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Abstract

:

The most effective use of numerous Combined Heat and Power Units (CHPUs) is a challenging issue that requires strong approaches to handle the Economic Dispatch (ED) with CHPUs. It aims at minimizing the fuel costs by managing the Power-Only Units (POUs), CHPUs, and Heat-Only Units (HOUs). The transmission losses are also integrated, which increases the non-convexity of the ED problem. This paper proposes a Modified Artificial Ecosystem Algorithm (MAEA) motivated by three energy transfer processes in an ecosystem: production, consumption, and decomposition. The MAEA incorporates a Fitness Distance Balance Model (FDBM) with the basic AEA to improve the quality of the solution in non-linear and multivariate optimization environments. The FDBM is a selection approach meant to find individuals which will provide the most to the searching pathways within a population as part of a reliable and productive approach. Consequently, the diversity and intensification processes are carried out in a balanced manner. The basic AEA and the proposed MAEA are performed, in a comparative manner considering the 7-unit and 48-unit test systems. According to numerical data, the proposed MAEA shows a robustness improvement of 97.31% and 96.63% for the 7-unit system and 46.03% and 60.57% for the 48-unit system, with and without the power losses, respectively. On the side of convergence, based on the average statistics, the proposed MAEA shows a considerable improvement of 47% and 43% of the total number of iterations for the 7-unit system and 13% and 20% of the total number of iterations for the 48-unit system, with and without the power losses, respectively. Thus, the suggested MAEA provides significant improvements in the robustness and convergence properties. The proposed MAEA also provides superior performance compared with different reported results, which indicates a promising solution methodology based on the proposed MAEA.
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1. Introduction


1.1. Motivation


In numerous academic fields, meta-heuristics have steadily gained popularity for handling difficult optimization problems [1]. Traditional optimization procedures are undervalued due to concerns related to local optimal stagnation [2]. To overcome such issues, meta-heuristics optimization procedures are followed which involve the most effective and influential strategies for identifying optimal solutions. Because of the clear growth in manufacturing and residential needs, the world’s usage of electrical and thermal energy has recently become materialistic. In order to diminish the drawbacks of conventional facilities, energy planners have been instructed to include heat and power sources in addition to renewable energy sources. The reduction of pollution emissions that contribute to global warming has also received international attention [3]. One of the national energy policy initiatives by China is to focus on the development of efficient, secure, and sustainable energy sources with an ideal management system [4]. Economic load dispatch is a critical optimization problem in power systems that necessitates good generator coordination, control, and management [5]. Because of the imposed identical and uneven constraints, it exhibits non-linear performance. In response, it has been recognized as a difficult multi-modal optimizing problem to address [6]. Therefore, it is critical that a search is undertaken for efficient, robust, and highly convergent optimization solutions to the non-linear and complex ED optimization problem, which considers CHPUs.




1.2. Literature Survey


For this reason, a systematic learned PSO has been blended with a sequential quadratic programming technique and employed for ED optimization of the power system [6]. However, the primary objective task that was taken into consideration was the reduction of gasoline expenses. In [7], a multi-objective pigeon-inspired algorithm was used to solve the ED problem involving emissions minimization; however, in three scenarios explored, only 6-unit and 14-unit systems were considered in detail. The ED problem was solved using a dispersed fixed step-size optimizer in [8] while taking into account the cost function of the distributed energy resources. However, the traditional quadratic model was applied while excluding the actual effects of the valve point loadings.



In standard thermal power plants, a substantial amount of thermal energy is wasted and released into the environment via cooling towers, flue gas, or other methods. The efficiency of converting carbon fuels into electrical energy is therefore just 50% to 60%, despite the most efficient contemporary combined cycle plants. By gathering and using waste heat, CHPUs raise the energy conversion efficiency of these typical units from 50–60% to the order of 90% [9]. An essential issue for managing the operation of these units is the ED model combined with CHPUs [10]. Traditionally, an ED incorporating CHPUs manages the Power-Only Unit, CHP, and HOUs to save fuel expenditures. However, the production and use of energy are closely related to environmental concerns.



The integrated hybrid energy systems can meet a variety of energy demands with increasing productivity and efficiency. This lays the groundwork for creating a low-carbon, sustainable method of economic and social advancement. Additionally, during the past few decades, combined heat and power systems have been associated with energy savings and reduced environmental impact. Such systems have alerted the scientific community to further research and developments of renewable-based combined heat and power configurations in the domestic and commercial sectors, which served the objective [11,12]. By managing Power-Only Units, CHPs, and HOUs, the CHPEED challenge seeks to reduce fuel costs and emissions [13]. Moreover, in order to maintain the performance of the power, heat, and CHPUs, certain inequality limits must be satisfied. Additionally, the mutual dependence of the CHPUs must be maintained because it may have an impact on how the CHPEED problem is solved [14]. The challenging ED problem with CHPUs has been addressed using a wide variety of MAs. According to the primary objectives, the published research on the ED problem using CHPUs that has used metaheuristic methodologies to solve this problem can be split into two types. To achieve the lowest operating costs, the first category involves creating efficient optimization methods for systems incorporating thermal plants, CHPUs, and boilers. The investigation of all practically pertinent restrictions, such as transmission loss, valve-point impacts, and environmental difficulties with the heat and power supply of the ED issue with CHPUs, falls under the second category. Some of the most intriguing works in the first category include the following: as shown in [15], the ED problem with CHPUs was solved using the GSA by examining network system losses and the valve-point effect of POUs. To address the production cost reduction of the ED problem with the CHPU problem, specifically examining the valve-point effect of POUs, the CSA was employed in [16]. Both investigations looked at network losses and valve-point consequences. The environmental concerns, however, were not considered.



To solve the ED issue under varying CHPU operating conditions with minimal computational effort, [17] implements a DRL approach. Artificial neural networks have also been used to try to fix the ED issue using CHPUs [18]. Practical limitations including valve-point influence, transmission power loss, and environmental factors were not considered in [17,18]. Considering the transmission loss and valve-point impact, a heap optimizer was used in [19] on large-scale 84-unit and 96-unit systems. In addition, the optimal ED problem with the CHPU problem has been solved using a composite firefly and self-regulating PSO technique [20]. In addition, a differential evolution with migrating variables was performed to address the ED problem with the CHPU problem in [21], and the cuckoo optimization approach was combined with a penalty function to address the ED problem with the CHPU issue in [22]. The probability of the MPA [23] failing when prey is lost has been reduced, due to the partitioning of the iterations into three separate and continuous sections. In [24], the authors offer a MPHS for an ED problem involving CHPU optimization with 84 units, considering the effects of valve-point loading on thermal power plants. Together, the heap optimizer and the jellyfish optimizer were used to solve a 96-unit ED problem in the CHPU system while also considering the potential for unit outages (as studied in [25]). Most MAs, despite their impressive results, are highly sensitive to changes in user-defined parameters. Another drawback is that the MAs may not reliably converge to the global optimum. These worries have seized the interest of researchers, and they have begun developing hybrid versions as one of the valid metrics, as hybridization is a crucial part of high-performing algorithms.



Modifying and applying the AEA [26] in engineering contexts is straightforward and requires only minor adjustments. All ecosystems involve three forms of energy transfer (production, consumption, and breakdown), and AEA considers all three to obtain the optimal fitness score. Meanwhile, the consumption approach can help to strengthen the discovery, exploration, and exploitation of space. The production operation enables AEA to generate a new member at irregular intervals. Due to its robustness and powerful global searching capabilities, the AEA approach has been applied to a variety of real-world optimization engineering problems, such as distributed generation and capacitor allocation in power delivery networks [27], the minimization of regression test suites [28], the optimization of filter parameters [29], the optimization of demand-side management for hybridized energy sources [30], the representation of PV cells [31], and the identification of fuel-cell parameters [32].




1.3. Paper Contribution


This study introduces a novel improved MAEA, or Modified Artificial Ecosystem Algorithm, for solving the ED problem with CHPUs, both with and without power losses. One novel method for enhancing the solution quality in non-linear and multivariate optimization settings is to combine the AEA with the FDBM. A successful application of AEA combined with the FDBM technique for the power flow constrained by the transient stability level in power networks has been reported [33]. Therefore, the processes of diversification and intensification are carried out in harmony. The 7-unit and 48-unit test systems are used to conduct a comparative analysis of the standard AEA and the proposed MAEA. The results demonstrated that the proposed method was superior to the standard AEA in locating the global optimal solution. In early tests, the planned MAEA demonstrated impressive problem-solving abilities. This criterion suggests that the changes made to the design of this AEA throughout the decomposition stage were successful in producing results that were closer to the real-world behaviour of the algorithm being simulated. A few of the most important things that this research has added are:




	
An FDBM is developed in collaboration with an AEA to create a unique MAEA with improved performance.



	
The basic AEA and the proposed MAEA have been assessed in solving the ED problem including CHPUs with and without power losses.



	
The proposed MAEA shows greater performance compared with several other reported algorithms in the literature.



	
Furthermore, the suggested MAEA is stated to be more resilient and stable than the basic AEA.









1.4. Key Segments of the Paper


This paper is divided into five key segments. The first segment is the introduction section which describes the problem context, literature review, and the hypothesis based on the gap analysis of the previously published research. The second segment describes the modelling of the ED combining CHPUs in terms of the main objective function and the practical regarding constraints. The third segment describes the main structure of the basic AEA and the processes of the developed MAEA. The fourth segment compares the MAEA’s simulated outcomes considering two practical systems of the 7-unit and 48-unit test systems. The last segment provides a concluding note to this work.





2. ED Problem with CHPUs


The key players in the ED in efforts to supply the electricity and heat loads in the facilities and buildings are depicted in Figure 1. The core purpose of the ED combining CHPUs would be to identify the economic potential rate for heat generated by HOUs, power generated by POUs, and both power and heat generated by CHPUs, such that fuel costs are maintained to a minimum while heat and power needs and restrictions are met [34]. Thus, the generation cost objective (F) may be stated as:


  F =   ∑  m = 1       N  G U         C m  ( P  g m  )   +   ∑  n = 1       N  H U         C n  ( H  g n  )   +   ∑  k = 1    N  C H P U       C k    ( P  g k  , H  g k  )  



(1)




where


   C m  ( P  g m  ) = α  1 m    ( P  g m  )  2  + α  2 m  P  g m  + α  3 m  +  |  α  4 m  sin ( α  5 m  ( P  g  m , min   − P  g m  ) )  |   



(2)






   C n  ( H  g n  ) = φ  1 n    ( H  g n  )  2  + φ  2 n  H  g n  + φ  3 n   



(3)






   C k  ( P  g k  , H  g k  ) = β  1 k    ( P  g k  )  2  + β  2 k  P  g k    i  + β  3 k  + β  4 k    ( H  g k  )  2  + β  5 k  H  g k  + β  6 k  H  g k  P  g k   



(4)







Furthermore, the inequality requirements of this problem should always be fulfilled in regard to the capacity of the POUs, HOUs, and CHPUs, as shown in Equations (5)–(8):


  P  g m  min   ≤ P  g m  ≤ P  g m  max             m = 1 :  N  G U      



(5)






  H  g n  min   ≤ H  g n  ≤ H  g n  max             n = 1 :  N  H U    



(6)






  P  g k  min   ≤ P  g k  ≤ P  g k  max         k = 1 :  N  C H P U    



(7)






  H  g k  min   ≤ H  g k  ≤ H  g k  max         k = 1 :  N  C H P U    



(8)







Furthermore, the equality requirements of this problem should always be satisfied in the perspective of heat and power balance, as addressed in Equations (9) and (10), and as described in the following:


    ∑  i = 1    N  C H P U      H  g i    +   ∑  j = 1    N  H U      H  g j    = H e a  t D   



(9)






    ∑  i = 1    N  C H P U      P  g i    +   ∑  k = 1    N  G U      P  g k    = P o w e  r D   



(10)







The power loss represents an important phenomenon that occurs in power system networks due to the flow of the output power from the generation units to the customers. It is of great importance since it is usually modelled in a highly non-linear form that represents further complexity to the ED model incorporating CHPUs. Thus, the integration of transmission losses might result in additional non-convexity for the issue, which is described in Equation (11) as a proportion of the output power of the POUs, HOUs, and CHPUs:


   P  L o s s   =   ∑  j = 1    N  G U        ∑  i = 1    N  G U       B  j i   P  g j      P  g i  +   ∑  j = 1    N  G U        ∑  i = 1    N  H U       B  j i   P  g j      H  g i  +   ∑  j = 1    N  H U        ∑  i = 1    N  C H P U       B  j i   H  g j      H  g j   



(11)




where PLoss is the total losses; Bji is the coefficient element in the B-matrix that describes line losses correlating the units.



Accordingly, Equation (10) can be reformulated as follows:


    ∑  i = 1    N  C H P U      P  g i    +   ∑  k = 1    N  G U      P  g k    = P o w e  r D  +  P  L o s s    



(12)








3. Proposed MAEA for Solving the ED Problem with CHPUs


3.1. Artificial Ecosystem Algorithm


The AEA is influenced by three energy transfer processes inside an ecosystem: production, consumption, and decomposition. The production operation enables the AEA to construct a new solution represented at random, that may replace the prior member amongst the global optimum (YABest) and a randomized individual (YAR) created at irregular intervals in the solution space. The following is how the production operation may be quantified [26]:


   Y  A 1  ( i t + 1 ) = Y  A  B e s t   ( i t ) × ( 1 −  q 1  × ( 1 −   i t    T  max     ) ) +  q 1    × Y  A R  × ( 1 −   i t    T  max     )    Y  A 1  ( i t + 1 ) = Y  A  B e s t   ( i t ) × ( 1 −  q 1  × ( 1 −   i t    T  max     ) ) +  q 1    × Y  A R  × ( 1 −   i t    T  max     )   



(13)






  Y  A R  = L B + q × ( U B − L B )  



(14)




wherever it corresponds to the present iteration; Tmax and PM represent the maximum number of repetitions and the size of the population, accordingly, whereas UB and LB represent the upper and lower limits, respectively. In addition, q1 and q represent a randomized value and a randomized vector inside the domain [0, 1].



In the consumption framework, Levy flying is incorporated, which can conveniently traverse the search area. It simulates the food quest of various species such as lions and cuckoos as a numerical operation. Levy flight is a randomized walk which may cover the search region successfully since the length of some stages is much longer in the long run, implying that it can achieve the global optimum. As a result, Levy flying is commonly used to increase the optimizing efficiency of metaheuristic algorithms [26]. However, there appear to be two drawbacks to such movement: intricacy and the necessity to adjust multiple settings. As a result, given the properties of Levy flight, a parameter-free randomized walk, termed consumption parameter (CP), is derived as shown in Equation (15).


  C P = 0.5 ×    v 1     |   v 2   |    ,  v 1  ≈ N ( 0 , 1 )   &    v 2  ≈ N ( 0 , 1 )  



(15)




wherein N(0,1) denotes a normal distribution with a mean of zero and a standard deviation of one. As a result, this consumption parameter could aid various sorts of consumers in implementing three consuming tactics. The first method is Herbivore, in which the consumer could only consume what the producer produces. This behaviour can be represented mathematically as described in the following:


  Y  A k  ( i t + 1 ) = Y  A k  ( i t ) + C P × (   Y  A k  ( i t ) − Y  A 1  ( i t ) ) ,         k ∈ [ 2 :  P M  ]  



(16)







The second technique is called Carnivore, in which the consumer could only devour a consumer having the highest degree of energy at irregular intervals. This behaviour could be represented mathematically as follows:


  Y  A k  ( i t + 1 ) = Y  A k  ( i t ) + C P × (   Y  A k  ( i t ) − Y  A 1  ( i t ) ) ,         k ∈ [ 3 :  P M  ]  



(17)







The third technique is called Omnivore, in which the consumer could devour both the consumer and the producer at random. This is how this behaviour may be demonstrated:


  Y  A k  ( i t + 1 ) = Y  A k  ( i t ) + C P × (  q 2  · Y  A k  ( i t ) − Y  A 1  ( i t ) ) + ( 1 −  q 2  ) ( Y  A k  ( i t ) − Y  A j  ( i t ) ) ,   k = 3 :  P M  , j = q (  [     2    k − 1      ]  )    



(18)







The individual position in a population could be upgraded in the decomposition, as shown in Equation (19). Therefore, to some extent, this approach exemplifies exploitation since it allows the subsequent place of every individual in the solution to be distributed around the global optimum of the best solution, which is stated as the decomposer. The following describes the decomposition behaviour:


  Y  A k  ( i t + 1 ) = Y  A  B e s t   ( i t ) + 3 × N ( 0 , 1 ) × ( (  q 3  · q (  [     1   2     ]  ) − 1 ) · Y  A  B e s t   ( i t ) − ( 2 ·  q 3  − 1 ) · Y  A i  ( i t ) ) ,     k = 1 :  P M     



(19)







Based on the above illustrations, the main steps of the basic AEA can be depicted as in Figure 2.




3.2. Proposed MAEA with FDBM


The purpose of developing the FDBM selecting approach is to discover participants who will make the greatest contribution to the search operations in a systematic and efficient way. Therefore, it is possible to ensure that the varying and strengthening actions are carried out in a balanced manner. The Euclidean distance metric could be employed to calculate the distance between the solutions and the preferred opportunity (YABest). Consequently, the distance (Dk) between each individual and the optimal choice is calculated as described in the following:


   D k  =    (      ∑  d = 1   D i m    ( Y  A  k , d   − Y  A  B e s t , d   )    2     )    0.5                       k = 1 :  P M   



(20)







After that, the rating grade of each design choice is established. The rating grade is computed using the normalized fitness (NF) and normalized distance (ND). They may be assessed for every member (k) as follows:


  N  D k  =    D k  −  D  k , min      D  k , max   −  D  k , min                         i = 1 :  P M   



(21)






  N  F k  =    F k  −  F  k , min      F  k , max   −  F  k , min                         k = 1 :  P M   



(22)







Relying on this, the inclusion of normalized numerical quantities is designed to prevent these features from overpowering the target computation. As a result, each individual’s (k) grade (GR) may be calculated as follows:


  G  R k  = N  D k  + N  F k                      k = 1 :  P M   



(23)







Following the determination of all individuals’ grades, a roulette wheel selection process [36] is used to choose an alternative by including a high probability of getting a high grade (YAFDBM). As a result, the decomposition step stated in Equation (19) is improved by combining the FDBM:


  Y  A k  ( i t + 1 ) = Y  A  F D B M   ( i t ) + 3 × N ( 0 , 1 ) · ( (  q 3  · q (  [     1   2     ]  ) − 1 ) · Y  A  B e s t   ( i t ) − ( 2 ·  q 3  − 1 ) · Y  A k  ( i t ) ) ,     k = 1 :  P M     



(24)







The MAEA process is depicted in Figure 3. It starts by randomly forming a population. The first seeking individuals adjust their locations according to Equation (13) with each repeat, but the subsequent participants have the same opportunity to alter their placements by selecting Herbivore according to Equation (16), Carnivore according to Equation (17), or Omnivore according to Equation (18). Adjustment may be allowable when a participant obtains a greater fitness trait. The FDBM is then triggered to select an alternative by including a high probability of receiving a good grade. To accomplish this, each member’s distance from the optimum choice is calculated as shown in Equation (20). The normalized objective functions and distance scores of the prospects are therefore assessed utilizing Equations (21) and (22), whereas the rating grades of the solutions are computed in the second step of the FDBM approach as shown in Equation (23). Equation (24) would then be used to change the placement of each component. Participants might be created at random in the seeking space whenever there is gap far from the upper or lower borders throughout the upgrade sequence. All changes are made continually until the AEA procedure is completed, by the inclusion of a termination criterion. Eventually, the best candidate is chosen.





4. Simulation Results


The acquired findings for the ED incorporating CHPUs were contrasted with the basic AEA to illustrate the effectiveness of the proposed MAEA. Both techniques are tested on two standard test systems. The two selected tested networks have different configurations and scalability called 7- and 48-unit systems. The first test system consists of two CHPUs, four POUs, and one HOU. As mentioned in [37], system data is stated as loss coefficients, fuel prices, and CHPU restrictions. For this system, the loading level of power and heat are 600 MW and 150 MWth. The second test system comprises 48-unit systems as mentioned in [38] which illustrates that 4700 MW and 2500 MWth are the load demand and heat demand, respectively, and it has 10 HOUs, 26 POUs, and 12 CHPUs. For the basic AEA and the proposed MAEA, the number of individuals is taken as 100 and the numbers of iterations are 300 and 3000, respectively, for the first and second system. MATLAB 2017b is used to execute the simulated implementations.



Based on the consideration of power losses, four cases are included in the study, which can be summarized as follows:




	
Case 1: Minimization of the fuel costs without loss consideration for the 7-unit system.



	
Case 2: Minimization of the fuel costs considering the power losses for the 7-unit system.



	
Case 3: Minimization of the fuel costs without loss consideration for the 48-unit system.



	
Case 4: Minimization of the fuel costs considering the power losses for the 48-unit system.








4.1. Implementation for Case 1


The suggested MAEA and basic AEA are employed to solve the ED with CHPUs in order to minimize fuel expenditures without accounting for losses. Table 1 depicts the optimal operating parameters of the POUs, CHPUs, and HOUs depending upon the suggested MAEA and the essential AEA in this instance. According to this data, the suggested MAEA achieves remarkable results by having the lowest fuel costs of 10,092.18 USD/h. To obtain these circumstances, the proposed MAEA sets the operational settings to 44.76, 98.56, 112.68, 209.82, 94.19, and 40 MW for the power outputs and 27.18, 74.99, and 47.82 MWth for the heat units. The basic AEA, on the other hand, attains fuel costs of 10,092.41 USD/h.



In addition, Figure 4 displays the obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 1. As shown, the superior performance of the proposed MAEA is declared over the basic AEA in all simulated runs. The improvement percentage ranges from the very small value of 0.0023% to 0.89%.



Based on that outcome in Figure 4, Table 2 records the robustness metrics of the proposed MAEA and the basic AEA of Case 1 in terms of the minimum, mean, maximum, and standard deviation. As shown, superior resilience performance related to the proposed MAEA is declared over the basic AEA. The proposed MAEA acquires the lowest minimum, mean, maximum, and standard deviation of 10,092.18, 10,093.32, 10,095.17, and 0.734646 USD/h, with improvements of 0.0023, 0.145, 0.892, and 97.31%, respectively.



In addition, Figure 5 displays the convergence rates of the proposed MAEA and the basic AEA related to the best run, worst run, and the average of all simulated runs. As demonstrated, the suggested MAEA has superior convergence features in its evolution in terms of lowering fuel expenditures throughout the duration of iterations. Despite achieving lower fitness values in the first 130 iterations, the AEA remained in a local optimal zone, particularly for its best run. The difference between the best run, worst run, and the average of all runs of the MAEA and AEA of Case 1 is shown in Figure 6, confirming the considerable improvement of the proposed MAEA after about 47%, 7%, and 20% of the total number of iterations for the average, best, and worst situations.




4.2. Implementation for Case 2


The suggested MAEA and basic AEA are employed to solve the ED with CHPUs in order to minimize fuel expenditures, taking into consideration the power losses. Table 3 illustrates the optimal operating parameters of the POUs, CHPUs, and HOUs depending upon the suggested MAEA and the essential AEA in this instance. The suggested MAEA achieves remarkable results by having the lowest fuel costs of 10,095.02 USD/h. To obtain these circumstances, the proposed MAEA sets the operational settings to 45.17, 98.54, 112.69, 209.82, 94.6, and 40 MW for the power outputs and 24.73, 75, and 50.27 MWth for the heat units. The basic AEA, on the other hand, attains fuel costs of 10,092.18 USD/h.



In addition, Figure 7 displays the obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 2. As shown, the superior performance of the proposed MAEA is declared over the basic AEA in all simulated runs. The improvement percentage ranges from the very small value of 0.0009% to 0.73%.



Based on the outcome in Figure 7, Table 4 records the robustness metrics of the proposed MAEA and the basic AEA of Case 2. As shown, superior resilience performance related to the proposed MAEA is declared over the basic AEA. The proposed MAEA acquires the lowest minimum, mean, maximum, and standard deviation of 10,092.18, 10,093.32, 10,095.17, and 0.734646 USD/h with improvements of 0.0009, 0.115, 0.73, and 96.63%, respectively.



In addition, comparisons are made with the results of powerful optimization algorithms used in solving ED problems in the literature. For this purpose, Table 5 displays the comparative assessment of the AEA and the proposed MAEA with reported algorithms of TVAC-PSO [38], IGA [39], ECSA [40], PSO [41], TVAC-PSO [41], LCA [42], CPSO [43], WVO [44], WVO-PSO [44], RCGA [45], BCO [45], and DE [43,46]. As shown, the suggested MAEA provides better-performing features compared with the others.



In addition, Figure 8 displays the convergence rates of the proposed MAEA and the basic AEA related to the best run, worst run, and the average of all simulated runs. As demonstrated, the suggested MAEA has superior convergence features in its evolution in terms of lowering fuel expenditures throughout the duration of iterations. Despite achieving lower fitness values in the first 140 iterations, the AEA remained in a local optimal zone, particularly for its best run. Focusing on the average and worst performance of the AEA and MAEA, the difference between the obtained convergence of the MAEA and AEA of Case 2 is shown in Figure 9, confirming the considerable improvement of the proposed MAEA after about 43% and 28% of the total number of iterations for the average and worst situations.




4.3. Implementation for Case 3


In this case, the 48-unit system is considered where the load demand and heat demand are 4700 MW and 2500 MWth, respectively. The suggested MAEA and basic AEA are employed to solve the ED with CHPUs to minimize the fuel cost without considering the losses. Table 6 depicts the optimal settings of the POUs, CHPUs, and HOUs. According to this data, the suggested MAEA achieves remarkable results by having the lowest fuel costs of 116,897.9 USD/h. The basic AEA, on the other hand, attains fuel costs of 118,881.4 USD/h.



In addition, Figure 10 displays the obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 3. As shown, the superior performance of the proposed MAEA is declared over the basic AEA in all simulated runs. The improvement percentage ranges from the very small value of 1.67% to 3.99%.



Added to that, Table 7 records the corresponding robustness metrics of the proposed MAEA and the basic AEA of Case 3. The proposed MAEA greatly outperforms the basic AEA. The proposed MAEA acquires the lowest minimum, mean, maximum, and standard deviation of 116,897.89, 118,004.35, 119,424.03, and 597.05 USD/h with improvements of 1.69, 1.7, 4, and 46.03%, respectively.



In addition, comparisons are made with the results of powerful optimization algorithms used in solving ED problems in the literature. For this purpose, Table 8 displays the comparative assessment of the AEA and proposed MAEA with reported algorithms of CPSO [41], GSA [15], MRFO [47], TVAC-PSO [41], MVO [47], and SSA [47]. As shown, the suggested MAEA provides better-performing features compared with the others.



Figure 11 displays the convergence rates of the proposed MAEA and the basic AEA related to the best run, worst run, and the average of all simulated runs. The suggested MAEA has superior convergence features in its evolution in terms of lowering fuel expenditures throughout the duration of iterations. Despite achieving lower fitness values in the first 200 iterations, the AEA remained in a local optimal zone, particularly for its best run. The difference between the best run, worst run, and the average of all runs of the MAEA and AEA of Case 3 is shown in Figure 12, confirming the considerable improvement of the proposed MAEA after about 13%, 6.2%, and 4.5% of the total number of iterations for the average, best, and worst situations.




4.4. Implementation for Case 4


The suggested MAEA and basic AEA are employed to solve the ED with CHPUs to minimise fuel expenditures, taking into consideration the power losses. Table 9 illustrates the optimal settings of the POUs, CHPUs, and HOUs. According to this data, the suggested MAEA achieves remarkable results by having the lowest fuel costs of 118,134.96 USD/h. The basic AEA, on the other hand, attains fuel costs of 118,793.85 USD/h.



In addition, Figure 13 displays the obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 4. As shown, the superior performance of the proposed MAEA is declared over the basic AEA in all simulated runs. The improvement percentage ranges from the very small value of 0.55% to 3.87%.



In addition, Table 10 records the robustness metrics of the proposed MAEA and the basic AEA of Case 4. As shown, superior resilience performance related to the proposed MAEA is declared over the basic AEA. The proposed MAEA acquires the lowest minimum, mean, maximum, and standard deviation of 118,134.96, 118,925.83, 120,226.61, and 489.6 USD/h with improvements of 0.55, 1.44, 3.87, and 60.57%, respectively.



In addition, the convergence rates of the proposed MAEA and the basic AEA related to the best run, worst run, and the average of all simulated runs are displayed in Figure 14. The suggested MAEA has superior convergence features in its evolution in terms of lowering fuel expenditures throughout the duration of iterations. Despite achieving lower fitness values in the first 500 iterations, the AEA remained in a local optimal zone, particularly for its best run. The difference between the best run, worst run, and the average of all runs of the MAEA and AEA of Case 4 is shown in Figure 15, confirming the considerable improvement of the proposed MAEA after about 20%, 27%, and 10% of the total number of iterations for the average, best, and worst situations.





5. Conclusions


In this paper, a promising solution methodology based on a novel Modified Artificial Ecosystem Algorithm (MAEA) with superior performance and significant convergence has been proposed for solving the Economic Dispatch (ED) with Combined Heat and Power Units (CHPUs). The proposed MAEA combines the original AEA with a Fitness Distance Balance Model (FDBM) to increase solution quality in non-linear and multivariate optimization contexts. The FDBM was used as a method of selecting individuals which will contribute the most to the seeking paths within a community in a dependable and productive manner. As a result, the processes of diversification and intensification were carried out in a balanced manner. Both algorithms have been carried out in comparison using the 7-unit and 48-unit test systems. The suggested MAEA significantly outperforms the basic AEA with and without loss considerations. The suggested MAEA indicates superior resilience over the basic AEA by acquiring the lowest minimum, mean, maximum, and standard deviation. In addition, the suggested MAEA has superior convergence features in its evolution in terms of lowering fuel expenditures throughout the duration of iterations. As a further future study, applied methodology via the suggested MAEA is recommended for the optimal ED of cogeneration units considering the variability of electricity prices on the market which is a significant issue. Even though many CHPUs benefit from a tariff model with a fixed offtake price, it is recommended that the model is upgraded with external market signals in determining the optimal dispatch scenario.
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Abbreviations




	AEA
	Artificial ecosystem algorithm



	BCO
	Bee colony optimization



	CHPUs
	Combined heat and power units



	CHPEED
	Combined heat and power economic environmental dispatch



	CSA
	Cuckoo search algorithm



	DE
	Differential evolution



	DRL
	Deep reinforcement learning



	ECSA
	Effective cuckoo search algorithm



	ED
	Economic dispatch



	FDBM
	Fitness distance balance model



	GSA
	Gravitational search algorithm



	HOU
	Heat-only unit



	IGA
	Improved genetic algorithm



	MAs
	Metaheuristic algorithms



	MAEA
	Modified artificial ecosystem algorithm



	MPA
	Marine predator algorithm



	MPHS
	Multi-player harmony search



	MRFO
	Manta-ray foraging optimizer



	MVO
	Multi-verse optimizer



	POU
	Power-only unit



	PSO
	particle swarm optimization



	PV
	Photovoltaic



	SSA
	Salp swarm algorithm



	TVAC-PSO
	PSO with time varying acceleration coefficients



	WVO
	Weighted vertices optimization



	NGU
	Number of POUs



	NHU
	Number of HOUs



	NCHPU
	Number of CHPUs



	Cm(Pgm)
	Cost function for POUs



	Cn(Hgn)
	Cost function for HOUs



	Ck(Pgk,Hgk)
	Cost function for CHPUs



	α1:α5
	Cost coefficients of POUs



	φ1:φ3
	Cost coefficients of HOUs



	β1:β6
	Cost coefficients of CHPUs



	‘min’ and ‘max’
	Lowest and highest bounds



	PowerD
	Total electric and heat demands



	HeatD
	Total electric and heat demands



	PLoss
	Total losses



	Bji
	Coefficient element in the B-matrix
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Figure 1. Key players in the ED problem with CHPUs [35]. 
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Figure 2. Main steps of AEA. 
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Figure 3. Main steps of the proposed MAEA. 






Figure 3. Main steps of the proposed MAEA.



[image: Applsci 12 11773 g003]







[image: Applsci 12 11773 g004 550] 





Figure 4. Obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 1. 
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Figure 5. Convergence rates of the proposed MAEA and the basic AEA of Case 1. 
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Figure 6. Percentage difference for the best and worst run and the average of all runs of the MAEA and AEA of Case 1. 
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Figure 7. Obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 2. 
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Figure 8. Convergence rates of the proposed MAEA and the basic AEA of Case 2. 
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Figure 9. Percentage difference for the worst run and the average of all runs of the MAEA and AEA of Case 2. 
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Figure 10. Obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 3. 
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Figure 11. Convergence rates of the proposed MAEA and the basic AEA of Case 3. 
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Figure 12. Percentage difference for the best, worst run, and the average of all runs of the MAEA and AEA of Case 3. 
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Figure 13. Obtained costs for all simulated runs of the proposed MAEA and the basic AEA of Case 4. 
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Figure 14. Convergence rates of the proposed MAEA and the basic AEA of Case 4. 
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Figure 15. Percentage difference for the worst run and the average of all runs of the MAEA and AEA of Case 4. 
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Table 1. Optimal operational settings and related costs of the proposed MAEA and the basic AEA of Case 1.
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Outputs

	
AEA

	
Proposed MAEA






	
Power-only units

	
Pg 1

	
44.70016

	
44.75768




	
Pg 2

	
98.56597

	
98.56182




	
Pg 3

	
112.681

	
112.6768




	
Pg 4

	
209.8095

	
209.8153




	
CHP 1

	
Pg 5

	
94.24102

	
94.18733




	
Hg 5

	
26.88296

	
27.18475




	
CHP 2

	
Pg 6

	
40.00238

	
40.00106




	
Hg 6

	
74.95064

	
74.99904




	
Heat-only unit

	
Hg 7

	
48.1664

	
47.81621




	
Costs (USD/h)

	
10,092.41375

	
10,092.18153
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Table 2. Robustness metrics of the proposed MAEA and the basic AEA of Case 1.
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	Costs (USD/h)
	AEO
	Proposed MAEA
	Improvement %





	Minimum
	10,092.41
	10,092.18
	0.002301



	Mean
	10,108.01
	10,093.32
	0.145364



	Maximum
	10,186.05
	10,095.17
	0.892249



	Standard Deviation
	27.37743
	0.734646
	97.3166
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Table 3. Optimal operational settings and related costs of the proposed MAEA and the basic AEA of Case 2.






Table 3. Optimal operational settings and related costs of the proposed MAEA and the basic AEA of Case 2.





	

	
Outputs

	
AEA

	
Proposed MAEA






	
Power-only units

	
Pg 1

	
45.17078

	
45.17078




	
Pg 2

	
98.53982

	
98.53982




	
Pg 3

	
112.6899

	
112.6899




	
Pg 4

	
209.8158

	
209.8158




	
CHP 1

	
Pg 5

	
94.59907

	
94.59907




	
Hg 5

	
24.72766

	
24.72766




	
CHP 2

	
Pg 6

	
40

	
40




	
Hg 6

	
75.00086

	
75.00086




	
Heat-only unit

	
Hg 7

	
50.27148

	
50.27148




	
Costs (USD/h)

	
10,095.12

	
10,095.02
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Table 4. Robustness metrics of the proposed MAEA and the basic AEA of Case 2.
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	Costs (USD/h)
	AEO
	Proposed MAEA
	Improvement %





	Minimum
	10,095.11736
	10,095.02453
	0.000919468



	Mean
	10,107.45372
	10,095.84203
	0.114882388



	Maximum
	10,172.61916
	10,097.86343
	0.734872038



	Standard Deviation
	23.09259359
	0.777264037
	96.63414144
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Table 5. Comparative Results for Case 2 for the 7-Unit System.
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	Optimizer
	Costs (USD/h)





	Proposed MAEA
	10,095.02453



	AEO
	10,095.11736



	TVAC-PSO [38]
	10,100.3000



	IGA [39]
	10,107.9071



	ECSA [40]
	10,121.9466



	PSO [41]
	10,178.4311



	TVAC-PSO [41]
	10,244.0200



	LCA [42]
	12,451.4000



	CPSO [43]
	10,325.3000



	WVO-PSO [44]
	10,372.0000



	WVO [44]
	10,317.0000



	RCGA [45]
	10,667.0000



	BCO [45]
	10,317.0000



	DE [46]
	10,317.0000



	DE [43]
	10,317.0000
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Table 6. Optimal operational settings and related costs of the proposed MAEA and the basic AEA of Case 3.
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	Outputs
	AEA
	Proposed MAEA
	Outputs
	AEA
	Proposed MAEA





	Pg 1
	448.8807
	538.5761
	Pg 32
	40.15046
	53.42016



	Pg 2
	153.4517
	224.6881
	Pg 33
	81.22367
	105.7268



	Pg 3
	297.4129
	150.6271
	Pg 34
	54.23016
	40.71791



	Pg 4
	159.7331
	109.8798
	Pg 35
	159.8071
	145.7548



	Pg 5
	109.8657
	159.6088
	Pg 36
	40.35118
	58.07748



	Pg 6
	109.8665
	109.6811
	Pg 37
	18.34234
	11.87948



	Pg 7
	159.7313
	109.9305
	Pg 38
	58.66311
	35.5726



	Pg 8
	159.5867
	111.388
	Hg 27
	157.8226
	111.8012



	Pg 9
	109.8644
	109.9677
	Hg 28
	77.27785
	82.64235



	Pg 10
	113.2198
	77.44919
	Hg 29
	106.0673
	115.5393



	Pg 11
	84.37659
	114.8267
	Hg 30
	96.1183
	75.15452



	Pg 12
	69.79648
	92.7831
	Hg 31
	40.07545
	40.54104



	Pg 13
	108.2384
	55.06172
	Hg 32
	22.3367
	28.37245



	Pg 14
	269.1298
	359.1073
	Hg 33
	104.9259
	118.6701



	Pg 15
	18.09279
	300.7246
	Hg 34
	87.28232
	75.61917



	Pg 16
	299.1923
	299.6896
	Hg 35
	149.024
	141.13



	Pg 17
	134.9289
	109.9425
	Hg 36
	75.30099
	90.60269



	Pg 18
	159.7199
	110.3213
	Hg 37
	43.57571
	40.79744



	Pg 19
	133.4154
	159.7346
	Hg 38
	30.7564
	20.25903



	Pg 20
	159.7371
	109.9029
	Hg 39
	418.0359
	419.3306



	Pg 21
	109.4822
	109.8995
	Hg 40
	60
	59.99817



	Pg 22
	109.8535
	110.3726
	Hg 41
	59.99961
	59.02255



	Pg 23
	77.06126
	77.56081
	Hg 42
	119.9991
	119.9959



	Pg 24
	114.9288
	77.73939
	Hg 43
	119.896
	119.9999



	Pg 25
	92.40386
	72.898
	Hg 44
	371.5652
	420.5329



	Pg 26
	109.2187
	92.54764
	Hg 45
	59.99897
	59.99902



	Pg 27
	175.4811
	93.49093
	Hg 46
	59.99318
	59.99546



	Pg 28
	42.63888
	48.85531
	Hg 47
	119.9613
	119.9966



	Pg 29
	83.2744
	100.1503
	Hg 48
	119.9873
	119.9998



	Pg 30
	64.4735
	40.18019
	Costs (USD/h)
	118,881.4
	116,897.9



	Pg 31
	10.17506
	11.26554
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Table 7. Robustness metrics of the proposed MAEA and the basic AEA of Case 3.






Table 7. Robustness metrics of the proposed MAEA and the basic AEA of Case 3.





	Costs (USD/h)
	AEO
	Proposed MAEA
	Improvement %





	Minimum
	118,881.4473
	116,897.8879
	1.668518838



	Mean
	120,045.6955
	118,004.3493
	1.70047432



	Maximum
	124,396.4722
	119,424.0332
	3.997250827



	Standard Deviation
	1106.34051
	597.0478043
	46.03399236
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Table 8. Comparative Results for Case 3 for the 48-Unit System.
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	Optimizer
	Best Costs (USD/h)
	Mean Costs (USD/h)
	Worst Costs (USD/h)





	Proposed MAEA
	116,897.8879
	118,004.3493
	119,424.0332



	AEO
	118,881.4473
	120,045.6955
	124,396.4722



	GSA [15]
	119,775.9
	-
	-



	MRFO [47]
	117,336.9
	117,875.4
	118,217.5



	CPSO [41]
	120,918.9
	-
	-



	TVAC-PSO [41]
	118,962.5
	-
	-



	MVO [47]
	117,657.9
	118,724
	119,249.3



	SSA [47]
	120,174.1
	121,110.2
	122,636.8
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Table 9. Optimal operational settings and related costs of the proposed MAEA and the basic AEA of Case 4.
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	Outputs
	AEA
	Proposed MAEA
	Outputs
	AEA
	Proposed MAEA





	Pg 1
	538.5587406
	628.6477795
	Pg 32
	38.76118435
	63.12739336



	Pg 2
	224.500532
	299.3039097
	Pg 33
	88.68870343
	146.019954



	Pg 3
	224.4082699
	224.4413162
	Pg 34
	42.77532917
	50.56025758



	Pg 4
	159.7326419
	110.1098241
	Pg 35
	139.9313947
	111.1809533



	Pg 5
	109.8653469
	109.9778609
	Pg 36
	64.33155077
	41.38648745



	Pg 6
	110.0410418
	109.9393484
	Pg 37
	17.10618711
	21.37570912



	Pg 7
	159.7343364
	109.9133488
	Pg 38
	51.53918299
	42.68203447



	Pg 8
	109.6188942
	110.043928
	Hg 27
	124.6343646
	116.4793542



	Pg 9
	109.8371821
	109.938183
	Hg 28
	104.1938155
	76.07240708



	Pg 10
	77.4032053
	48.92271876
	Hg 29
	104.8875567
	106.7188473



	Pg 11
	40.00026194
	77.44715085
	Hg 30
	100.112622
	84.40365244



	Pg 12
	92.61659623
	94.12721908
	Hg 31
	44.08211567
	41.31323057



	Pg 13
	69.13694475
	92.38136273
	Hg 32
	21.70901773
	32.76518388



	Pg 14
	538.5591303
	448.8213154
	Hg 33
	109.1153478
	141.283024



	Pg 15
	305.3626551
	150.3625883
	Hg 34
	77.39491135
	84.08846428



	Pg 16
	75.71780424
	224.5198314
	Hg 35
	137.8725067
	121.7181569



	Pg 17
	109.8666626
	109.8560048
	Hg 36
	96.0050104
	76.19104695



	Pg 18
	110.3999059
	110.5899462
	Hg 37
	43.04592942
	44.86858389



	Pg 19
	160.1264504
	110.0674115
	Hg 38
	27.51826351
	23.48428876



	Pg 20
	109.8878115
	159.7957779
	Hg 39
	380.963592
	415.0460685



	Pg 21
	109.8694694
	109.9903509
	Hg 40
	59.96320817
	59.86965016



	Pg 22
	109.8484983
	160.5171237
	Hg 41
	59.99673171
	59.97150217



	Pg 23
	97.5173401
	77.50518542
	Hg 42
	119.9998655
	119.9989975



	Pg 24
	77.40055945
	77.50615461
	Hg 43
	119.9938832
	119.7248381



	Pg 25
	92.63089118
	92.55833553
	Hg 44
	408.8797
	416.2126319



	Pg 26
	92.41551521
	92.7814134
	Hg 45
	59.99971606
	59.98718434



	Pg 27
	116.3421498
	101.8906582
	Hg 46
	59.9999997
	59.85924821



	Pg 28
	73.81758739
	41.24267045
	Hg 47
	119.6365482
	119.9649134



	Pg 29
	81.15521833
	84.45117414
	Hg 48
	119.9952941
	119.9787256



	Pg 30
	69.0898591
	50.89534319
	Costs (USD/h)
	118,793.8535
	118,134.9569



	Pg 31
	19.52394366
	13.06729569
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Table 10. Robustness metrics of the proposed MAEA and the basic AEA of Case 4.






Table 10. Robustness metrics of the proposed MAEA and the basic AEA of Case 4.





	Costs (USD/h)
	AEO
	Proposed MAEA
	Improvement %





	Minimum
	118,793.8535
	118,134.9569
	0.554655419



	Mean
	120,660.8568
	118,925.8259
	1.437940105



	Maximum
	125,071.3754
	120,226.6133
	3.87359788



	Standard Deviation
	1241.686276
	489.6017384
	60.56961023
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