal
table for establishing experiment L16(4 × 4) is shown in Table 4. Among them, 1, 2, 3 and
4 respectively correspond to horizontal influence factor 1, horizontal influence factor 2,
horizontal influence factor 3 and horizontal influence factor 4 in Table 3.

Table 4. Orthogonal table.

No. A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2 1 2 3
6 2 2 1 4
7 2 3 4 1
8 2 4 3 2
9 3 1 3 4
10 3 2 4 3
11 3 3 1 2
12 3 4 2 1
13 4 1 4 2
14 4 2 3 1
15 4 3 2 4
16 4 4 1 3

Using the time-step finite element method, the three-dimensional simulation model
of the AFPMBLDC with arc-shaped magnets is constructed, and the three optimization
objectives of each group of experiments are analyzed and calculated by using the transient
field solver after the winding is intense and the mesh is dissected. The Mag-B represents the
flux density, “E” represents the no-load back EMF, and “T” represents the output torque.

Based on the data in the orthogonal table, the motor model is simulated. The specific
values of flux density, no-load back EMF, and output torque are shown in Table 5. For
example, the data result of No. 1 in Table 5 is the result of motor parameter simulation
based on the data of No. 1 in Table 4; that is, under the condition of a motor pole arc
coefficient of 0.6: a permanent magnet thickness of 2.0 mm, a permanent magnet arc radius
of 18 mm, and air-gap length of 0.5 mm, the flux density is 0.59 T; the no-load back EMF is
8.56 V, and output torque is 0.52 V.
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Table 5. Orthogonal experimental results.

No. Mag-B/T E/V T/N·m
1 0.59 8.56 0.52
2 0.61 9.43 0.50
3 0.64 10.19 0.49
4 0.66 11.24 0.48
5 0.68 11.80 0.50
6 0.69 11.86 0.52
7 0.68 12.08 0.51
8 0.71 11.96 0.49
9 0.73 11.74 0.48
10 0.75 11.24 0.43
11 0.75 10.74 0.50
12 0.73 10.58 0.53
13 0.71 11.06 0.53
14 0.68 11.52 0.52
15 0.70 12.05 0.51
16 0.69 11.99 0.51

3.2.2. Mean Value and Weight Ratio Analysis

The mean values of the experimental results were statistically analyzed the effects of
parameter changes on each performance index. The formula for calculating the mean value
of all the finite element results for each performance index is shown in Equation (9), and
the results are shown in Table 6.

h =
n

∑
a

Sa

n
(9)

where n is the number of experiments, Sa is the value of a certain target performance index
for the a-th experiment.

Table 6. Results on the overall average.

Mag-B/T E/V T/N·m
Mean value 0.6875 11.1275 0.50125

The average value of each motor optimization parameter corresponding to a particular
optimization target at each level value is calculated as

hxa =
hx(g) + hx(p) + hx(k) + hx(z)

4
(10)

where x represents the motor optimization parameter, hxa denotes the average value of
the target performance index under the a-th influence factor of parameter x, hx denotes
the target performance index under a certain experiment of parameter x, and g, p, k, and z
denote the experiment serial numbers.

According to the formula, the average values of motor flux density, no-load back EMF,
and output torque for each optimization variable taken at different levels are shown in
Tables 7–9.

Table 7. Mean value of magnetic flux density for each variable at the horizontal factor.

Level Value/Variable A B C D

1 0.6250 0.6775 0.6800 0.6700
2 0.6900 0.6825 0.6800 0.6950
3 0.7400 0.6925 0.6900 0.6900
4 0.6950 0.6975 0.7000 0.6950
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Table 8. Average no-load back EMF for each variable at the horizontal factor.

Level Value/Variable A B C D

1 9.855 10.790 10.788 10.685
2 11.925 11.012 10.965 10.798
3 11.075 11.265 11.352 11.305
4 11.655 11.443 11.405 11.723

Table 9. Mean value of torque for each variable at the level factor.

Level Value/Variable A B C D

1 0.4975 0.5075 0.5125 0.5200
2 0.5050 0.4925 0.5100 0.5050
3 0.4850 0.5025 0.4950 0.4825
4 0.5175 0.5025 0.4875 0.4975

The variance is used to assess the extent to which a number deviates from the mean.
By analyzing the variance, the proportion of the effect of the parameter on the performance
index can be calculated, and the formula for calculating the variance is (11).

Ss = 4×
4

∑
a=1

(hxa − h)
2

(11)

The weight of the influence is shown in Table 10. It can be concluded that the pole arc
coefficient has the widest influence on the optimization target, and has a great influence on
the flux density, no load back EMF and output torque of the motor. The influence of the
permanent magnet thickness on the no load back EMF and output torque is basically the
same. The influence of the permanent magnet arc radius on the output torque is large, and
the influence of the air-gap length on the output torque is large.

Table 10. Proportion of influence of the parameters on target performance.

Parameter
Flux Density No-Load Back EMF Output Torque

Ss Specific
Gravity Ss Specific

Gravity Ss Specific
Gravity

A 0.0269 87.6% 10.145 67.8% 0.0022 30.3%
B 0.0010 3.3% 0.982 6.6% 0.0004 6.5%
C 0.0011 3.6% 1.076 7.2% 0.0017 23.5%
D 0.0017 5.5% 2.762 18.4% 0.0029 39.7%

3.2.3. Analysis of Optimization Results

The mean main effects plot of Taguchi’s method is the average response for each
combination of control factor levels. The optimization objective is to determine the level
of factors that minimizes or maximizes the mean value, depending on the response. The
experimental results of Taguchi’s algorithm in the previous section were statistically an-
alyzed, and the mean main effect plots for each variable at varying levels are shown in
Figure 5, with the vertical coordinates corresponding to the level values of the factors.

From Figure 5a, it can be concluded that when the air-gap flux density is selected as
small, the parameter combination is A1, B1, C1, and D1; that is, the pole arc coefficient,
permanent magnet thickness, cutting edge radius, and air-gap length are 0.6, 2.0 mm,
18 mm and 0.5 mm, respectively; From Figure 5b, when the no-load back EMF is selected
as large, the parameter combination is A2, B4, C4, and D4; that is, the pole arc coefficient,
permanent magnet thickness, cutting edge radius, and air-gap length are 0.7, 3.5 mm,
24 mm, and 1.5 mm, respectively. It can be concluded from Figure 5c that when the output
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torque is selected as small, the parameter combination is A3, B2, C4, and D3; that is, the pole
arc coefficient, permanent magnet thickness, permanent magnet arc radius, and air-gap
length are 0.8, 2.5 mm, 24 mm, and 1.2 mm, respectively.
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ence on the flux density, no load back EMF and output torque of the motor. The influence 

of the permanent magnet thickness on the no load back EMF and output torque is basi-

cally the same. The influence of the permanent magnet arc radius on the output torque is 

large, and the influence of the air-gap length on the output torque is large. 

Table 10. Proportion of influence of the parameters on target performance. 

Parameter 

Flux Density No-Load Back EMF Output Torque 

Ss 
Specific 

Gravity 
Ss 

Specific 

Gravity 
Ss 

Specific 

Gravity 

A 0.0269 87.6% 10.145 67.8% 0.0022 30.3% 

B 0.0010 3.3% 0.982 6.6% 0.0004 6.5% 

C 0.0011 3.6% 1.076 7.2% 0.0017 23.5% 

D 0.0017 5.5% 2.762 18.4% 0.0029 39.7% 

3.2.3. Analysis of Optimization Results 

The mean main effects plot of Taguchi’s method is the average response for each 

combination of control factor levels. The optimization objective is to determine the level 

of factors that minimizes or maximizes the mean value, depending on the response. The 

experimental results of Taguchi’s algorithm in the previous section were statistically an-

alyzed, and the mean main effect plots for each variable at varying levels are shown in 

Figure 5, with the vertical coordinates corresponding to the level values of the factors. 
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There are contradictions in the selection of the various parameters, and different
parameters have different effects on the optimization objectives. The output torque and
air-gap magnetic density are not the smaller the better. The no-load back EMF can meet
the design requirements. Therefore, according to the proportion analysis of the influence
of the four parameters on the performance of the optimization target, the final motor
optimization parameters are A2, B2, C4, and D2; that is, the pole arc coefficient, thickness of
the permanent magnet, permanent magnet arc radius, and air-gap length are 0.7, 2.5 mm,
24 mm, and 0.8 mm, respectively.

4. Optimization Results

The transient time-stepping finite element method was used to calculate the optimized
electromagnetic performances. Simulation analysis was done for the combined parameters
to compare the motor flux density, no-load back EMF, and output torque before and after
optimization.

Figure 6 gives the air-gap flux density of the AFPMBLDC. It can be seen that the
air-gap flux density of the motor before optimization is 1.1 T, and the air-gap magnetic
density is too large, which means that the air-gap of the motor is too small and the assembly
requirements of the motor are high. After optimization, the air-gap flux density of the
motor is 0.75 T, which is 31.8% lower, and the air-gap flux density waveform is closer to
sinusoidal, which is conducive to reducing the torque ripple and loss and increasing the
output torque.
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Figure 6. Air-gap flux density.

Figure 7 shows the comparison of the no-load back EMF before and after optimization
of the AFPMBLDC. The total harmonic distortion rate of the optimized no-load back EMF
waveform is reduced by 7.5% when AFPMBLDC are running at the rated speed. Compared
with the no-load back EMF before optimization, the optimized no-load back EMF has an
RMS value of 8.8 V, which is 8.6% higher.
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5. Conclusions 
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timized motor air-gap flux density was reduced by 31.8%, the total harmonic dis-

tortion rate was reduced by 7.5%, and the torque ripple was reduced by 4.3%. 

Figure 7. Back EMF.

The output torque graph of the AFPMBLDC is shown in Figure 8. The motor’s
average output torque before optimization was 0.504 Nm, while after optimization, the
average output torque was 0.491 Nm, a 2.5 percent reduction. The motor torque ripple after
optimization is 4.3 percent lower than before optimization, with a smoother waveform and
improved motor stability.
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5. Conclusions

The Taguchi optimization method uses four parameters, namely, pole arc coefficient,
permanent magnet thickness, permanent magnet arc radius, and air-gap length, as the
optimization variables to optimize the flux density, no-load back EMF, and output torque of
the AFPMBLDC, with unequal thickness poles as the target. The Maxwell 3D finite element
method is used to compare the 3D transient electromagnetic field simulation analysis of
the generator before and after optimization, and the following conclusions are drawn:

1. Using Taguchi’s optimization method to find the optimal four parameters, the opti-
mized motor air-gap flux density was reduced by 31.8%, the total harmonic distortion
rate was reduced by 7.5%, and the torque ripple was reduced by 4.3%.

2. The feasibility of the proposed method for the optimization of the axial flux PMG is
verified by Maxwell 3D finite element simulation.

In summary, Taguchi’s optimization method can be effectively applied to the param-
eter optimization of an AFPMBLDC with unequal thickness poles, and it can improve
its performance. This scheme provides some reference for the optimization design of
an AFPMBLDC.
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