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Abstract: Recent advances in convolutional neural networks (CNNs) for image feature extraction
have achieved extraordinary performance, but back-propagation algorithms tend to fall into lo-
cal minima. To alleviate this problem, this paper proposes a coordinate attention-support vector
machine-convolutional neural network (CASVM). This proposed to enhance the model’s ability by
introducing coordinate attention while obtaining enhanced image features. Training is carried out by
back-propagating the loss function of support vector machines (SVMs) to improve the generalization
capability, which can effectively avoid falling into local optima. The image datasets used in this study
for benchmark experiments are Fashion-MNIST, Cifar10, Cifar100, and Animal10. Experimental re-
sults show that compared with softmax, CASVM can improve the image classification accuracy of the
original model under different image resolution datasets. Under the same structure, CASVM shows
better performance and robustness and has higher accuracy. Under the same network parameters, the
loss function of CASVM enables the model to realize a lower loss value. Among the standard CNN
models, the highest accuracy rate can reach 99%, and the optimal number of accuracy indicators is
5.5 times that of softmax, whose accuracy rate can be improved by up to 56%.

Keywords: CASVM models; coordinate attention; feature learning method

1. Introduction

Image classification is a crucial task of computer vision, whose goal is to divide an
image into feature categories according to its feature information. Based on statistical
learning theory, support vector machine (SVM) [1] is a kernel-based machine learning
model that has shown promising classification results in fields such as pattern recognition,
pattern classification, and computer vision [2]. However, traditional SVM has difficulty
processing large amounts of image data and meeting the requirements of classification
accuracy, and is therefore unsuitable for large and complex image classification. Deep
learning (DL) learns features autonomously from images through neural networks, extracts
abstract, high-dimensional features, and can tightly connect features to classifiers [3–5].

The convolutional neural network (CNN) is a widely used structure in DL models [6],
with good results in image classification and recognition, such as of handwritten dig-
its, where it has reached the accuracy of human vision, which was recognized in 2012
for the best image classification effect in the ImageNet Large-scale Visual Recognition
Challenge [7].

With increasing advantages of neural networks in processing image features, tradi-
tional classification methods are combined with DL. SVM and softmax are two standard
classifiers in computer vision, and with the improvement of CNN algorithms, the use of
the two classifiers is increasing. Classification of extracted data is an essential aspect of DL.
SVM can classify pre-extracted data and take the scores of data as a basis for evaluation [8,9].
A linear SVM has replaced the softmax classifier in most DL models, and SVM has been
used as the final classification unit of a CNN from feature extraction to classification, achiev-
ing better classification discrimination of L2-SVM over softmax on a DL image classification
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dataset [3]. Baldomero-Naranjo et al. [10], Thillaikkarasi [11], and Nguyen et al. [12] used a
CNN to extract data features. They used SVM for feature extraction and classification, to
somewhat better effect than a CNN. Nanglia et al. [13] and Sun et al. [14] combined deep
neural networks with SVM in a hybrid algorithm to my in-depth features, which improved
the classification or recognition accuracy of data. Khairandish et al. [15] and Gong et al. [16]
fused an SVM classifier in a neural network with robust classification accuracy. SVMs and
neural networks are used in the fields of image classification and recognition, such as hu-
man biology [17–19], medical imaging [11,20–23], and remote sensing [24,25], performing
better at complex tasks than original neural network models.

The attention mechanism [26] is gaining importance in DL in image classification.
Mnih et al. [27] integrated a recursive neural network into an attention mechanism to
adaptively extract features in images, promoting large-scale image classification and recog-
nition. Attention mechanisms have been widely used in computer vision and in areas
such as finance, materials, meteorology, industry, and emotion detection [28]. In computer
vision, these include the squeeze-and-excitation network (SENet) [29] and convolutional
block attention module (CBAM) [30], but these cannot establish long-term dependencies on
image classification or recognition tasks when capturing features. Although mechanisms
such as GSoPNet [31], SCNet [32], and A2Net [33] use non-local mechanisms to overcome
the defects of SENet and CBAM, they have significant computational overhead. Coordinate
attention (CA) [34] aggregates features in two spatial directions to capture position infor-
mation and channel relations with low computational overhead, and achieves the feature
representation of an enhanced network.

SVM is an alternative to softmax classification, and fusing it with CNNs usually
improves image classification accuracy, but features of lower levels do not adjust to the
objectives of SVM. Inspired by hinge loss in SVM, this paper enables the backpropagation of
the gradient in a CNN by the hinge loss, thus learning lower-level features. Inspired by CA,
features can be enhanced by embedding location information in channel attention, without
a large overhead, providing a method for efficient image classification. The method fuses a
CNN embedded in a CA mechanism with an SVM for image classification, which we call
CA-support vector machine-CNN (CASVM). A CNN based on an attention mechanism is
used to extract features classified by linear SVM. An empirical analysis of commonly used
image datasets verifies the accuracy of the model for image classification.

This study makes the following contributions:

1. An SVM classifier replaces the softmax classifier commonly used in CNNs to improve
the robustness of image classification; the hinge loss function of SVM is used to
backpropagate the CNN to improve the generalization performance of the classifier
on images, which reduces overfitting and improves classification results.

2. The CA mechanism used by CASVM has two components, coordinate information
embedding (CIE) and CA generation (CAG), to enable the network to acquire informa-
tion over a larger area without significant overhead. CIE captures location information
and establishes long-range dependencies in the spatial direction by decomposing
channel attention. CAG transforms the generated features to locate the position of the
object of interest.

3. CASVM combines a CNN with an SVM that introduces a CA mechanism to improve
classification accuracy. CASVM can improve feature representation performance in
different network models, which improves image classification accuracy in different
device environments.

2. Related Work

A CNN is a feedforward neural network with convolutional computation that has
excelled in image algorithms due to its exceptional learning power. From the traditional
LeNet [35] and AlexNet [7] to the more modern MobileNet [36], ResNet [37], Nasnet [38],
Efficient [39], Polynet [40], etc, they have all demonstrated excellent performance. Even so,
the network model’s classification layer in image classification tasks continues to use the
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softmax function and cross-entropy loss for back-propagation, which can cause the model
to become over-fitted and degrade the model’s performance. In contrast, when SVM is
used as the classifier, it learns the lower-level parameters by back-propagating the gradient
of the last layer, which improves the model’s generalization ability [3,16,22,41].

In recent years, several excellent works combining SVM and CNN have been proposed.
These techniques typically fall into two broad categories: image data is fed directly into a
CNN-Softmax [16,42] model to complete CNN model training, and then the CNN is used as
a feature extractor to extract feature vectors to feed into the SVM to achieve image classifi-
cation. The other option is to replace the Softmax function with SVM to achieve end-to-end
CNN-SVM training with improved operability and generality [3,4,22,43]. Furthermore, the
method does not require any manual feature extraction or raw data processing, and it does
not rely on expert experience or prior knowledge. Both of these approaches are intended
to enhance the algorithm’s generalizability and avoid over-fitting the model. However,
using such techniques can result in drawbacks like the inability to do multi-classification
or issues like low multi-classification accuracy [4]. Researchers have discovered one-to-all
or one-to-one [44–47] SVM classification approaches to address the issue of limiting multi-
classification and have concentrated their research on feature extraction models paired
with SVM to increase multi-classification accuracy [48].

As the Vision Transformer (VIT) [49] model has achieved excellent performance in
downstream tasks such as image classification and target detection [50–52], it has attracted
the attention of many researchers. The key reason for the success of VIT is the adaptive,
remote dependence through self-attentive operations to extract a global understanding
of the visual scene. VIT expands the perceptual field of an image by building a global
relational model, which in turn obtains more information about image features. However,
VIT has a complex computational structure and large data requirements, and even the
lightweight VIT still has a huge computational cost and is not applicable to edge devices [53].
In contrast, CNN with attention mechanism has received more and more attention due to
its efficiency and effectiveness. Attention mechanisms widely used in image classification
tasks are channel attention and spatial attention. In channel attention, different channels
in different feature maps usually represent different objects [54]. The channel attention
mechanism can adaptively recalibrate the weights of each channel, viewing this process
as a focused object selection process, thus eliminating the need for larger computations
to determine what image features to pay attention to [29,31,55–57]. Spatial attention,
on the other hand, can be seen as where to pay attention [27,58–60]. Channel attention
combined with spatial attention enables the adaptive selection of objects and regions worthy
of attention [30,54,61]. However, such an attention mechanism, while emphasizing the
importance of space and channels, also brings a higher computational cost and limited
perceptual field. In contrast, the coordinate attention mechanism combines the advantages
of SENet [29], and CBAM [30] to capture location information and channel relationships
with very low computational overhead.

3. Methods
3.1. Overview

Figure 1 shows the model architecture of this paper, in which we combine a CNN
with an embedded CA mechanism and SVM for feature learning. The network embedded
with an attention mechanism can extract highly representative image features and learn
the essential laws of data. The last layer of the CNN outputs the boundary probability
of the classification calculated by the linear combination of the output weights and bias
terms of the previous hidden layer, for which the CNN hidden layer output has no special
significance. Therefore, after learning the features, the output values must be input to a
classifier effective in image classification, and SVMs are among the best. Therefore, we
combine these methods in CASVM, which outperforms softmax at image classification.
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Figure 1. CASVM using ResNet18. Image goes through five residual blocks, with convolutional
layer, attention block, and ReLU activation function. Attention block averages pooled data along
two directions, reduces number of channels by a factor of r, and uses operations such as 1 × 1
convolution to obtain a number of channels equal to the input. Data go into SVM after final residuals
for classification.

CASVM is a combination of CNN embedded with CA and SVM; Figure 1 shows
the CNN using ResNet18 as an example. We enter an image of size C × H ×W, where
C is the number of channels on the feature graph, H is the height, and W is the width.
Before the image is sent to the residual (blue) block, convolution is carried out to preserve
the feature information as much as possible. The last data normalization in the residual
block is entered in the attention block (green box). The feature maps are average pooled
along the horizontal and vertical directions, and a factor of r reduces the number of
channels of the feature maps. The channels are compressed by concatenation of spatial
dimensions and 1 × 1 convolution, spatial information in both directions is segmented into
feature maps by batch normalization and nonlinear encoding, and the same number of
channels as the input is obtained using 1 × 1 convolution. A sigmoid function normalizes
weight. Subsequent residual blocks are designed to nest the attention block between data
normalization and activation, as shown in the first residual block, effectively amplifying
the differences between image features to differentiate image classes better. The weight is
normalized by a sigmoid function. Subsequent residual blocks embed the attention block
between data normalization and activation, effectively magnifying the differences between
image features to distinguish image categories better. After residual computation, two fully
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connected layers represent classes that divide the images, and a multiclassification SVM
loss function learns the network parameters.

The CASVM model combines the advantages of CNN and SVM with embedded atten-
tion mechanisms to outperform a single classifier for image classification. The CNN is an
empirical risk minimization model, which can fall into local minima when backpropagation
finds the classification hyperplane. SVM is a structural risk minimization model, which can
avoid local optima by solving a quadratic programming problem. Hence, its generalization
ability is better than that of CNN, and replacing the output layer of CNN with SVM can
further improve image classification accuracy.

A CNN can perform downsampling and convolution on images to extract repre-
sentative image features, with an attention mechanism to enhance effective information.
Attention is focused on the image region with a more significant impact on classification
extract more robust image features. Manually designed feature extraction methods may be
complex and require more skill, and the extracted features may not be universally valid.
DL methods can avoid much manual involvement and extract more significant features
than traditional methods, which is the unique advantage of combining DL with SVMs.

3.2. SVM Loss Function

Hinge loss is often used as the objective function of SVM. Standard hinge losses
are focused on dichotomous problems. For example, given a training dataset xi ∈ RD,
i ∈ {1, 2, · · · , N}, yi ∈ {−1 , +1}, suppose there are N samples, each with dimension D,
and xw is the predicted value of a linearly separable SVM, Y is the category of correct
classification, and w is a parameter that a classifier can learn from the samples. Then its
hinge loss can be expressed as

Li = max(0, 1− xiwTyi) (1)

for the objective function of a binary classification problem, the loss value is 0 when xiwTyi
is greater than 1, i.e., the loss function prediction is accurate.

Since SVM can filter samples at long distances from the hyperplane by choosing a
threshold for the distance from the sample to the hyperplane, these samples are often
the ones that can be easily and correctly classified, thus extending the loss function to
a multi-classification SVM. Given yi ∈ {1 · · ·K}, the multi-classification hinge loss for a
single sample can be expressed as

Li = ∑
j 6=yi

max(0, 1 + wT
j xi − wT

yi
xi) (2)

where wj is the j-th component in parameter vector w. The multi-classification SVM is
to set the correctly classified prediction score at least one threshold higher than the other
incorrectly classified prediction scores. If the other classification prediction scores are below
the threshold, the loss value is calculated. Due to the uniqueness of w, a regularization
penalty is introduced to remove ambiguity. Most commonly used is the L2 paradigm.
Hence, the multi-classification SVM loss function contains the regularization penalty, and
the loss function of k-classification linear SVM can be expressed as

min
w

N

∑
i=1

∑
j 6=yi

max(0, 1 + wT
j xi − wT

yi
xi) + λ ∑

k
∑
n

w2
k,n (3)

Equation (3) can be regarded as the loss function of multi-classification SVM by
data loss plus regularization loss, where hinge loss is data loss, and the L2 normal form is
regularization loss. Since the penalty in L2 regularization is biased toward smaller, relatively
dispersed weight vectors, the L2 paradigm can improve the generalization performance of
the classifier and reduce overfitting.
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3.3. Attention Mechanism

The channel attention mechanism represented by SENet, as shown in Figure 2a, estab-
lishes the interrelationship between channels by simply compressing the 2D feature map,
which significant affects on model performance, However, SENet is weak at processing
location information. CA retains location information by embedding it in channel attention
based on SENet, which establishes long-distance dependencies. Channel attention converts
the input to a single feature vector by 2D global pooling, as shown in Figure 2b. CA splits
channel attention into two one-dimensional feature encodings in different directions, and
encodes these to produce two feature maps with enhanced position sensitivity and orienta-
tion perception, to enhance the target of interest. The attention block includes compression
and excitation to, respectively, collect global information and capture the importance of
each channel. The compression operation can be expressed as

zc =
1

H ×W
=

H

∑
i=1

W

∑
j=1

xc(i, j) (4)

The excitation operation of the capture channel can be expressed as

X̂ = X · Sigmoid(T2(Relu(T1(z)))) (5)

where T1 and T2 denote the learnable linear transforms used to capture the importance of
each channel.
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Figure 2. Structure of attention mechanism: (a) SENet; (b) CA.

Similar to SENet, the CA attention block can be considered a computational with two
steps: CIE and CAG. CIE is the critical operation in the attention module to capture precise
location information and establish long-term dependencies on spatial orientation. A given
X is encoded for each channel along horizontal and vertical coordinates using pooling
kernels of dimensions (H, 1) and (1, W), respectively, i.e., the global pooling is transformed
to a pair of one-dimensional feature encoding operations. The output of the C-th channel
at the height and width of H and W, respectively, must satisfy the following equation:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i)

zw
c (w) = 1

H ∑
0≤j<H

xc(j, w)
(6)
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Equation (6) aggregates feature along two spatial directions through two transforma-
tions to generate a pair of directional perception attentional diagrams, which is entirely
different from the compression operation in the SE module. One captures long-term de-
pendencies along the spatial direction, and the other direction retains precise positional
information, which helps to de-localize objects of interest. CAG uses the location informa-
tion of the global receptive field generated by CIE to generate an attentional map. CAG
must comply with the following requirements:

1. The conversion should be as simple and efficient as possible.
2. The captured position information can be used to precisely locate the region of interest.
3. Relationships between channels can be efficiently captured.

To this end, the first operation of CAG is to cascade the two feature maps generated
by the CIE module and transform them using 1 × 1 shared convolution, i.e., F1 generating
f ∈ RC/r×(H+W) as an intermediate feature map of spatial information in the horizontal
and vertical directions, where r is the downsampling ratio,

f = δ(F1([zh, zw])) (7)

where δ is the nonlinear activation function. The second step of CAG divides f into tensors
f h ∈ RC/r×H and f W ∈ RC/r×W , which are transformed by 1 × 1 convolutions Fh and Fw,
respectively, into the same number of channels as the input X, to obtain{

gh(h) = Sigmoid(Fh( f h))

gw(w) = Sigmoid(Fw( f w))
(8)

The final CA output is expressed as

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (9)

4. Experimental Results and Analysis

The effectiveness of image classification is affected by the learning ability of the
network and the different regularized loss functions. The learning ability of the network is
affected by the complexity of the training dataset, the learning rate, the optimizer, and the
activation function, and the loss function of SVM has some impact on image classification.

4.1. Parameter Impact and Selection
4.1.1. Impact and Selection of Datasets and Models

We used the Fashion-MNIST, Cifar10, Cifar100, and Animal10 datasets as benchmarks
for the model, and Animal10 and Fish9 [38] as performance tests. Fashion-MNIST is an
alternative to MNIST, with 60,000 grayscale images of 28 × 28 resolution, and is widely
used to benchmark DL models; Cifar10 is a pervasive object recognition dataset with the
same number of 32 × 32 RGB color images. Cifar100 is a 100-class dataset for pervasive
object recognition. Animal10 has 26,000 images of 10 species of animals, with a size of
approximately 300 × 200; its labels are reviewed manually, and some wrong labels are
included to simulate real situations. Fish9 has 9000 images of nine fish species, of size
2832 × 2128. Animal10 and Fish9 images both have size 224 × 224 in this work, to facilitate
model training and testing. Table 1 displays information on the processed image dataset.

Table 1. Image dataset parameters.

Dataset Image Size (Input) Number

Fashion-MNIST 28 × 28 60,000
Cifar10 32 × 32 60,000
Cifar100 32 × 32 60,000

Animal10 224 × 224 26,000
Fish9 224 × 224 9000
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We conducted classification comparison experiments on image datasets using four
models: CNN + SVM, CASVM, CNN + softmax, and CNN + CA + softmax. All models
were trained 100 times, and the training sample size was N/128.

Since there are two sizes of the dataset used in this paper, 32 × 32 and 224 × 224, two
CNN structures were improved for the small-size dataset. In the improved LeNet-based
model CNN1, the number of convolutional kernels is increased, the original 5 × 5 kernels
are changed to 3 × 3, dropout is added, and CA is embedded in the final convolutional
layer. Based on AlexNet, the improved model CNN2 reduces the number of convolutional
kernels, embeds CA in the last convolutional layer, and reduces the parameters of the fully
connected layer. CNN structures used for our experiments include AlexNet, ResNet18,
ResNet152, and VGG19. Table 2 shows the number of parameters (millions float), amount
of computation (billions float), and model size (MB) of each CNN model.

Table 2. Number of model parameters and calculation volume.

Model Params (M) Flops (G) Model Size (MB)

CASVM (CNN1) 4.23 0.01 16.12
CNN1 4.23 0.01 16.12
CASVM (CNN2) 7.54 0.21 28.77
CNN2 7.54 0.21 28.75
CASVM (AlexNet) 38.38 0.32 146.41
AlexNet 38.37 0.31 146.38
CASVM (ResNet18) 11.19 54.60 42.70
ResNet18 11.18 54.50 42.66
CASVM (ResNet152) 57.99 365.61 221.23
ResNet152 57.93 365.45 220.99
CASVM (VGG19) 139.67 39.30 532.81
VGG19 139.67 39.30 532.78

4.1.2. Impact and Selection of Loss Function

The loss function affects the learning ability of a network. In this study, four loss
functions are used by CNNs for softmax classifiers, of which three are SVM loss, and the
other is categorical cross-entropy loss. Among the data loss functions of SVM are hinge
loss, squared hinge loss, and categorical hinge loss. Multiple SVM models are formed using
one-versus-rest to solve multiple classification problems using hinge loss and squared
hinge loss by CNNs. Figure 3 shows the impact of the four loss functions on network
training and the results of AlexNet trained on Cifar10.

The experiment shows that SVM is unsuitable for cross-entropy loss, so the accuracy
of training results is low, and the loss is high. However, the accuracy of classification
using SVM or CASVM is greater than that of softmax, regardless of whether the attention
mechanism is embedded, and whether softmax uses cross-entropy loss or hinge loss.
Figure 3, shows that the hinge loss has a lower error than cross-entropy loss, and there is
some difference in performance between SVM and softmax.

The shallow network CNN1 and the deep network ResNet18 are chosen to compare
the performance of the two classifiers without using the embedded attention mechanism.
Figure 4 shows the accuracy and loss values obtained by the CNN1 and ResNet18network
models, using Animal10, Cifar100, Cifar10, and Fashion-MNIST.

The images of all datasets were compressed to 32 × 32 when training CNN1, and
the network model using softmax used cross-entropy loss. From Figure 4a, it is clear that
the network model combining CNN1 with SVM had less accuracy improvement on small
datasets. Figure 4b, shows that ResNet18 combined with SVM showed some improvement
on each dataset, with more obvious improvement on image datasets with 100 classifications
like Cifar100 and on the Animal10 large dataset. It can be concluded that the loss function
of the SVM classifier shows some improvement in network classification performance.
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4.1.3. Impact of Learning Rate and Selection

The learning rate significantly impacts the speed and stability of network training. A
low learning rate may cause slow convergence, while too high a rate may fail to converge.A
higher learning rate may improve the network training speed, but a low learning rate may
alleviate training difficulty. We used learning rates of 0.01, 0.001, 0.0001, 0.0001, and 0.00001
in comparison experiments, as shown in Figure 5.

The network model in Figure 5 is based on the CNN1 structure under the CASVM
(squared hinge) framework, using Fashion-MNIST for training and testing, to derive the
impact on network training at learning rates of 0.01, 0.001, and 0.0001. It is known through
the experiment that the test set accuracy is unstable when the learning rate is 0.01, which
eventually leads to a significant error. Therefore, we used learning rates of 0.001, 0.0001,
and 0.00001 as model comparison parameters.
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4.1.4. Optimizer Impact and Selection

The optimizer updates and computes network parameters for model training and
output. Commonly used optimizers are Adam, SGD, and RMSProp. Adam combines the
advantages of Momentum and RMSProp by dynamically adjusting the learning rate of each
parameter using first- and second-order moment estimation of the gradient. Compared to
SGD and RMSProp, Adam can better constrain each learning rate to a definite range, which
makes the parameters smoother.

The impact of different optimizers on training is shown in Table 3, using Animal10 for
training, and applying Adam, SGD, and RMSProp optimizers to compare the accuracy and
loss values in the CASVM (squared hinge)-based framework. Optimizers were compared
using CNN1, AlexNet, CNN2, and ResNet18. Adam outperformed the others in terms of
both accuracy and loss, and was chosen as the leading optimizer for CASVM.

Table 3. Effect of different optimizers on training.

Optimizer Model
Learning Rate (Accuracy) Learning Rate (Loss)

0.001 0.0001 0.00001 0.001 0.0001 0.00001

SGDOptimize

CNN1 0.26 0.30 0.32 0.35 0.34 0.33
AlexNet 0.38 0.42 0.43 0.32 0.30 0.29
CNN2 0.51 0.54 0.55 0.27 0.25 0.25

ResNet18 (32 × 32) 0.34 0.46 0.50 0.32 0.28 0.28
ResNet18 (224 × 224) 0.36 0.39 0.41 0.32 0.31 0.30

RMSPropOptimize

CNN1 0.68 0.74 0.76 0.20 0.17 0.17
AlexNet 0.50 0.60 0.59 0.26 0.22 0.24
CNN2 0.63 0.70 0.76 0.22 0.18 0.21

ResNet18 (32 × 32) 0.72 0.78 0.81 0.17 0.18 0.20
ResNet18 (224 × 224) 0.61 0.81 0.81 0.22 0.13 0.14

AdamOptimizer

CNN1 0.74 0.77 0.80 0.17 0.15 0.15
AlexNet 0.66 0.69 0.73 0.19 0.18 0.16
CNN2 0.64 0.73 0.77 0.20 0.17 0.15

ResNet18 (32 × 32) 0.80 0.86 0.86 0.15 0.13 0.15
ResNet18 (224 × 224) 0.62 0.83 0.89 0.21 0.12 0.09

4.1.5. Impact and Selection of Attentional Mechanisms

The attention mechanism functions to improve image feature extraction. Under the
same structure conditions, a network with an attention mechanism can better extract image
features. Figure 6 shows the effect of the attention mechanism on training in a network
model with different loss functions and two classifiers.
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In Figure 6, Animal10 is the dataset for training and testing, and AlexNet is the
network model. The network uses hinge and cross-entropy loss functions. As can be seen
from the figure, the accuracy of the model improves with the addition of CA, which is
denoted by the green line; the reverse is denoted by the red line. With consistent loss
functions and CA added, CASVM has higher classification accuracy than softmax. Whether
using SVM or softmax classification, accuracy improves with the addition of CA. Hence,
attention usually greatly improves the accuracy of image classification.

4.1.6. Impact and Selection of Activation Functions

The activation function affects the learning ability and training speed of a network.
Standard activation functions are sigmoid, Tanh, and ReLU. The sigmoid activation func-
tion is used in the CA module to compress the values propagated from the upper layers
to between [0, 1], which makes the CA module optimally stable and helps in the repre-
sentation of attentional features. Compared with sigmoid and Tanh, the popular ReLU
activation function can alleviate gradient disappearance and accelerate network conver-
gence. Therefore, ReLU is chosen as the primary activation function in the network model
in this paper.

4.1.7. Impact and Selection of Other Parameters

The other parameters contain the regularization penalty parameters in the regularized
loss in the SVM multiclassification loss function, as shown in Equation (3). The regulariza-
tion parameter has an important impact on the similar weighting of the data, which can
eliminate the ambiguity of the weights and smooth the weight curves. Generally, a smooth
weight curve reflects the actual situation; hence, setting the appropriate regularization
parameter helps with model training. When the penalty parameter is set low, it will lead
to underfitting of the network training, and conversely, it is easy to overfit. Based on
comparison experiments, we set the penalty parameter to 0.0001.
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4.2. Analysis of Experimental Results

In Section 4.1, the results of the four datasets Anima10, Cifar10, Cifar100, and Fashion-
MNIST are compared with the four network models CNN1, AlexNet, CNN2, and ResNet18
combined crosswise between different parameters. The final classification accuracies of the
SVM and softmax classifiers are used as benchmarks to compare their effects on the four
datasets with different parameter choices. From the results, it is seen that the loss function
of the SVM classifier shows some improvement in network classification performance;
a lower learning rate of 0.00001 can make the model accuracy smoother; and the Adam
optimizer can further improve model accuracy. Therefore, we used the Adam optimizer
and a learning rate of 0.00001 as the main parameters of CASVM. Figure 7 compares the
image features in CA layers at different locations.

Figure 7 shows the feature output plots of CASVM combined with CNN1. Figure 7a–d
show the feature plots obtained from one image randomly selected from Animal10, Fashion-
MNIST, Cifar10, and Cifar100, respectively, after training. Both the convolutional and CA
layers of the model contain 64 channels, and the figure shows the first convolutional layer.
By comparing the output image features of the CA layer at different positions, it is found
that the characteristics of channels differ. There are great differences in the roles of different
convolution kernels in CNN structures.

Figure 7a shows that the CA layer is located after the first convolutional layer of the
network, and it can be observed that the feature difference is not obvious. From this, it
can be concluded that when the CA layer is located after the first convolutional layer in a
shallow network like CNN1, the output features are still more detailed, and they contain
detailed information about the underlying visual features. The third and fourth rows of
the feature map in Figure 7a contain some uncorrelated features, which are not critical to
image classification, so the CA layer should not be located after the first convolutional layer.
As shown in Figure 7b,c, locating the CA layer in the middle of the network enhances the
representation of edge contour, global, and texture information. As shown in Figure 7d,
a CA layer close to the top layer can weaken invalid features and strengthen effective
features, which can improve classification accuracy.

Based on the CNN1 model, CA was introduced to three positions (bottom, middle,
and top), and the Animal10 dataset obtained classification accuracies of 67%, 78%, and
80%, respectively. Also, ResNet18 was used to validate it, and the best result of 92% was
obtained by embedding CA in the top layer of the residual block. For this purpose, the
CA introduction position is set close to the top layer of the network model, except for the
network model, which is very shallow.

The most intuitive measure of a model’s image classification accuracy is its classifi-
cation accuracy versus loss value. We performed eight sets of comparison experiments
to verify the advantages of CASVM in image classification, with results as shown in
Tables 4 and 5, with four basic frameworks: model structure not embedded in CA and
based on SVM classification, model structure not embedded in CA and based on softmax
classification, model structure embedded in CA and based on SVM classification (CASVM),
and model structure embedded in CA and based on softmax classification. The above four
frameworks are compared to verify the classification accuracy of CASVM in four different
CNN models based on CNN1, AlexNet, CNN2, and ResNet18. To verify the generalization
ability of CASVM, the Fashion-MNIST, Cifar10, Anima10, and Cifar100 datasets were
selected for training and testing, and images of the Animal10 dataset were preprocessed.
Tables 4 and 5 show the results. Softmax is the network model for classification, with
cross-entropy loss functions.
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As can be seen in Tables 4 and 5, CNN + SVM without CA embedding has five items
with the best classification accuracy among the eight sets of image classification metrics.
One was obtained when the Cifar10 dataset was selected, i.e., the network model based on
ResNet18, with an accuracy of 0.77 when the learning rate was 0.0001. Two were obtained
when the Cifar100 dataset was selected, i.e., the network model based on ResNet18, with
learning rates of 0.0001 and 0.00001, both with 0.58 accuracy. Two were obtained when the
Animal10 dataset was selected, i.e., the network model based on CNN2 with learning rates
of 0.0001 and 0.00001 and accuracies of 0.74 and 0.79. The CNN + SVM structure without
embedded CA had 12 items with the same accuracy as other structures in the experiment.
Among them, four were obtained with the Fashion-MNIST dataset. Values of 0.93 and
0.94 were obtained with learning rates of 0.001 and 0.00001, respectively, with the Resnet18
model; two optimal accuracies, both 0.94, were obtained with a learning rate of 0.0001. Four
optimal identical accuracies were obtained when the Cifar10 dataset was selected. When
the AlexNet-based network model was selected, accuracies of 0.78, 0.83, and 0.83 were
obtained at learning rates of 0.001, 0.0001, and 0.00001, respectively; when the ResNet18-
based network model was selected, an accuracy of 0.74 was obtained at the learning rate of
0.001. When the Cifar100 dataset was selected, two optimal identical accuracies of 0.58 were
obtained with the ResNet18-based network model. When the Animal10 dataset was used,
i.e., the CNN2-based network model, the accuracy was 0.79 at a learning rate of 0.00001.
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Table 4. Image classification accuracy and loss values for small sizes.

Dataset Model Classifier + Loss Function
Learning Rate (Accuracy) Learning Rate (Loss)

0.001 0.0001 0.00001 0.001 0.0001 0.00001

Fashion-
MNIST

ResNet18

CASVM (hinge) 0.93 0.94 0.94 0.04 0.03 0.03
CASVM (squared hinge) 0.93 0.94 0.94 0.05 0.06 0.06
CASVM (categorical hinge) 0.92 0.92 0.93 0.23 0.23 0.24
SVM + hinge 0.92 0.94 0.94 0.04 0.03 0.03
SVM + squared hinge 0.92 0.94 0.93 0.06 0.07 0.07
SVM + categorical hinge 0.93 0.93 0.92 0.18 0.21 0.22
softmax + CA 0.91 0.91 0.90 0.23 0.28 0.29
softmax 0.92 0.90 0.88 0.22 0.35 0.35

Cifar10

AlexNet

CASVM (hinge) 0.75 0.83 0.83 0.11 0.09 0.10
CASVM (squared hinge) 0.75 0.83 0.79 0.15 0.20 0.20
CASVM (categorical hinge) 0.77 0.79 0.80 0.52 0.57 0.57
SVM + hinge 0.76 0.83 0.83 0.10 0.10 0.10
SVM + squared hinge 0.78 0.79 0.75 0.17 0.20 0.21
SVM + categorical hinge 0.74 0.79 0.78 0.59 0.56 0.60
softmax + CA 0.78 0.74 0.74 0.83 0.75 0.80
softmax 0.76 0.75 0.74 0.72 0.76 0.81

ResNet18

CASVM (hinge) 0.72 0.76 0.79 0.11 0.10 0.09
CASVM (squared hinge) 0.74 0.76 0.76 0.16 0.17 0.17
CASVM (categorical hinge) 0.74 0.74 0.74 0.53 0.53 0.54
SVM + hinge 0.70 0.76 0.77 0.11 0.09 0.09
SVM + squared hinge 0.74 0.77 0.77 0.15 0.14 0.15
SVM + categorical hinge 0.71 0.72 0.73 0.52 0.56 0.51
softmax + CA 0.70 0.62 0.59 0.95 1.10 1.17
softmax 0.19 0.62 0.48 0.98 0.67 0.94

Cifar100 ResNet18

CASVM (hinge) 0.06 0.40 0.55 0.02 0.02 0.02
CASVM (squared hinge) 0.52 0.52 0.56 0.03 0.03 0.03
CASVM (categorical hinge) 0.22 0.50 0.50 0.88 1.41 1.45
SVM + hinge 0.03 0.57 0.58 0.02 0.02 0.02
SVM + squared hinge 0.47 0.58 0.57 0.03 0.03 0.03
SVM + categorical hinge 0.49 0.51 0.53 0.85 0.94 1.17
softmax + CA 0.43 0.42 0.41 2.21 2.27 2.32
softmax 0.50 0.35 0.32 1.92 2.59 2.80

The CNN + softmax structure had the best classification accuracy in only one of the
eight sets of image classification metrics. The highest classification accuracy of 0.74 was
obtained with the Animal10 dataset and the CNN2-based network model with a learning
rate of 0.0001. CNN + softmax obtained the same accuracy as other experimental structures
in the two items. Among them, one item was obtained by choosing the Cifar10 dataset, i.e.,
a network model based on AlexNet, with an accuracy of 0.78 at a learning rate of 0.001.
One item was obtained with the Animal10 dataset, using a network model based on CNN2,
with an accuracy of 0.74 at a learning rate of 0.0001.

It can be seen from Tables 4 and 5 that the CASVM structure has 14 items, in order to
obtain the best accuracy in the experiment. With the Cifar10 dataset, an accuracy of 0.79 was
obtained at a learning rate of 0.00001 using the ResNet18-based network model. With the
Cifar100 dataset, the ResNet18-based network model was chosen to obtain an accuracy
of 0.52 at a learning rate of 0.001. The Animal10 dataset was chosen to obtain 12 items.
With the CNN1-based network model, accuracies of 0.74 and 0.8 were obtained at learning
rates of 0.001 and 0.00001, respectively, and both had an accuracy of 0.77 at a learning
rate of 0.0001. With the network model based on AlexNet, accuracies of 0.66 and 0.7 were
obtained at learning rates of 0.001 and 0.0001, respectively, and both had an accuracy of
0.73 at a learning rate of 0.00001. With the network model based on CNN2, an accuracy of
0.65 was obtained at a learning rate of 0.001. With the network model based on ResNet18,
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accuracies of 0.62, 0.84, and 0.92 were obtained at learning rates of 0.001, 0.0001, and 0.00001,
respectively. The CASVM structure obtained the same accuracy as other structures in the
experiment with 10 items, five on the Fashion-MNIST dataset, with an accuracy of 0.93 at
a learning rate of 0.001, and an accuracy of 0.94 was obtained at learning rates of 0.0001
and 0.00001. With the Cifar10 dataset, the network model based on AlexNet was chosen
to obtain an optimal accuracy of 0.83 at learning rates of 0.0001 and 0.00001. The network
model based on Resnet18 was chosen to obtain an optimal accuracy of 0.74 at learning
rates of 0.0001 and 0.001. From the above results, it is clear that CASVM obtained the most
optimal classification accuracy for the entire experiment in the Animal10 dataset.

Table 5. Image classification accuracy and loss values for large sizes.

Dataset Model Classifier + Loss Function
Learning Rate (Accuracy) Learning Rate (Loss)

0.001 0.0001 0.00001 0.001 0.0001 0.00001

Animal10

CNN1

CASVM (hinge) 0.63 0.73 0.79 0.16 0.13 0.11
CASVM (squared hinge) 0.74 0.77 0.80 0.17 0.15 0.15
CASVM (categorical hinge) 0.69 0.77 0.79 0.66 0.52 0.52
SVM + hinge 0.44 0.62 0.67 0.20 0.16 0.14
SVM + squared hinge 0.61 0.65 0.71 0.22 0.20 0.18
SVM + categorical hinge 0.59 0.64 0.73 0.76 0.71 0.56
Softmax + CA 0.18 0.55 0.29 2.25 1.31 1.89
Softmax 0.53 0.41 0.32 1.38 1.70 1.88

AlexNet

CASVM (hinge) 0.34 0.70 0.73 0.19 0.12 0.11
CASVM (squared hinge) 0.66 0.69 0.73 0.19 0.18 0.16
CASVM (categorical hinge) 0.60 0.66 0.65 0.72 0.62 0.67
SVM + hinge 0.28 0.33 0.58 0.19 0.19 0.15
SVM + squared hinge 0.37 0.50 0.57 0.31 0.26 0.23
SVM + categorical hinge 0.19 0.46 0.53 0.97 0.83 0.77
Softmax + CA 0.62 0.65 0.61 1.11 1.03 1.15
Softmax 0.64 0.57 0.51 1.11 1.23 1.45

CNN2

CASVM (hinge) 0.45 0.71 0.77 0.18 0.11 0.10
CASVM (squared hinge) 0.64 0.73 0.77 0.20 0.17 0.15
CASVM (categorical hinge) 0.65 0.70 0.76 0.58 0.53 0.50
SVM + hinge 0.47 0.70 0.75 0.15 0.11 0.10
SVM + squared hinge 0.62 0.72 0.78 0.20 0.17 0.17
SVM + categorical hinge 0.63 0.65 0.79 0.61 0.62 0.41
Softmax + CA 0.62 0.12 0.49 1.10 2.32 1.51
Softmax 0.67 0.74 0.46 0.99 0.81 1.60

ResNet18

CASVM (hinge) 0.33 0.81 0.92 0.21 0.10 0.05
CASVM (squared hinge) 0.62 0.83 0.89 0.21 0.12 0.09
CASVM (categorical hinge) 0.62 0.84 0.87 0.76 0.39 0.33
SVM + hinge 0.21 0.22 0.79 0.20 0.21 0.13
SVM + squared hinge 0.31 0.63 0.85 0.35 0.25 0.11
SVM + categorical hinge 0.12 0.61 0.85 1.00 0.82 0.37
Softmax + CA 0.31 0.63 0.58 2.03 1.11 1.22
Softmax 0.45 0.56 0.66 1.79 1.32 1.03

The lowest loss values of CASVM in Tables 4 and 5 are less than 0.2, and the loss values
are lower than 0.05 in the small Fashion-MNIST dataset. CASVM occupies 7 of the 12 lowest
loss values for large Animal10 datasets. The loss values of CNN + softmax structure in
Animal10 are in the range of 0.99–2.25. Therefore, it can be concluded that CASVM can
reduce the loss and better fit the CNN model based on the CASVM structure. Combining
the accuracy results in Table 4 with the selection of each parameter in Section 4.1, the main
training parameters for the given CASVM are shown in Table 6.
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Table 6. Main training parameters of CASVM.

Model Epoch Bachsize Loss Learning Rate Optimizer Activation Function L2 Penalty Factor

CASVM(CNN) 100 128 Squared Hinge 0.00001 Adam ReLU 0.0001

CNN 100 128 Categorical
Crossentropy 0.00001 Adam ReLU \

As shown in Table 7, three CNN models with deeper layers were selected to verify the
classification advantages of CASVM on large image datasets. It can be seen that CASVM
performed well in terms of accuracy, reaching 99% and 93% on Fish9 and Animal10,
respectively. In particular, CASVM (ResNet18) was 26% more accurate than the Resnet18
model. Combined with Table 2, it can be seen that CASVM outperformed the benchmark
model in terms of accuracy and loss value, its computational and parametric quantities were
close to those of the benchmark model, and the difference in running time was slight, which
demonstrates its better robustness and avoidance of significant computational overhead.
As the average of accuracy and recall coordination, F1-scores of up to 98% demonstrate the
good classification performance of CASVM on large images.

Table 7. Image classification accuracy results.

Dataset Model Accuracy Time Loss F1-Score

Fish9

CASVM
(ResNet152) 0.99 6157.4 0.04 0.98 ± 0.01

ResNet152 0.93 5851.3 0.17 0.91 ± 0.02
CASVM
(ResNet18) 0.96 3167.8 0.05 0.93 ± 0.01

ResNet18 0.91 2697.9 0.16 0.80 ± 0.05
CASVM
(VGG19) 0.96 2789.2 0.14 0.95 ± 0.01

VGG19 0.91 2057.1 0.32 0.87 ± 0.03

Animal10

CASVM
(ResNet152) 0.93 6815.0 0.34 0.90 ± 0.02

ResNet152 0.76 6101.3 1.07 0.71 ± 0.02
CASVM
(ResNet18) 0.91 3277.3 0.30 0.87 ± 0.02

ResNet18 0.65 2865.5 1.41 0.45 ± 0.05
CASVM
(VGG19) 0.65 2017.8 0.34 0.62 ± 0.02

VGG19 0.52 1782.5 1.05 0.49 ± 0.04

To sum up, among the eight groups of image classification indexes, five items of CNN
+ SVM were best, and 12 items had the same accuracy as other indexes. CNN + softmax
had one and two with the same accuracy as other structures. CASVM had 14 optimal,
10 with the same classification accuracy as other structures, and 16 with the lowest loss
value. Tables 5 and 6, show that CASVM, using either shallow or deep networks, can be
applied to large-size image data to obtain higher classification accuracy. Table 4, shows
that CASVM has 10 optimal same precision indexes in small-size datasets, and CASVM
in small-size datasets can still improve the model classification accuracy. When using the
same CNN model, the classification accuracy and training loss of the combined softmax
classification are inferior to those of SVM classification and those of CASVM, which again
verifies that CASVM performs better and is more robust than softmax classification in
general environments.
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5. Discussions

To validate the effectiveness of the model structure proposed in this paper, we com-
pared previous research on combined SVM and CNN models. Table 8 summarizes the
performance of these works in 10 training and testing sessions. Following the combination
of CNN and SVM for image classification in the literature [3,5], Peng et al. [62] and Chaganti
et al. [63] conducted experiments for specific image classification with improved results.
Deepak et al. [22] and Zhang et al. [43] have compared the classification results for both
SVM and Softmax classifiers and obtained more significant results. Unlike previous works,
the CASVM proposed in this paper uses a CA attention mechanism in the feature extraction
module and employs a specific loss function. The CASVM framework can be easily ported
into CNN-based models. According to our experiments, the highest accuracy is achieved
using CASVM for image classification.

Table 8. Experiments with different models.

Model FLOPs (G) Accuracy Training Time (s) Testing Time (s)

Agarap et al. [5] 1.949 0.77 15.69 0.55
CASVM (Agarap et al.) 1.951 0.83 15.87 0.57

Chaganti et al. [63] 0.339 0.75 14.79 0.48
CASVM (Chaganti et al.) 0.342 0.77 14.92 0.48

Peng et al. [62] 0.928 0.66 15.27 0.54
CASVM (Peng et al.) 0.929 0.67 15.29 0.55

Deepak et al. [22] 0.423 0.83 15.06 0.46
CASVM (Deepak et al.) 0.423 0.84 15.11 0.49

Zhang et al. [43] 0.198 0.65 14.84 0.51
CASVM (Zhang et al.) 0.201 0.79 14.96 0.51

Image classification accuracy is this paper’s most critical performance metric, and
Figure 8 presents the image classification accuracy obtained in 10 experiments on the
Animal10 dataset. 500 samples will be accumulated for each image read in each of the
10 experiments, and 5000 samples will be read for each model in the last experiment.
We used the feature extraction network from the previous work as the feature extraction
module of CASVM to compare it with the model from the previous work. The relevant
experimental parameters are set as in the previous work, and the other parameters are set
according to Table 6. Among the models given by Peng et al. [62], we choose the one that
achieves the best results. Since the network of Zhang et al. [43] is shallow, the convolutional
kernel size and the number of channels were adjusted appropriately to fit the input data.
The parameters of the above-tuned models are synchronized to CASVM to ensure the
validity of the comparison experiments.

The results are shown in Figure 8 and Table 8. The accuracy and inference time for a
single image in Table 8 are the average values after 10 tests, and the training time is the
average length of training for one epoch. It can be seen from Figure 8 that the proposed
model can maintain higher accuracy compared with other models, and CASVM has higher
accuracy than other models in all 10 tests. Combined with Table 8, CASVM does not require
much computation, except for a slightly slower training time, and has a higher classification
accuracy than the other models. Among them, the highest accuracy improvement is 14%,
while the number of parameters is only 0.003G higher, which again verifies that CASVM
can obtain better performance with less computation. From the experimental time of each
model, CASVM is slower than the other models in terms of training time, with the slowest
time being 0.18 s, while the fastest is the same as this model. The inference time for a single
image is even more similar. Taken together, the extra training time of CASVM is shorter,
while the shorter training time can produce higher image classification accuracy.
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Since the Animal10 dataset is unbalanced in terms of distribution, the confusion matrix
to evaluate the model with the highest CASVM classification accuracy improvement is
given in Figure 9, i.e., the performance results of the model based on Zhang et al. [43] on
the dataset. The numbers 0–9 on the axes in the figure represent the ten categories in the
dataset. The matrix’s diagonal can show the model’s recognition accuracy for each category,
and both models have better classification results due to the high distribution of data in
category 0 and category 8. However, from Figure 9a, it can be seen that the misclassification
rate of images is significant.

In the data of classes 2 and 5, where the number of samples is small, the accuracy of
the original model shows a significant decrease, and CASVM can maintain the stability of
accuracy. For the class 5 image data with the smallest number of samples, the misclassi-
fication rate of CASVM is up to 14%, while the original model reaches 38%. In addition,
we removed the CA module from CASVM and retrained it according to the configuration
in Table 6, and the misclassification rate reached up to 17%. It shows that even without
introducing CA to emphasize the features, the misclassification rate is much lower than that
of the previous work. It also proves again that CASVM can improve image classification
accuracy more effectively.

In Table 8, it can be found that the model proposed by Deepak [22] et al. obtained
the highest accuracy rate, comparing it with ResNet18. Table 9 specifies the performance
evaluation metrics between the models, including accuracy, recall, and F1 score (F1). As
seen from the table, CASVM can achieve better performance than CNN-Softmax when
image data is limited, because the hinge loss diverges more slowly than the cross-entropy
loss, and because it relies only on support vectors when performing image classification. In
addition, CASVM outperforms previous work in three metrics, particularly the F1 score
and precision, achieving even 100% precision in each category. We attribute this to using
the CA attention mechanism in conjunction with SVM, i.e., emphasizing low-frequency
features helps the model to classify more effectively.
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Table 9. Performance metrics of different models on the Animal10 dataset.

Relation
Precision Recall F1

CASVM
(Deepak) ResNet18 CASVM

(ResNet18)
CASVM
(Deepak) ResNet18 CASVM

(ResNet18)
CASVM
(Deepak) ResNet18 CASVM

(ResNet18)

Cane 0.75 0.75 0.85 0.87 0.71 1.00 0.81 0.73 0.92
Cavallo 0.80 0.71 1.00 0.86 0.77 0.95 0.83 0.74 0.97
Elefante 0.86 0.33 0.99 0.79 0.84 1.00 0.83 0.50 0.99
Farfalla 0.92 0.85 0.93 0.87 0.59 1.00 0.89 0.70 0.94
Gallina 0.87 0.84 1.00 0.84 0.67 0.94 0.86 0.75 0.97
Gatto 0.74 0.77 1.00 0.71 0.74 0.99 0.72 0.76 1.00
Mucca 0.81 0.82 1.00 0.73 0.64 0.96 0.77 0.72 0.98
Pecora 0.86 0.73 0.74 0.70 0.65 0.90 0.77 0.69 0.85
Ragno 0.95 0.75 1.00 0.91 0.83 0.68 0.93 0.79 0.81

Scoiattolo 0.75 0.76 1.00 0.81 0.63 0.80 0.78 0.69 0.89

Table 9 and Figure 9 show that each model has different performance levels for the
class 0 Cane, class 7 Pecora, and class 5 Gatto images. From Table 9, for CASVM (ResNet18),
cane and pecora have the lowest precision. For this reason, misclassification is further
observed using the receiver operating characteristic (ROC), as shown in Figure 10, and
compared using Gatto. The area under the curve (AUC) represents the classification ability
of the model, and the higher the value, the higher the accuracy. The AUC values of Cane,
Pecora, and Gatto are 0.9745, 0.9769, and 0.9933, respectively. The AUC values of cane
and pecora are significantly lower than those of gatto. We focused on the image data and
excluded the loss of classification accuracy brought on by remarkably similar features.
As a result, the unbalanced distribution of the dataset and the lack of samples from this
class in the training dataset are to blame for Cane with Pecora’s low classification accuracy.
Figure 8 and Table 9 show that CASVM can still maintain some classification stability in
the presence of subpar image data, despite this.
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Despite the low computational overhead of CASVM and the more significant image
classification results, the CA introduction position in the feature extraction module is
determined according to Figure 7 in an experiment-oriented manner and, therefore, still
lacks interpretation. In addition, this paper can also be tested using datasets with more than
a hundred image categories, like Cifar100, but applying CASVM also requires modules
with more robust feature capability extraction.

6. Conclusions

The proposed image classification method based on the fusion of DL and SVM has
three parts:

1. We implement a combination of SVM and CNN, specifically replacing the softmax
classifiers commonly used in CNNs with SVMs and training the network model using
hinge loss function backpropagation to improve the generalization ability of image
classification. As shown in Tables 4 and 6, CASVM has a higher accuracy and better
classification performance in a general setting compared to softmax classification.

2. Based on this model, a CA mechanism is introduced to enhance network feature
representation by aggregating features for two spatial directions to capture location
information and channel relationships with low computational overhead. As shown
in Table 7, the training time of CASVM is small compared with the benchmark
model, and the classification accuracy is high. As shown in Tables 8 and 9, the model
performance of CASVM is stable and robust compared to previous work.

3. The CASVM model is proposed to implement image classification, which uses the ad-
vantages of CNNs and SVMs and compensates for their disadvantages. CNNs using
the backpropagation algorithm are prone to fall into local minima, and SVM can effec-
tively avoid falling into local optima. However, if SVM alone is used for classification,
it requires more complicated steps. CNNs can extract representative image features by
convolving and downsampling the image. Therefore, the accuracy of image classifica-
tion can be further improved by using CNNs to extract image features, and replacing
the CNN classification layer with SVM, with excellent generalization ability.
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Experiments showed that CASVM can effectively improve image classification accu-
racy. The higher F1-score of CASVM in different models not only improves the feature
representation performance but also provides network models in different device envi-
ronments to provide smaller computational overhead. With small overhead and good
performance, CASVM provides a model reference for researchers and provides new op-
tions for research work on image classification, recognition, and segmentation with limited
equipment. Although CASVM has high classification accuracy, many parameters require
manual definition, the amount of training in this paper is fixed, and the numbers of deep
network models and large-size datasets are insufficient. In addition, the interpretation of
the specific position of CA in the network introduced in CASVM is not clear enough, and
the appropriate position is derived by embedding CA in different positions in experiments.
Our future work will focus on parameter adaption and a deeper network to optimize the
algorithm, as well as improving the interpretation of CA position embedding to further
improve classification accuracy.
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