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Abstract: A novel method for structural health monitoring (SHM) by using RGB+D data has been
recently proposed. RGB+D data are created by fusing image and laser scan data, where the D
channel represents the distance, interpolated from laser scanner data. RGB channel represents image
data obtained by an image sensor integrated in robotic total station (RTS) telescope, or on top of
the telescope i.e., image assisted total station (IATS). Images can also be obtained by conventional
cameras, or cameras integrated with RTS (different kind of prototypes). RGB+D image combines
the advantages of the two measuring methods. Laser scans are used for distance changes in the line
of sight and image data are used for displacements determination in two axes perpendicular to the
viewing direction of the camera. Image feature detection and matching algorithms detect and match
discrete points within RGB+D images obtained from different epochs. These way 3D coordinates
of the points can be easily calculated from RGB+D images. In this study, the implementation of
this method was proposed for measuring displacements and monitoring the behavior of structural
elements under constant load in field conditions. For the precision analysis of the proposed method,
displacements obtained from a numerical model in combination with measurements from a high
precision linear variable differential transformer (LVDT) sensor was used as a reference for the
analysis of determined displacements from RGB+D images. Based on the achieved results, we
calculated that in this study, the precision of the image matching and fusion part of the RGB+D is
±1 mm while using the ORB algorithm. The ORB algorithm was determined as the optimal algorithm
for this study, with good computing performance, lowest processing times and the highest number
of usable features detected. The calculated achievable precision for determining height displacement
while monitoring the behavior of structural element wooden beam under different loads is ±2.7 mm.

Keywords: RGB+D; SHM; image matching; multi stations; IATS; Trimble SX10

1. Introduction

This paper is an extended version of a paper published in the Contributions to Inter-
national Conferences on Engineering Surveying, INGEO & SIG2020, Online Conference,
Croatia, 22–23 October 2020 [1].

Structural health monitoring (SHM) of engineering structures can, besides physical
sensors (accelerometers, LVDT, encoders), be performed by geodetic instruments and
is usually done by GNSS in combination with robotic total stations (RTS). GNSS offers
great coverage and RTS offers high-precision measurements. Today, modern total stations
come with different integrated sensors. With the integration of image sensors into total
stations (TS), so-called image assisted total stations (IATS), and due to rapid technological
development, the different sensor classes, each with their specific advantages, can be
unified, utilized, and fused as one single (nearly) universal instrument [2]. This integration
offers wide coverage of different geodetic tasks to be resolved more quickly, easily, and
more precisely in comparison with classical geodetic methods and instruments. It even
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offers possibilities to solve some tasks that were not possible in the past with the usage of
classic TS. With an appropriate system calibration provided, these images and video frames
are accurately geo-referenced at any time. They are particularly suitable for deformation
monitoring of civil engineering structures, i.e., structural monitoring and geo-monitoring of
hazardous areas, which are very hard to approach. Today, state-of-the-art IATS comes with
a scanning function (image-assisted scanning total station—IASTS). Modern TS are multi-
sensor systems which can determine the three-dimensional coordinates of target points
by combining horizontal angle, vertical angle, and distance measurements [3]. IATS have
possible applications in semiautomated object reconstruction systems [4], fully automated
deformation monitoring systems [5], industrial measurement systems [6], measurements
of vibration amplitudes by means of high-frequency image measurements [7], and the
capture of additional information such as high-frequency motions or intensity fluctuations
of patterns using image sensor to derive the temperature gradient of the atmosphere as a
decisive influence parameter for angular refraction effects and monitoring of cracks [8,9].

Leica MS60, Trimble SX12 and Topcon GTL-1000 combine imaging with scanning on a
level that is not rudimentary, so we can call them image-assisted scanning total stations
(IASTS). In [10], Leica MS60, Trimble SX12, and Topcon GTL-1000 are compared with their
main specifications and characteristics. All instruments have a scanning function, and
they are classified as multi stations (MS), so-called IASTS. These three instruments, at the
moment, represent the state-of-the-art geodetic instruments in the world. For the purpose
of this study, we used Trimble SX10 predecessor of Trimble SX12.

All instruments and sensors have their own advantages and shortcomings. The biggest
shortcomings of TS, RTS, IATS and GNSS is the fact that we can only monitor one discrete
point at time. We cannot monitor the whole surface of the engineering structure. In some
ways, IATS overcome this deficiency using image sensor and obtaining images of one
part of the structure, but can still only measure displacements of multi points but parallel
to the image sensor in two axes. So, new methodologies and instruments need to be
developed [11].

A fundamental change in geodetic deformation monitoring is currently taking place.
Nowadays, areal measurements are increasingly used instead of pointwise observations
(of manual selected discrete points) as done in the past. Frequently, laser scanners are used,
as these allow a fast, high resolution and dense acquisition of 3D information. However, it
is challenging to uncover displacements and deformations and changes in multi-temporal
point clouds as no discrete points are measured, and only changes in line of sight (of
non-signalized areas) can be clearly detected automatically as distance variations. Further,
rigorous deformation analysis and tests of significance of the results are missing [12,13].
Tests in laboratory conditions of the latest generation of laser scanners have concluded that
the laser scanner can be used to detect vertical displacement non-natural targets marked
with photogrammetry markers with millimeter accuracy [14]. Image analysis techniques,
in contrast, are very sensible for identifying displacements in transverse direction. Hence,
a combined acquisition and analysis of point cloud and image data complement each other
very well [15].

In a research study [15,16] a novel approach of fusing image and laser scan data
from the same instrument, such as a MS, to create an RGB+D image was proposed. D
channel represents the distance channel interpolated from the laser scanner data. Detection
and matching of identical image features from RGB+D images gathered from different
measurement epochs is a use case for computer vision algorithms. 3D coordinates of the
detected features can easily be calculated using RGB+D images. Matched image features
can be used as substitutes for classic discrete points in displacement monitoring tasks and
rigorous geodetic deformation analysis with tests of significance. Comparatively, the lack
of discrete points is the biggest drawback of using laser scanner data (3D point clouds) for
displacement monitoring and deformation analysis.

The proposed methodology and all needed steps to create RGB+D images and their
subsequent use were field-tested in this research. The research, i.e., this article, is organized
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in five sections. After the introduction in section two the used instrument Trimble multi
station SX10 is presented with its basic characteristics and possibilities. Basic principle of
fusion of laser scan and image data from multi stations, as well as deformation analysis
using point clouds and matching algorithms for RGB+D data in displacement monitoring is
explained in section two also. In section three, the experiment test procedure is elaborated
upon in detail. The focus of the research is to determine the achievable precision of the
method in field conditions. The testing aims to compare RGB+D detected displacement of
a tested wooden beam to the control data, extracted from a numerical model of the beams,
based on measurements by a linear variable differential transformer (LVDT) sensor, all
presented in section three. The achieved results are shown in section four regarding the
optimal algorithm used for image feature and matching identical points between different
measurement epochs obtained from RGB+D data. Data comparison of obtained results
regarding the numerical and measured displacements of the beam, i.e., the differences
between them are also shown in section four. Our aim was to verify that fusion of laser
scans and image data (RGB+D) is applicable for structural health monitoring of engineering
structures. The gap in the current research is the lack of numerical testing and validation of
the RGB+D method, which the authors have tried to fill in this paper. In the end in section
five discussion and some conclusions are derived.

2. Materials and Methods

For the test material, wooden beams were chosen. Wood was selected because of its
excellent elastic properties, and because it exhibits large displacements under a small load.
Pressure was applied in incremental steps to the middle of the test beams with the purpose
of causing displacements. MS Trimble SX10 was used to capture picture data and scan data
of the test beams. The relative movement of the element was measured with one or more
LVDT sensors.

2.1. RGB+D Data from Multi Stations

Combining all the sensors and functions of the MS provides a new opportunity for
data acquisition in the field and the subsequent data processing. The fusion of data acquired
from the integrated RGB (red, green and blue) image sensors and laser scanner data and
its application for displacement monitoring, was proposed by A. Wagner [16], and will be
discussed and tested further in this paper.

2.1.1. Multi Sensor Total Stations

MS offers a unique advantage for the engineering surveyors by encompassing multiple
measuring sensors in one instrument. It combines the measuring abilities of the classic
total station equipped with robotic functionalities with built-in RGB sensors and a laser
scanning function.

Total stations by themselves are multi-sensor systems that provide highly accurate
angle and distance measurements to a signal, i.e., prism and, less precisely, prismless, to
nearly any other surface by laser measurements. Further functions are tilt correction by
2-axis inclinometers, automatic target recognition and tracking by image sensors and drive.
These instruments are called robotic total stations (RTS).

In recent years, all significant surveying manufacture equipment has started to offer
RTS with the addition of at least one integrated image sensor. Its original function was
to collect additional data about the measured points. In the literature, these types of
total stations are called image assisted total stations (IATS). There are several different
models of integration of image sensors into the RTS. Image sensors can be built into the
telescope, onto the telescope and onto the eyepiece of the telescope of the RTS [10]. The best
integration is when a coaxial camera is built into the telescope, which then uses the optics
and magnification of the telescope. The coaxial camera’s axis coincides with the telescope
axis, and the camera center is the same as the instrument center. Using the telescope
magnification results in a lower ground sampling distance (higher spatial resolution) of
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the image compared to the overview camera, albeit at a smaller field of view [17]. Most
manufacturers use a 5-megapixel Complementary Metal-Oxide-Semiconductor (CMOS)
sensor in their total stations.

In addition to image sensors in the newer generations of IATS, manufacturers have
started implementing laser scanner functions. The most significant disadvantage of the
scanners integrated into total stations, when compared to terrestrial laser scanners (TLS),
are their relatively slow rate of measuring data. Uniformly across all major manufactures,
TLS measures data at a rate of around 1 MHz, while an integrated scanner usually measures
data at a rate of 1 kHz, which results in long scanning times. The Trimble total station SX10,
which is used for the testing by the author, as shown on Figure 1, has pushed the limit of
scanning rate up to 26.6 kHz [18]. The relevant specification of the Trimble SX10 for the test
is shown in Table 1.
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Table 1. Trimble SX10 specifications [18].

Trimble SX10 Specifications

Angle measurement accuracy 1”
Prismless distance measurement accuracy 2 mm + 1.5 ppm
Scanning 3D position accuracy at 100 m 2.5 mm

Scanning measurement rate 26.6 kHz

Scanning point spacing SUPERFINE-6.25 mm, FINE-12.5 mm,
STANDARD-25 mm or COARSE-50 mm at 50 m

Camera Telescopic, Primary or Overview
Image sensor 3 × 5 MP (2592 × 1944 px) CMOS sensor

Primary camera pixel size 4.4 mm at 50 m
Primary camera Field Of View (FOW) 13.12◦ × 9.86◦

2.1.2. Fusion of Laser Scan and Image Data from Multi Stations

The resulting product from the fusion of laser scanner data an RGB image of the
same scene is a generated RGB+D (Red, Green, and Blue + Distance) image. The D is
the 4th channel of the image that depicts distance information from the laser scanner as
pixel values.

It should be noted that the RGB+D images are also used in other fields of science,
especially in applications of RGB+D cameras for computer 3D reconstruction of objects [19].

This paper focuses on applying RGB+D images generated from MS precise measure-
ments in displacement monitoring and deformation analysis.
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The fusion of data from the laser scanner and camera data to RGB+D images combines
the advantage of the two measuring methods. With laser scans and the resulting dense
point clouds, distance changes in the line of sight can be easily detected. High-resolution
image data, in contrast, are most sensitive to displacements perpendicular to the viewing
direction of the camera [15].

This process’s biggest hurdle is defining the precise spatial and angle relationship
between the instrument, theodolite, and integrated camera. Empirical tests conducted with
SX10 showed that methods like direct linear transformation (DLT) [20] for determining
camera offsets and parameters were not sufficiently precise for this use case. There is a
high discrepancy between calculated parameters based on the test conditions, such as
lighting, test target distance to the camera and measurement of 3D coordinates. For the
DLT method, precise 3D coordinates of the photogrammetry targets are required. Precision
for measuring 3D coordinates with the SX10 is around 2.5 mm, using prismless distance
measurement [18]. With all the problems mentioned, precise calculation of the camera and
instrument parameters by the user is not ideal. The ideal solution is to obtain the technical
specification of the used MS camera directly from the manufacturer. This solution was used
for data processing in this paper.

2.2. Deformation Analysis Using Point Clouds

The emphasis in classic deformation analysis is on the discrete points which represent
the object of interest. Deformation analysis compares the coordinates of the points, calcu-
lated from measurements in multiple epochs, to determine the possible displacements of
the object with an appropriate statistical test of significance. Only a statistically verified
result of a measurement may be used for further processing or interpretation. This is
valid, in particular, for reliable alarm systems for the prevention of human and material
damage [17].

The goal of the RGB+D approach is to bypass the drawbacks of laser scanner measurement
–point clouds by enhancing the data with corresponding RGB data, preferably captured with
the same instrument, such as an MS, to identify corresponding (discrete) points between
subsequent measuring epochs [13]. The resulting data can then be integrated into a rigorous
geodetic deformation analysis with a test of significance [15].

Matching Algorithms for RGB+D Data in Displacement Monitoring

The biggest challenge of the RGB+D method used for displacement monitoring is
how to identify corresponding (discrete) points between subsequent measuring epochs.
Numerous matching algorithms have been developed for that purpose. The concept of
feature detection and description refers to the process of identifying points in an image
(interest points) that can be used to describe the image’s contents, such as edges, corners,
ridges, and blobs [21].

The most prominent and promising feature detection algorithms, applicable to RGB+D
images in deformation analysis, are:

• SIFT—Scale Invariant Feature Transformation [22];
• SURF—Speed Up Robust Features [23];
• BRISK—Binary Robust Invariant Scalable Keypoints [24];
• ORB—Oriented FAST and Rotated BRIEF [25]
• KAZE—Named after a Japanese word that means wind [26].

All the algorithms mentioned are scale invariant, which enables them to match image
features despite the scale change of an object between images (movement). David G.
Lowe developed SIFT as a novel approach for image matching and feature detection. The
basis of the algorithm is the transformation of image data into scale-invariant coordinates
relative to the local features. An important aspect of the SIFT approach is that it generates
a large number of features that densely cover the image over the full range of scales and
locations [22].
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SURF approximates, or even outperforms, previously proposed image matching algo-
rithms with respect to repeatability, distinctiveness, and robustness, yet can be computed
and compared much more quickly [23].

BRISK is proposed as an alternative image matching algorithm to SIFT and SURF,
matching them in quality and with an emphasis on much less computation time [24].
Because of the binary nature of the algorithms descriptors, image features can be matched
very efficiently, which makes the algorithm applicable for real-time use.

ORB is a fast binary descriptor based on BRIEF (Binary robust independent elementary
features [27]) which is rotation invariant and resistant to noise. The contribution of ORB is
the addition of a fast and accurate orientation component to FAST (features from accelerated
segment test [28]), the efficient computation of oriented BRIEF features, analysis of variance
and correlation of oriented BRIEF features and a learning method for de-corelating BRIEF
features under rotation invariance, leading to better performance in nearest-neighbor
application [25].

KAZE is a multiscale 2D feature detection and description algorithm in nonlinear scale
spaces. Feature detection and description in nonlinear scale spaces. In contrast to previous
approaches that rely on the Gaussian scale space, this method is based on nonlinear scale
spaces using efficient AOS techniques and variable conductance diffusion. Despite of
moderate increase in computational cost, the results reveal a step forward in performance
both in detection and description against previous state-of-the-art methods such as SURF
or SIFT [26].

Algorithm selection will be predominantly scene (surveillance area) dependent be-
cause computation time is not a limiting factor for post-processing of data.

SURF, BRISK, ORB and KAZE have a direct implementation in MATLAB [29].
MATLAB [29] also has a built-in function “matchfeatures” for matching detected

features between images. In this use case, images of the same test scene are taken in
different epochs. There are multiple other software solutions available for matching features
between images, and they all function on the same or similar mathematical principles. All
performed tests in this research were coded and conducted in MATLAB.

Based on the test scene test results, algorithm selection will be discussed further in the
data processing and results section of the paper.

3. Experimental Test Procedure

The general test procedure consisted of loading a test material element sequentially
with pressure. The relative movement of the element was measured with one or more LVDT.
Before every change of load was applied, a picture or multiple pictures in a panorama and
a laser scan of the element was taken. Measured data were processed to create a fusion
of a laser scan and image into RGB+D image for each load, i.e., epoch. From RGB+D
images, displacements were calculated for detected matched points between the epochs.
The resulting calculated displacement was then compared to the LVDT measured data.

3.1. Testing Setup and Measurements

For the test material, wooden beams were chosen. Wood was selected because of its
excellent elastic properties, and because it exhibits large displacements under a small load.

The wooden beam was supported on both sides, and the pressure was applied in the
middle of the beam, as shown in schematic diagram in Figure 2. The pressure distribution
was not measured because it has no relevance for this type of test and subsequent calcula-
tions, but the overall force is known for every step of load increment using a small load cell
integrated into the loading device. This setup was necessary to determine inputs for an
independent numerical model of beam displacements. Small black shapes were added as
additional targets on the wood beams to increase the number of detected features with the
feature matching and detecting algorithms.
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Displacements were measured with a LVDT, which is a common type of electrome-
chanical transducer that can convert the linear motion of an object to which it is coupled
mechanically into a corresponding electrical signal. LVDT typical sources of uncertainty are
due to nonlinear electrical responses, mechanical positioning and orientation errors, electri-
cal transmission noises, and digitalization errors. In the described measurement setup, the
HBM WA100 LVDT sensor [30] with a nominal measuring range of 0–100 mm was used.
The used sensor’s nonlinearity is in the range of 0.2–1% of its entire measurement range.
For reduced measuring range 0–20 mm used in this setup, overall accuracy is ±0.02 mm
(obtained by previous laboratory calibration). The LVDT measuring accuracy is higher
than the achievable accuracy of measurements obtained by Trimble SX10 by a factor of 100.
The displacements obtained by LVDT were taken as a reference in this research for testing
the accuracy of determined displacements from RGB+D images. LVDT was positioned in
the middle of the beam where the pressure was applied to, as shown in Figure 3 right.

MS instrument Trimble SX10 was used for the testing. The instrument was positioned
roughly 5 m from the wood element, as shown on Figure 3 left. The distance was chosen
based on the cameras field of view (FOV) so that the whole test field is visible within one
image from the integrated primary camera. For the primary camera, the image size is
2592 × 1944 pixels, and at a 5 m distance, the ground sampling distance (GSD) is 0.3 mm.
Location of the primary camera, in relation to the SX10 instrument body, is shown in
Figure 4.

The instrument station was set up in a local coordinate system. Control reference
points were positioned around the test site and were used to check the stability of the
instrument between the epochs.

The final test was conducted on two different wooden beams. For each element, four
or five measuring epochs were conducted. Due to changing light conditions, only four
measuring epochs were tested for the BEAM 1, in comparison to five for BEAM 2. The first
and last epoch were without any pressure. For epochs two to five, rising pressures were
applied so that different displacements were obtained and then measured with the MS
and LVDT, as shown in Table 2. In each epoch, a picture was taken with the MS primary
camera. For each image theodolite angles (Hz, V) measured from the MS are stored. Using
the stored theodolite angles and camera parameters, external orientation of the camera can
be easily calculated. The test area was then scanned in the scanner’s FINE resolution mode,
which resulted in a measurement density of 1 mm. Data from the LVDT were continuously
logged and stored.
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Table 2. Measurement epoch and LVDT measured displacement.

Beam Epoch/Image Displacement [mm]

BEAM 1 210 0.000
BEAM 1 212 3.841
BEAM 1 213 7.960
BEAM 1 214 12.099
BEAM 2 216 0.000
BEAM 2 218 2.777
BEAM 2 219 6.590
BEAM 2 220 10.623
BEAM 2 221 14.614

3.2. Data Processing

Obtained data from MS Trimble SX10 used for the processing were images, point
clouds, and a job file. The job file contained all metadata for a single job in an SX10; in
this case, metadata about the captured images were extracted. Data processing was done
using MATLAB and the code developed by the authors. The code was used to compare the
data from two different epochs. For each epoch, an image, corresponding point cloud, and
image metadata were loaded.

Data processing consisted of fusing image and scan data into RGB+D images for each
epoch. Using image matching algorithms (SURF, BRISK, ORB and KAZE), identical points
on images from different epochs were identified. Displacements for matched identical
points are then calculated. Based on LVDT measurements, the wooden beam is numerically
modeled as a reference for testing calculated displacement from RGB+D.

3.3. RGB+D Fusion

Fusion of image and scan data was based on matching theodolite angles (Hz and V) of
points in the point cloud to corresponding pixels on images.

A shown in Figure 5, the exterior orientation parameters of the camera R and T is a
combination of three single transformations, the collimation axis is projected as a line into
the image if an eccentricity between S and C exists [17].
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The steps necessary for image and scan fusion in this case are explained in the subse-
quent subchapters.
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3.3.1. MS Instrument Setup

Standard geodetic procedure of instrument setup, like using resection to control
points, is used for calculating the 3D coordinates of the instrument center (x, y and h) and
determining the orientation of the instrument in the used coordinate system. Coordinate
system can be absolute (world) and relative (local). For the purpose of testing a local
coordinate system was used. This step calculates the transformation parameters from the
absolute od relative coordinate system to the instrument coordinate system.

Based on the instrument setup data and horizontal and vertical limb measurements
theodolite angles (Hz and V) can be calculated for each telescope position. This step calcu-
lates the transformation parameters from instrument coordinate system to the telescope
coordinate system.

Trimble MS stores the data necessary to calculate the theodolite angles of the telescope
for any measurement or an image in a Bivector format in the instrument job file [31]. The
exact formulas and algorithms used for calculating the theodolite angles cannot be show in
this paper, as it is Trimble Geospatial proprietary code, and the authors were instructed not
to distribute it further.

3.3.2. Image Data Processing

The described process in this subchapter is unique to the use of Trimble MS instrument.
The process is repeatable using any other MS from other manufacturers, but it would
involve more steps and calculations.

The camera is modeled as a pinhole camera with known intrinsic parameters from the
manufacturer represented in a calibration matrix K:

K =

 f x0
f y0

1

,

where f denotes the focal length and (x0, y0) the image coordinates of the principal point.
The coordinates of the camera center in the used coordinate system were calculated

based on the telescope theodolite angles and the nominal offsets of the camera center
from the instrument center. Nominal offsets values were known from the mechanical
design blueprint of the instrument data, provided by the manufacturer. The mathematical
model that defined the coordinates of the camera center based on the telescope theodolite
angles was created. The camera center circled around the instrument center on a sphere, as
depicted in Figure 6. Angle differences between the collimation axis and vertical axis and
the 3D distance were constants.

For the given telescope theodolite angles (Hz and V), camera center theodolite angles
in the used coordinate system are defined as:

Hzc = Hz + Hzdi f f ,
Vc = V + Vdi f f .

(1)

Coordinates of the camera center are defined as:

Cam coo = INS coo +

∆x
∆y
∆h

 →
xcc

ycc
hcc

 =

xINS
yINS
hINS

+

d3D∗ sinV ∗ sin Hz
d3D∗ sinV ∗ cos Hz

d3D ∗ cos V

, (2)

where INS coo are the coordinates of the instrument center from the instrument setup.
Exterior orientation parameters of the camera are calculated based on a Bivector that

defines the relation between the camera and telescope axis. Bivectors for each image are
stored in the MS job file. Bivector from the camera to the telescope defines the 3D rotation
of the camera around the theodolite axis as a combination of the general main rotation,
collimation error, temperature dependent part, and any user calibration [32]. The use of
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Bivectors replaces the standardly used transformation from 3D world coordinates into
image pixel positions and backward transformation using rotation matrices and translation
vectors. This step calculates the transformation parameters from the telescope coordinate
system to the camera coordinate system. The exact formulas and algorithms used for
calculating the extrinsic camera parameters cannot be shown in this paper, as it is Trimble
Geospatial proprietary code, and the authors were instructed not to distribute it further.
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The use of self-calibrated data from Bivector simplifies the calculation process and
mathematical models, from the manual version, where users would need to calculate
everything themselves. This step calculates the theodolite angles (Hz and V) of the camera
principal point in the used coordinate system.

Within the Trimble MS job file, calibrated values of angle difference per pixel are stored
for each image. Theodolite angles for each pixel can be defined in a simplified way as:

Hzpix = Hz + (x− x0) ∗ Pixangle,
Vpix = V + (y− y0) ∗ Pixangle,

(3)

where (x0, y0) are the image coordinates of the principal point, (x, y) are the image coordi-
nates of the pixel and Pixangle is calibrated value for pixel angle difference. Approximately
Pixangle equals to 18.3” for the primary camera of SX10. Because the image features are
roughly on the same part in each image, effect of any residual camera calibration errors are
negligible.

All image data is stored within a 5-dimensional matrix that have the same dimension
as the base image. Each position in the matrix represents one image pixel, first three
matrices contain RGB data for the pixel and the last two contain theodolite angles (Hz and
V) of the pixel.
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3.3.3. Point Cloud Processing

Product of laser scanning is a point cloud. For each point in the cloud 3D coordinate
(x, y and h) are determined in the used coordinate system, defined by the instrument
setup. The point cloud processing consists of calculating theodolite angles (Hz and V), 3D
distances (d3D) and 2D distances (dh) from the camera center to each point of the cloud
based on the 3D coordinates of points and calculated coordinates of the camera center.
2D and 3D distances were calculated from 3D coordinates of matched points in different
epochs using the formula for Euclidean distance between two points in Cartesian space.

Theodolite angles (Hz and V) of each point in point i cloud are defined as:

Hzi = arctan
(

xcc−xi
ycc−yi

)
,

Vi = arcsin
(

d3Di
dhi

)
,

(4)

where xcc and ycc are the coordinates of the camera center, in the defined coordinate system.

3.3.4. Image and Point Cloud Data Fusion

Data measured with the instrument, point cloud and measurements, are in the same
coordinate system, defined through the instrument setup. Coordinates of the camera center
and theodolite angles (Hz and V) of each pixel are in the same coordinate system. Spatial
rays projected from the camera center pass through the point cloud and the matching pixel
in the image, as shown in Figure 7. Rectified images of the test area overlap with the point
cloud (highlighted yellow) of the same area, an example is shown in Figure 8.
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The next step is matching between the image and point cloud, based on minimal angle
difference, to assign 3D distances to some of the pixels. The goal is to find a point from the
point cloud that lays on the same spatial ray as a pixel in the image.

Pixel position for a point in the point cloud can be defined as:

Pixi =

[
Pixxi
Pixyi

]
=

[
min

(
abs
(

Hzimg − Hzi
))

min
(
abs
(
Vimg −Vi

)) ]
(5)

where Hzimg is a matrix with horizontal theodolite angles for each pixel, Vimg is a matrix
with vertical theodolite angles for each pixel. The function min in Matlab return se matrix
index (row and column) of the minimum value in the matrix. The result are the pixel
positions in image of each point in the point cloud.

Based on the pixels with distance values, an external boundary of the scan data is
created for the image, Region Of Interest (ROI). The boundary is used to prevent the
interpolation of data to the pixels of the image that are not covered by any point cloud data.

Because the number of pixels in the image is usually larger than the number of point
cloud points, 3D distances for the empty pixels are calculated using a 2D interpolation
algorithm [33].

The result of this step is an RGB+D image for each epoch. For each image pixel, RGB
values, as shown in Figure 9, Hz and V angles, and 3D distance are known, as shown in
Figure 10; also, the image’s ROI is defined. The data were stored within a 6-dimension
matrix, where in addition to the aforementioned five matrices, the sixth matrix contained
the distance data for each pixel.

3.4. Image Matching

Image-matching algorithms are used to detect identical points features between
RGB+D images from different epochs. The results of image matching are the pixel lo-
cation of matched identical points in two images from different epochs. As stated before,
multiple algorithms are applicable for this use case. To determine the optimal algorithm
for this use case, empirical tests were conducted with different image datasets.
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Matching algorithms SURF, BRISK, ORB, and KAZE were used and tested as they
have a direct implementation in MATLAB. All of the test results of matching were also
filtered for outliers. In this test case, filtering was done based on the calculated projective
transformation between the images and measured maximum displacements from LVDT.

The first test consisted of testing the algorithms with all combinations of images in a
dataset. Test parameters will be the average number of features in images, the number of
matched features between images with and without outlier removal, processing time and
normalized time for two images and matching between them, and maximum RAM usage
of the algorithm.

The second test consisted of testing the matching points from between epoch located
on the top of the beam within the ROI. Points were selected manually to match the area of
the wooden beam that was modeled as a reference. The test compared the number of used
points in ROI and statistical parameters of the calculated residuals. The residuals were dif-
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ferences between height displacements calculated from the control data and measurements
of RGB+D data.

Results of both tests of image matching algorithms will be further discussed in the results
section, and they will be used as criteria for algorithm selection for the data processing.

3.5. Displacement Calculation

The outputs of image matching are identical feature pixels between two images, as
shown in example in Figures 11 and 12. Each image represents one measurement epoch.
Based on the RGB+D data, 3D coordinates of each pixel in each image can be calculated. As
stated before, for each image pixel in the ROI theodolite angles (Hz and V) and 3D distance
(d3D) can be known.

3D coordinates of a pixel are defined as:

Pixcoo = Cam coo +

∆x
∆y
∆h

 →
xpix

ypix
hpix

 =

xcc
ycc
hcc

+

dh ∗ sin Hz
dh ∗ cos Hz
d3D ∗ cos V

, (6)

where Cam coo are the 3D coordinates of the camera centre, and dh is defined as:

dh = d3D ∗ sin V. (7)

2D and 3D displacements of matched features can be calculated based on the calculated
3D coordinates of pixels in images from different measurement epochs. 2D and 3D distances
were calculated from 3D coordinates of matched points in different epochs using the
formula for Euclidean distance between two points in Cartesian space.

Displacements were calculated between four epochs for BEAM 1, and five epochs for
BEAM 2. The wooden beams are shown later in the paper in Section 4.1.
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3.6. Creation of a Numerical Model Used for Control Data

Based on the measurement and geometry data for the beam, measured on the test site
and extracted from the point cloud and LVDT measurement data, a numerical model of
the beam was created. The used numerical model was modeled in commercially available
software SCIA Engineer 19.2 based on a finite elements method (FEM) structural analysis,
which is the standard in civil engineering [34]. The inputs for the model were the dimension
and orientation of the wooden beam, mechanical properties of the timber material, and load.
The material was timber class C14 (EN 338), with a modulus of elasticity of 7000 MPa and a
shear modulus of 440 MPa. The load was applied to an area 200 × 70 mm in the middle of
the top surface. The ultimate load was 16.9 kN/m2. The load was deduced by comparing
the maximum displacement of the model and was obtained from LVDT measurement. This
approach accurately defined the material model instead of the general normative timber
model. While performing numerical analysis, anisotropic properties of timber were not
taken into account since displacements are due to bending, and along-grain stresses were
dominant. The outputs of the model are displacements of points on the beams and internal
forces, which were not used within the scope of this paper. Based on the numerical model,
z-axis displacement (change of height) were calculated for every point on the beam in
each epoch, as shown for epoch 214 displacement in Figure 13. It should be noted that
the test beams were not perfectly horizontal in space; also, the wooden supports were not
perfectly horizontal and perpendicular to the beams. All the imperfections in the setup
were accounted for and inputted in the model for calculations of displacements based on
point cloud data. Coordinates of the numerical model were in the same coordinate system,
which was defined by the instrument setup.
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4. Results

The image matching algorithm comparison results will be shown, and the results will
be used for selecting the optimal algorithm to use in this use case scenario.

The final output of the RGB+D data processing are the 3D coordinates of the matched
points in both epochs. Based on the coordinates, 2D and 3D displacements can be calculated.
Data were processed for all five measuring epochs for each wooden beam.

Calculated height displacement from RGB+D was compared to the control height
displacement from the model based on the LVDT measurements. Differences between the
two different height displacements were calculated as residuals. Statistical parameters of
the residuals were used to discuss the validity and achievable precision of the RGB+D
method.

4.1. Image Feature and Matching Algorithms

The first test consisted of testing the algorithms with all combinations of images for
both test setups and image data set with images larger in size; test images are shown in
Figure 14. Tested parameters were the average number of features on images, the number
of matched features between images with and without outlier removal, processing time and
normalized time for two images and matching between them, and maximum RAM usage
of the algorithm. The results provided a good starting reference for algorithm selection and
showed the potential benefits and limits of the algorithms, as shown in Table 3. KAZE and
ORB algorithms were unable to complete the task on larger image datasets, with default
settings, due to the lack of memory (the test computer had 16 GB of RAM) and had to be
limited manually to a max of 55,000 features per image. The number of detected features
and matched features varied greatly between algorithms. Normalized times for each test
image dataset were used to compare the times objectively because the time of processing is
dependent on the test computer configuration. Similar tests of the same algorithms done by
other researchers [35] showed different results, further stating that the algorithm selection
is mostly test scene dependent.

The second test consisted of testing the matching points from between epoch that are
located on the top of the beam, within the ROI. Points were selected manually to match the
area of the wooden beam that is modeled as a reference. The test compared the number
of used points in ROI and statistical parameters of the calculated residuals, as shown in
Table 4. Normalized time was calculated for each test image by dividing all the duration
times with the longest duration. Normalized time provides a simpler and more intuitive
way of comparing duration than comparing times in seconds.
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Beam 1 Surf 5/0.6 368 222 219 1.24 0.08 0.394
Beam 1 Brisk 5/0.6 276 130 115 0.91 0.06 0.394
Beam 1 Orb 5/0.6 1987 492 491 0.70 0.05 0.394
Beam 1 Kaze 5/0.6 9977 5460 5427 14.75 1.00 3.991
Beam 2 Surf 5/0.6 384 251 250 1.21 0.08 0.394
Beam 2 Brisk 5/0.6 173 91 84 0.90 0.06 0.394
Beam 2 Orb 5/0.6 1945 473 472 0.70 0.04 0.394
Beam 2 Kaze 5/0.6 12,725 7628 7598 15.70 1.00 7.043

Table test Surf 5/0.6 5563 1075 1035 3.97 1.00 1.341
Table test Brisk 12/4.5 3315 773 629 2.66 0.67 0.954
Table test Orb 12/4.5 48,597 4431 4424 101.03 0.33 10.219
Table test Kaze 12/4.5 55,000 13,032 12,810 307.39 1.00 11.840

Calculated statistical parameters of displacement showed no statistically significant
difference. For significance testing, a two-sample t-test was used with a 5% significance level.

A comparison of the test results from the first and second test showed that the number
of features does not correlate directly with the number of usable features for RGB+D. Based
on the test results shown in Tables 3 and 4, the ORB algorithm was shown to be the optimal
algorithm for this test case, with good computing performance, the lowest processing times
and the highest number of usable features detected in the ROI, and was used for image
matching and sequential displacement calculation for the test scenes.

4.2. Control Data

As stated before, a numerical model of the test wooden beam for each epoch was
created using LVDT measurements, point cloud data, and known geometry of the beams.
The numerical model was based on the finite element method. Because point cloud data
was used in the model, there was a high correlation (around 90 percent) between model
data and measurement data. LVDT data were used in the model creation and as an absolute
control of the modeled data.
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Table 4. Usable features and statistics of calculated data from them.
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210–214
210 Surf 58 0.6 0.1 −0.1 −0.1 0.0 2.6
214 Surf 58 0.8 0.1 0.0 −0.1 0.0 2.5

210–214
210 Brisk 63 0.9 0.1 −0.1 −0.2 0.0 3.8
214 Brisk 63 1.1 0.1 0.0 −0.1 0.0 4.9

210–214
210 Orb 253 0.8 0.0 −0.1 −0.2 0.0 3.7
214 Orb 253 0.9 0.1 0.0 0.0 0.0 3.7

210–214
210 Kaze 232 0.8 0.1 0.0 −0.1 0.0 3.4
214 Kaze 232 0.9 0.1 0.1 0.0 0.0 3.5

4.3. Data Comparison

Height displacement from RGB+D and the control data were calculated between four
epochs for BEAM 1. and five epochs for BEAM 2.

Matching points from each epoch were filtered manually and only the ones that were
located on the top of the beam were used. Epochs were named based on the image file name
to avoid confusion data in processing. The difference of the height displacements from the
points and the model (residuals) as a reference were calculated. Statistical parameters for
residuals for BEAM 1 are shown in Table 5 and for BEAM 2 in Table 6.

Table 5. Statistical parameters for residuals for BEAM 1.

Epochs 210–212 212–213 213–214

Number of points 255 260 191
Standard deviation [mm] 0.8 0.7 0.6

Standard deviation error [mm] 0.0 0.0 0.0
Average [mm] −0.2 0.1 −0.1

Minimum [mm] 0.0 0.0 0.0
Maximum [mm] 4.8 2.2 2.4

Table 6. Statistical parameters for residuals for BEAM 2.

Epochs 216–218 218–219 219–220 220–221

Number of points 33 57 65 65
Standard deviation [mm] 0.6 0.8 0.9 0.7

Standard deviation error [mm] 0.1 0.1 0.1 0.1
Average [mm] 0.2 −0.5 0.3 0.2

Minimum [mm] 0.0 0.0 0.0 0.0
Maximum [mm] 1.8 2.4 2.2 1.8

Standard deviation of N scalar residuals R was defined as:

St.devR =

√√√√ 1
N − 1

N

∑
i=1
|Ri − µ|2, (8)

where µ is the mean of R:

µ =
1
N

N

∑
i=1

Ri. (9)
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Standard deviation error is defined as:

St.dev.errorR =
St.devR

N
. (10)

Standard deviation error is used for quantifying the uncertainty around an estimate of
the mean.

Distributions were fitted to residuals using the maximum likelihood method, with
a significance level of 95%. The residuals were distributed normally with some outlier
elements, as shown in Figures 15 and 16.
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Based on residual data, it was calculated that the precision of the image matching
and fusion part of the RGB+D is ±1 mm, for this test case, with a GSD of 0.3 mm. Achiev-
able precision of the RGB+D method was then calculated as a square root of the sum of
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squares of the standard deviation of 3D point measurement of Trimble SX10 [18] and deter-
mined RGB+D. The calculated achievable precision for determining height displacement is
±2.7 mm.

5. Discussion and Conclusions

A. Wagner, in his research [15,17] proposed a methodology of fusing image and laser
scan data from the same instrument, such as a MS, to create an RGB+D image and use the
data for displacement monitoring.

Using computer vision algorithms such as SURF, BRISK, ORB and KAZE, distinct
features of an image can be detected and tracked through different measurement epochs.
Subsequently, their 3D coordinates can be determined from RGB+D images. This acts as a
substitute for discrete geodetic points for further classic deformation analysis.

The proposed methodology was objectively and numerically tested within the scope
of this research. The authors of this paper have developed a computer code, used for data
processing, independently of the original author’s code to test the methodology’s validity
objectively and numerically. After the methodology was validated by implementing the
code on test data measured with a Trimble SX10 MS, the next step was to test the achievable
precision numerically.

Tests of different image matching algorithms showed that algorithm selection is highly
scene dependent. Based on test results, ORB algorithm was shown to be the optimal
algorithm for this test case, with good computing performance, the lowest processing times
and the highest number of usable features detected in the ROI. ORB was implemented in
the final code, as the most optimal algorithm for this use case.

Reference data for testing the height displacements calculated from RGB+D were from
a numerical model of the beam, modeled based on LVDT measurements, beam geometry,
and point cloud data. Model data was built, to a degree, using the point cloud data, which
made the model partially dependent on the data. Point cloud data were used for precisely
determining the spatial position and orientation of the test beams, which is needed for the
model to be in the same local coordinate system as the SX10. Because of the correlation of
the model data with the point cloud data, model data can only be used to determine the
precision of the image matching and fusion part of the RGB+D method. Due to correlation,
model data cannot be used to determine the absolute accuracy of the RGB+D method.

The residuals (differences between RGB+D height and reference height obtained by
LVDT) were distributed normally with some outlier elements, as shown in Figures 15 and 16.
suggesting that there was a negligible influence of systematic errors in the measurements
and that the dominant factor was noise. Standard deviations for both epochs were below
1 mm with standard deviation error below 0.1 mm, as shown in Tables 5 and 6. From the
shown data, it can be concluded that the precision of the image matching and fusion part of
the RGB+D is ±1 mm, for this test case, with a GSD of 0.3 mm. The calculated achievable
precision for determining height displacement is ±2.7 mm.

Conducted tests and achieved results show the applicability of the RGB+D method
for SHM using geodetic instruments such as multi stations. RGB+D method provides the
ability to track multiple discrete points on the testing element through the testing, that only
point clouds and relative measurement methods cannot provide. Thus, providing new data
for testing the validity of behavior numerical models of an element being tested.

Based on the positive outcomes of conducted tests, further research in the real-world
conditions on man-made structures is needed to prove the validity of RGB+D for the
purpose of SHM. Further tests are planned to determine the relation between the GSD and
achievable accuracy and precision.
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