Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Borehole Data
1.2.2. Spatial Interpolation Methods
2. Research Method
2.1. Preprocessing of Experiment Data
2.2. Seismic Liquefaction Assessment
2.3. Improved IDW Interpolation Based on 3D Search Neighborhoods
2.3.1. 3D Search Neighborhoods
a. Within3D(b) ⇔ (dim(a) ≤ dim(b))∧ | |
(INT(a) ∩ INT(b) ≠ ∅)∧ | |
(INT(a) ∩ EXT(a) = ∅)∧ | |
(BND(a) ∩ EXT(b) = ∅) | |
⇔ a. Relate(b, “TF***F***”) |
2.3.2. Improved IDW Interpolation
3. Research Results
- Achieve borehole data, unify contents and format. (Microsoft Excel (Microsoft, Redmond, WA, USA));
- Perform seismic liquefaction hazard assessment by using refined borehole data (MATLAB (MathWorks, Natick, MA, USA));
- Apply improved IDW interpolation. However, when the estimated result consists of ‘NoData’, Perform IDW interpolation repeatedly on the analyzed result (Rhino/Grasshopper (Robert McNeel & Associate, Seattle, WA, USA));
- Perform 3D seismic liquefaction hazard mapping based on the estimated results (ArcGIS Pro (Esri, Redlands, CA, USA));
- Publish 3D web application by using mapping results (ArcGIS Online/WebApp Builder (Esri, Redlands, CA, USA)).
3.1. Experiment Data
3.2. Result of Seismic Liquefaction Assessment
3.3. Improved IDW Interpolation and Mapping
3.3.1. Development of an Improved IDW Interpolation Algorithm
3.3.2. Mapping of Seismic Liquefaction Assessment
3.3.3. Publishing 3D Web App
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arun, P.V. A comparative analysis of different DEM interpolation methods. Egypt. J. Remote Sens. Space Sci. 2013, 16, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Losser, T.; Yorke, C.; Piltner, R. Fast inverse distance weighting-based spatiotemporal interpolation: A web-based application of interpolating daily fine particulate matter PM2.5 in the contiguous U.S. using parallel programming and k-d tree. Int. J. Environ. Res. Public Health 2014, 11, 9101–9141. [Google Scholar] [CrossRef] [PubMed]
- Hart, Q.J.; Brugnach, M.F.; Temesgen, B.; Rueda, C.; Ustin, S.L.; Frame, K. Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation. Civil Eng. Environ. Syst. 2009, 26, 19–33. [Google Scholar] [CrossRef]
- Zhou, G.; Esaki, T.; Mitani, Y.; Xie, M.; Mori, J. Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng. Geol. 2013, 68, 373–386. [Google Scholar] [CrossRef]
- Aissiou, M.; Périé, D.; Gervais, J.; Trochu, F. Development of a progressive dual kriging technique for 2D and 3D multi-parametric MRI data interpolation. Comput. Methods Biomech. Biomed. Eng. Imag. Vis. 2013, 1, 69–78. [Google Scholar] [CrossRef]
- Widi, A.P.; Utomo, W.H.; Yulianto, J.P. Identification of Spatial Patterns of Food Insecurity Regions using Moran’s I (Case Study: Boyolali Regency). Int. J. Comput. Appl. 2013, 72, 54–62. [Google Scholar] [CrossRef]
- Birch, C.P.D.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Yoon, J.H.; Li, Y.J.; Lee, M.S.; Jo, M.H. Deep Learning Drone Flying Height Prediction for Efficient Fine Dust Concentration Measurement. In Proceedings of the 13th International Conference on Ubiquitous Information Management and Communication (IMCOM), Phuket, Thailand, 4–6 January 2019; Lee, S., Ismail, R., Choo, H., Eds.; Springer: Cham, Swizterland, 2019; pp. 1112–1119. [Google Scholar]
- Sun, L.; Wei, Y.; Cai, H.; Yan, J.; Xiao, J. Improved fast adaptive IDW interpolation algorithm based on the borehole data sample characteristic and its application. J. Phys. Conf. Ser. 2019, 1284, 012074. [Google Scholar] [CrossRef] [Green Version]
- Sayre, R.G.; Wright, D.J.; Breyer, S.P.; Butler, K.A.; van Graafeiland, K.; Costello, M.J.; Harris, P.T.; Goodin, K.L.; Guinotte, J.M.; Basher, Z.; et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 2017, 30, 90–103. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Wang, J.; Dai, X.; Wu, L.; Li, C.; Li, F.; Liu, S.; Jessell, M.W. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm. Eng. Geol. 2021, 284, 106047. [Google Scholar] [CrossRef]
- Nistor, M.M.; Rahardjo, H.; Satyanaga, A.; Hao, K.Z.; Xiaosheng, Q.; Sham, A.W.L. Investigation of groundwater table distribution using borehole piezometer data interpolation: Case study of Singapore. Eng. Geol. 2020, 271, 105590. [Google Scholar] [CrossRef]
- Pollack, H.N.; Smerdon, J.E. Borehole climate reconstructions: Spatial structure and hemispheric averages. J. Geophys. Res. Atmos. 2004, 109, D11106. [Google Scholar] [CrossRef]
- Iwasaki, T.; Arakawa, T.; Tokida, K.I. Simplified procedures for assessing soil liquefaction during earthquakes. Int. J. Soil Dyn. Earthq. Eng. 1984, 3, 49–58. [Google Scholar] [CrossRef]
- Lam, N.S. Spatial interpolation methods: A review. Am. Cartogr. 1983, 10, 129–150. [Google Scholar] [CrossRef]
- Comber, A.; Zeng, W. Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations. Geogr. Compass 2019, 13, e12465. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, M.F.; Lam, N.S.N. Areal interpolation: A variant of the traditional spatial problem. Geo-Processing 1980, 1, 297–312. [Google Scholar]
- Wright, J.K. A method of mapping densities of population with cape cod as an example. Geogr. Rev. 1936, 26, 103–110. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S.W.; Hong, B.Y.; Eom, H.M.; Shin, H.S.; Kim, K.M. Representation of population distribution based on residential building types by using the dasymetric mapping in Seoul. J. Korea Spat. Inf. Soc. 2014, 22, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Mitas, L.; Mitasova, H. Spatial Interpolation, In Geographical Information Systems: Principles, Techniques, Management and Applications; Longley, P., Goodchild, M.F., Maguire, D., Rhind, D., Eds.; Wiley: Hoboken, NJ, USA, 1999; pp. 481–492. [Google Scholar]
- Tobler, W.R.; Kennedy, S. Smooth multidimensional interpolation. Geogr. Anal. 1985, 17, 251–257. [Google Scholar] [CrossRef]
- Franke, R.; Nielson, G. Scattered Data Interpolation and Applications: A Tutorial and Survey. In Geometric Modelling: Methods and Applications; Hagen, H., Roller, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 131–160. [Google Scholar]
- Watson, D.F. Contouring: A Guide to the Analysis and Display of Spatial Data; Pergamon: New York, NY, USA, 1992; pp. 101–162. [Google Scholar]
- Myers, D.E. Co-Kriging—New Developments. In Geostatistics for Natural Resources Characterization; Verly, G., David, M., Journel, A.G., Marechal, A., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 295–305. [Google Scholar]
- Pilz, J.; Spöck, G. Why do we need and how should we implement Bayesian kriging methods. Stoch. Environ. Res. Risk Assess. 2008, 22, 621–632. [Google Scholar] [CrossRef]
- Krivoruchko, K. Empirical Bayesian kriging. Esri Press ArcUser 2012, 6–10. [Google Scholar]
- Chiles, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Esri Homepage. Empirical Bayesian Kriging 3d. Available online: https://pro.arcgis.com/en/pro-app/2.8/help/analysis/geostatistical-analyst/what-is-empirical-bayesian-kriging-3d-.htm (accessed on 13 July 2022).
- Yang, L.; Achtziger-Zupančič, P.; Caers, J. 3D modeling of large-scale geological structures by linear combinations of implicit functions: Application to a large banded iron formation. Nat. Resour. Res. 2021, 30, 3139–3163. [Google Scholar] [CrossRef]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and Representation of 3D Objects with Radial Basis Functions. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeless, CA, USA, 12–17 August 2001; pp. 67–76. [Google Scholar]
- Liu, Z.; Zhang, Z.; Zhou, C.; Ming, W.; Du, Z. An adaptive inverse-distance weighting interpolation method considering spatial differentiation in 3D geological modeling. Geosciences 2021, 11, 51. [Google Scholar] [CrossRef]
- Ji, Y.S.; Kim, H.S.; Lee, M.G.; Cho, H.I.; Sun, C.G. MLP-based 3D geotechnical layer mapping using borehole database in Seoul, South Korea. J. Korean Geotechn. Soc. 2021, 37, 47–63. [Google Scholar] [CrossRef]
- Korea Geotechnical Society. Explanation of Design Standard of Structure Foundation; CIR: Seoul, Korea, 2018. [Google Scholar]
- Ellul, C.; Haklay, M. Requirements for topology in 3D GIS. Trans. GIS 2006, 1, 157–175. [Google Scholar] [CrossRef]
- Egenhofer, M.; Herring, J. A Mathematical Framework for the Definition of Topological Relationships. In Proceedings of the 4th International Symposium on Spatial Data Handling, Zurich, Switzerland, 23–27 July 1990; pp. 803–813. [Google Scholar]
- Kim, S.H.; Kang, G.; Ryu, G.H. Design of three dimensional spatial topological relational operators. KIPS Trans. Part D 2003, 10D, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Strobl, C. Dimensionally extended nine-intersection model (DE-9IM). In Encyclopedia of GIS; Shekahar, S., Xiong, H., Eds.; Springer: Berlin, Germany, 2008; pp. 240–245. [Google Scholar]
- Zhou, M.; Guan, Q. A 25-intersection model for representing topological relations between simple spatial objects in 3-D space. ISPRS Int. J. Geo-Inf. 2019, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- OGC Homepage. City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard. Available online: http://www.opengis.net/doc/IS/CityGML-1/3.0 (accessed on 20 August 2022).
- OGC Homepage. IndoorGML 1.1. Available online: http://www.opengis.net/doc/IS/indoorgml/1.1 (accessed on 20 August 2022).
- Boguslawski, P.; Gold, C.M.; Ledoux, H. Modelling and analysing 3D buildings with a primal/dual data structure. ISPRS J. Photogramm. Remote Sens. 2007, 66, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Ellul, C.; Haklay, M. Using a B-Rep Structure to Query 9-Intersection Topological Relationships in 3d Gis–Reviewing the Approach and Improving Performance. In 3D Geo-Information Sciences; Lee, J., Zlatanova, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 127–151. [Google Scholar]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly Spaced Data. In Proceedings of the 1968 23rd ACM national conference, New York, USA, 27–29 August 1968; pp. 517–524. [Google Scholar]
- OGC Homepage. Indexed 3D Scene Layer (I3S) and Scene Layer Package (*.slpk) Format Community Standard Version 1.2. Available online: http://docs.opengeospatial.org/cs/17-014r8/17-014r8.html (accessed on 20 August 2022).
- Esri Homepage. 3D Search Neighborhoods. Available online: https://pro.arcgis.com/en/pro-app/2.8/help/analysis/geostatistical-analyst/3d-search-neighborhoods.htm (accessed on 30 August 2022).
- Li, Q.; Jia, H.; Qiu, Q.; Lu, Y.; Zhang, J.; Mao, J.; Fan, W.; Huang, M. Typhoon-Induced Fragility Analysis of Transmission Tower in Ningbo Area Considering the Effect of Long-Term Corrosion. Appl. Sci. 2022, 12, 4774. [Google Scholar] [CrossRef]
Method | Parameter | Vulnerability | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
H-Dist | V-Dist | EXZ | Nbrs | Low | Moderate | High | NoData | Total | ||
NP | Ⅰ | 500 | 2 | 100 | 12 | 6589 (53.40%) | 3094 (25.07%) | 93 (0.75%) | 2564 (20.78%) | 12,340 (100%) |
Ⅱ | 1000 | 2 | 100 | 12 | 8053 (65.26%) | 4045 (32.78%) | 105 (0.85%) | 137 (1.11%) | 12,340 (100%) | |
Ⅲ | - | - | 100 | 12 | 8232 (66.71%) | 4008 (32.48%) | 100 (0.81%) | - | 12,340 (100%) | |
FD | Ⅰ | 500 | 2 | 100 | - | 5466 (44.29%) | 3397 (27.53%) | 54 (0.44%) | 3423 (27.74%) | 12,340 (100%) |
Ⅱ | 1000 | 2 | 100 | - | 5690 (46.11%) | 6258 (50.71%) | 7 (0.06%) | 385 (3.12%) | 12,340 (100%) |
Method | Parameter | Vulnerability | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H-Dist | V-Dist | EXZ | Nbrs | Repeat | Low | Moderate | High | NoData | Total | ||
NP | I | 500 | 2 | 100 | 12 | 5 | 8476 (68.69%) | 3759 (30.46%) | 105 (0.85%) | - | 12,340 (100%) |
II | 1000 | 2 | 100 | 12 | 2 | 8190 (66.37%) | 4045 (32.78%) | 105 (0.85%) | - | 12,340 (100%) | |
III | - | - | 100 | 12 | - | 8232 (66.71%) | 4008 (32.48%) | 100 (0.81%) | - | 12,340 (100%) | |
FD | I | 500 | 2 | 100 | - | 5 | 7986 (64.72%) | 4285 (34.72%) | 69 (0.56%) | - | 12,340 (100%) |
II | 1000 | 2 | 100 | - | 2 | 6043 (48.97%) | 6290 (50.97%) | 7 (0.06%) | - | 12,340 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Han, J.; Park, K.; Seok, S. Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping. Appl. Sci. 2022, 12, 11652. https://doi.org/10.3390/app122211652
Kim J, Han J, Park K, Seok S. Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping. Applied Sciences. 2022; 12(22):11652. https://doi.org/10.3390/app122211652
Chicago/Turabian StyleKim, Jongkwan, Jintae Han, Kahyun Park, and Sangmuk Seok. 2022. "Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping" Applied Sciences 12, no. 22: 11652. https://doi.org/10.3390/app122211652
APA StyleKim, J., Han, J., Park, K., & Seok, S. (2022). Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping. Applied Sciences, 12(22), 11652. https://doi.org/10.3390/app122211652