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Abstract: Twitter has become a major social media platform and has attracted considerable interest
among researchers in sentiment analysis. Research into Twitter Sentiment Analysis (TSA) is an active
subfield of text mining. TSA refers to the use of computers to process the subjective nature of Twitter
data, including its opinions and sentiments. In this research, a thorough review of the most recent
developments in this area, and a wide range of newly proposed algorithms and applications are
explored. Each publication is arranged into a category based on its significance to a particular type of
TSA method. The purpose of this survey is to provide a concise, nearly comprehensive overview
of TSA techniques and related fields. The primary contributions of the survey are the detailed
classifications of numerous recent articles and the depiction of the current direction of research in the
field of TSA.
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1. Introduction

Due to the recent explosive rise of Social Networking Services (SNS), an enormous
amount of user-generated data, such as comments and reviews, is being created consis-
tently [1]. People’s opinions and feelings are expressed in the information, which is mostly
based on a common object of interest. These data have become treasure troves of informa-
tion, giving several chances for analyzing people’s reactions, which is particularly beneficial
in forecasting the sales of products [2], trends in the stock market [3], and results of political
elections [4]. There are more than 300 million active Twitter users [5], making it one of the
most popular micro-blogging services [6]. In light of its significance in the perception of
people’s thoughts and attitudes, Twitter-based Sentiment Analysis (TSA) has consequently
attracted a great deal of attention [7,8].

The topic of SA has been the subject of a great deal of writing, and more recently,
significant attention has been paid to TSA. Obviously, this therefore calls for a survey
article that may provide an overview of the current techniques and directions in the field
of study. Pang and Lee [9] provided an extensive and in-depth review of SA through
experimental works by using different kinds of data. However, the most up-to-date
methods were not shown in the article due to the fact that it was released a while ago.
In addition, comprehensive coverage of core concepts and topics concerning SA was
introduced by Liu et al. [10], in which the examination of application-centric methods was
performed to explain the basic ideas of SA. Adwan et al. [11] offered a survey providing
a brief introduction to the techniques of TSA. Nevertheless, only a few publications were
mentioned. Although there is also a most recent survey related to TSA [12], in which only
the machine-learning-based methods were investigated. According to our knowledge,
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there is a lack of comprehensive studies focusing on TSA. Thus, as a fundamental, a
thorough overview of the concepts of SA, and a more concise description of the ideas and
terminologies of TSA was illustrated in this survey. Recent advances and discoveries in
TSA were also presented. Moreover, tables were used to properly classify the published
papers, which allows for a more straightforward comparison among various methods.

The chosen articles in the present survey have a significant impact on TSA research
and related topics. Particularly, the state-of-the-art technologies available today have been
incorporated to exhibit the most current findings of TSA, while the traditional approaches
were selected as a comparative standard. In addition, the central section of the survey is
structured with three primary components: machine-learning-based, lexicon-based, and hy-
brid approaches, all of which are in keeping with the current trends in TSA research. More
effort has also been devoted to machine-learning-based solutions since those techniques
can produce a better performance of prediction accuracy for TSA tasks. Specifically, TSA is
extensively discussed in this survey, and it is broken down into the following subsections:
Section 2 introduces the role and the structure of Twitter. Section 3 illustrates the back-
ground and basic concept of sentiment analysis. The representation of the feature for TSA is
explained in Section 4, and Section 5 shows the different levels of analysis. In Section 6, the
approaches and recent achievements in Twitter sentiment analysis are presented. Section 7
presents several survey-related discussions. Finally, the survey is concluded in Section 8.
Table 1 displays the abbreviation descriptions mentioned in this paper. To gain a better
understanding of the TSA, several research questions are raised as follows.

Table 1. The description of abbreviation.

Abbreviation Description

TSA Twitter-based Sentiment Analysis
SNS Social Networking Service
SA Sentiment Analysis
OM Opinion Mining
NLP Natural Language Processing
NB Naïve Bayes

SVM Support Vector Machine
POS Part of Speech
BN Bayesian Network
ME Maximum Entropy

DAG Directed Acyclic Graph
NN Neural Network
PSO Particle Swarm Optimization
3NN 3-Nearest Neighbors
PCA Polarity Classification Algorithm

RQ1: What is the major difference between sentiment analysis and opinion mining?

Sentiment Analysis (SA) and Opinion Mining (OM) are two promising fields of study
that are both employed to learn about the feelings and opinions of people regarding certain
topics. As a result, both SA and OM can be used interchangeably to convey the same
concept in many cases. However, other scholars have argued that they are different since
they were developed to solve different problems. For instance, Tsytsarau et al. [13] claimed
that OM is designed to assess whether or not a given piece of text contains an opinion and
is used to address the subjective analysis problem. On the other hand, SA refers to the
analysis and prediction of the sentiment polarity of text data [14].

RQ2: Why was Twitter selected as the primary target platform for the study of SA?

Twitter has a significant number of active users, and Twitter API makes it simple to
collect vast quantities of opinionated text data. In addition, the users come from a variety
of backgrounds, including common individuals, celebrities, politicians, etc. In addition, the
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collected corpus includes a wide range of distinct materials from several domains, which
allows easy access to textual information in a variety of languages [15].

RQ3: What are the challenges that TSA is facing?

TSA has several significant challenges. Given that a tweet can only be a maximum
of 140 characters long, text length is an extremely crucial one. Different from previous
research on evaluating the long text of the document, analyzing the sentiment of short
length text presents a new challenge for TSA. Topic relevance is another difficulty, which
refers to the categorization of tweets into certain topics. This contributes to the efficiency of
the fine-grained TSA tasks. In addition, text pre-processing techniques are also essential for
TSA. Preprocessing the raw dataset is a prerequisite for model creation, therefore various
methods, such as removing punctuation, stop-word removal, stemming, and lemmatization,
etc., have been introduced accordingly [14].

2. Twitter

Various microblogging platforms like Twitter, Facebook, and Instagram were born out
of the emergence of SNS [14]. Twitter is a widely used SNS that allows users to exchange
140-character messages (referred to as “tweet”) [16]. More than 300 million people have
signed up to use Twitter, which generates over 500 million updates each day [6,17]. Because
of the ease with which it can be shared, Twitter has grown to be one of the most important
sources of user-generated data. The following is a list of the most important features
of Twitter.

Tweet: A tweet is a 140-character maximum data unit that can be transmitted using
Twitter. Its content ranges from how people feel or what they think about certain events, to
photos, videos, and links, etc., all of which can be easily shared with the users’ contacts.

Handle: This refers to the behavior of tweet updating or public messaging to other
users. It is written as “@username,” and the @ symbol is used to refer to the person or
organization with whom the tweets are connected [14].

Hashtag: Hashtag is a kind of metadata tag used in various SNS that allows users to
adopt dynamic, user-generated tags to make it easier for others to find the tweets related to
a specific topic [18].

Follow: This is an activity of registered users to pursue people, companies, or any
organization that they are interested in and to receive updated tweets in real time. Twitter is
more than just a tool for staying in touch with friends and sharing one’s own daily activities,
its true strength lies in the dissemination of information and the following of others.

Retweet: It is one of the most useful tools for disseminating information on Twitter,
in which users are allowed to re-post the tweets they are interested in. Here, the original
tweets generally remain unchanged, followed by the abbreviation of the original username
of the authors [14].

Search: This powerful feature allows users to search keywords and phrases on Twitter
to find updated tweets about their interests in real time [19]. People are more likely to join
Twitter because of this search function, which facilitates the discovery and dissemination
of relevant content.

Table 2 shows an example of a tweet from the user, BaskFan. It is worth noting that
the tweet contains some of the features above. @Strive indicates that the tweet is a reply to
the user of Strive, and the user, NBA, has also been mentioned. Meanwhile, the hashtag
shows that it is related to the topic of lakers.

Table 2. One example of a tweet including user opinions.

Source Username Post

Twitter BaskFan @Strive: I LIKE watching basketball @NBA
game especially LAKERS GAMES. #lakers
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3. Sentiment Analysis

Opinion mining is a subfield of linguistics and natural language processing that deals
with sentiment analysis. It evaluates the degree of polarity of words and phrases to examine
and extracts views and feelings from textual data [20,21]. Various studies and advances
have been carried out by organizations or individuals that are interested in finding out how
people feel about a given issue [20]. The term of sentiment was firstly coined by Das and
Chen [22] and Tong [23] in 2001, who evaluated the sentiment of the market by automatic
analysis of the text [9]. Turney [24], Pang et al. [25], and Nasukawa and Yi [26] were some of
the first to discuss sentiment analysis and the Natural Language Processing (NLP) methods
that go along with it in their following publications. In addition, a great deal of work has
been carried out on more application-oriented approaches. As an example, Liu et al. [27]
proposed a sentiment-based approach to forecast sale patterns. The models presented
by McGlohon et al. [28] to estimate product and merchant quality were statistical and
heuristic. Chen et al. [29] used sentiment analysis techniques to find hidden relationships
between subjects and opinionated phrases in the political realm, where novel opinion
scoring models were developed. Yano and Smith [30] sought to identify links between the
number of comments and political sentiment using statistical modeling. Furthermore, eval-
uating Twitter conversation has emerged as a promising area of study. As the conversation
offers a wealth of discriminative information relevant to various topics, it can facilitate the
understanding of the feelings of people. Optimistic and pessimistic emotions expressed
in Twitter conversations were analyzed by using a novel deep learning approach [31]. It
integrated emotion detection with conversation reconstruction modules to discover senti-
ment polarity in social media posts. Tamar Ginossar et al. [32] evaluated the cross-platform
spreading of information by analyzing Twitter conversations. Rabindra Lamsal et al. [33]
developed forecasting models to predict the prevalence of virus using the workload of
Twitter conversations, which employed a latent variables-based searching technique.

Sentiment analysis has also been applied to business and social studies. Companies
like Google and Microsoft have recently built their own sentiment analysis systems to assist
in their industrial and commercial activities [34]. TSA attempts to address the difficulty
of evaluating the hidden meaning of tweets posted on Twitter, which is considered a new
subject of sentiment analysis. There exist some challenges to TSA, the most significant
of which is the restriction on message size. Due to the fact that a tweet contains no more
than 140 characters, it is difficult to glean the sentiment contained within such a little
amount of text. Meanwhile, the irregular textual representation on Twitter intensifies the
complicatedness. Therefore, several concerns need to be addressed by the suggested TSA
procedures [14]. Figure 1 shows the general operation flow of TSA.
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Figure 1. The operation flow of Twitter sentiment analysis [14].

A sentiment analysis system often receives data from a variety of sources, such as
blogs, comments, reviews, etc., in a variety of forms, such as XML, HTML, and PDF [35].
Techniques like tokenization, steaming, and stop-word removal are used to standardize
and transform the data from the corpus into training datasets in text format. In sentiment
analysis, selecting a collection of relevant features to train the text classifiers is a critical stage
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since different combinations of features have a significant impact on the final performance
of sentiment analysis tasks. Then, the polarity label of the tested data is determined, relying
on a text classifier which is trained and built up by the machine learning technique [14].

4. Representation of Feature

Feature representation is a preprocessing step in sentiment analysis that involves
turning text content into a feature vector [9]. The following are the most common ways of
expressing the feature in sentiment analysis:

N-gram: It identifies a single feature in a given text or speech corpus as a continuous
sequence of n terms. Unigram refers to the n-gram of the size of one, and bigram refers
to the size of two. Specifically, the term frequency based unigram is the most often used
representation in which a single word is considered as a feature and its occurrence frequency
is tallied as the feature value [36].

Part of Speech (POS) tagging: As another essential syntactic feature representation,
this method assigns a POS tag (verb, adverb, adjective, etc.) to every word in a text or
corpus. The well-known Penn Treebank POS tags are shown in Table 3 [34,37].

Table 3. Penn treebank POS tags.

Tag Description Tag Description

CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle

IN Proposition or subordinating
conjunction SYM Symbol

JJ Adjective TO
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS List item marker VBD Verb, past tense

MD Modal VBG Verb, gerund, or present
participle

NN Noun, singular or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-3rd person
singular present

NNP Proper noun, singular VBZ Verb, 3rd person singular
present

NNPS Proper noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

Negation: This is an important linguistic feature that greatly influences the polarity of
a sentence. The location of the negative words is critical to rapidly establish the breadth
of the word’s impact. A statement like, “I like playing basketball but I am tired today”, is
impacted by the negative term because of the word following “basketball” [38].

5. Different Levels of Analysis

Classification at the document, sentence, and aspect levels are the three main types of
classification for sentiment analysis.

5.1. Document-Level Sentiment Analysis

Negative or positive opinions are typically classified at document-level sentiment
analysis. It treats the opinion expressed in a document as a single entity [34,39]. Two pri-
mary approaches to sentiment analysis at document level are supervised and unsupervised
learning. To determine the polarity of a document, supervised learning divides the docu-
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ments into certain groups and generates specialized training datasets. Semantic orientation
is used by unsupervised learning approaches to detect the polarity of test documents by
measuring the degree of particular phrase polarity in the documents. The test document
is regarded as positive if the average value of semantic orientation is above the threshold,
and it is considered as a negative one if it is not [35].

5.2. Sentiment-Level Sentiment Analysis

A single sentence is evaluated as an independent entity, and its entire tone is examined.
The pre-judgment stage is necessary for the sentiment level of sentiment analysis. Only the
subjective instances are analyzed further, while the objective ones are often deleted [35].

5.3. Aspect-Level Sentiment Analysis

In contrast to the previous two levels of analysis, a fine-grained analysis is conducted
in aspect-level sentiment analysis. It typically comprises three steps: identification, cate-
gorization, and aggregation. Here, not only the overall sentiment of an item, but also the
sentiments of all its components are examined. The stage of identification identifies the
target pairs in the provided content that are relevant to the sentiment, and classification
classifies their sentiments based on the predetermined sentiment values. Aggregation is
the process of integrating the sentiment values of all components for a comprehensive
perspective [40].

6. The Approaches for Twitter Sentiment Analysis

The methodologies for sentiment analysis can be generally divided into three main
categories: machine learning-based, lexicon-based, and hybrid-based approaches. The
taxonomy of sentiment analysis is shown in Figure 2 [41].
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6.1. Machine Learning-Based Approach

The classification stage in sentiment analysis uses a classifier that is trained using
machine-learning techniques. This approach can be broadly split into two types: super-
vised learning and unsupervised learning. An overall publication using machine learning
techniques is provided in Table 4. The training dataset and linguistic characteristics are
utilized for automatic text categorization in supervised learning, and primary supervised
learning methodologies are outlined as follows.
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6.1.1. Probabilistic Classifier

Mathematical models are used to predict the categorization based on the input [42].
Probabilistic classifiers such as the Naïve Bayes classifier (NB), Bayesian Network (BN),
and Maximum Entropy classifier (ME) are often used in data analysis [43,44]. To determine
the best class match, the Bayes theorem-based NB classifier is one of the most extensively
used techniques. BN is another probabilistic model that employs Bayesian inference to
calculate probability. Directed Acyclic Graph (DAG) is used to depict the variables and
their conditional interdependencies [45]. The probability of a feature belonging to a specific
category is computed using ME.

Table 4. The list of machine learning-based approaches for sentiment analysis.

Ref Objective and Algorithm Used Data Scope Dataset

[46] Feature selection, particle swarm
optimization (PSO), CRF

Restaurants and laptop
reviews SemEval-2014

[47] Feature subset selection, discrete
PSO, logistic regression model

Financial, spambase,
Nursery, etc. UCI ML Respository

[48] Feature selection, Binary PSO,
CART, NB, SVM Handwritten digits UCI benchmark

datasets

[49] Selecting emotional features,
multi-swarm PSO, SVM Course review Datasets from MOOC

[50]

Feature weighting,
optimization-based weighted
voting scheme, NB, SVM, LR,
Bayesian logistic regression,
linear discriminant

Camera, doctor, drug,
radio, TV, etc.

Datasets extracted from
websites

[51] Binary classification, SVM Movie review Own

[52]
Feature weighting, adaptative
Kullback–Leibler divergence
score, SVM

Movie review,
newspaper article,

Polarity dataset,
Subjectivity dataset,

MPQA dataset

[53] Feature selection and weighting,
NB, SVM Movie review IMDb

[54] Supervised term weighting,
SVM, kNN

Newsgroup message,
Economic news

20 Newsgroups,
Reuters-21578, TanCorp

[55]

Feature selection, dynamic
relevance, and joint mutual
information maximization, SVM
with RBF kernel, NB, 3-Nearest
Neighbors (3NN)

Vehicle, Madelon,
USPS, etc. UCI Repository

[56] Feature clustering, divisive
algorithm, NB, SVM

News message, HTML
documents

20 Newsgroups, data
from open directory

project

[57] Discriminatively weighted NB,
NB, IWNB, BNB, DNB wide range of domains UCI datasets

[58] Adaptive feature weighting
approaches, MNB, CNB, OVA wide range of domains Datasets in WEKA

[59] Improved NB text classifier,
feature weighting, SVM, MNB

Economic news,
Newsgroup message

Reuters 21578, 20
Newsgroups

[60] Feature weighting and ranking,
SVM, kNN, RBF wide range of domains UCI ML Respository

[61] Content-based recommendation
system, feature weighting, Movie review IMDb

[62] Iterative RELIEF for feature
weighting, kNN wide range of domains UCI and Microarray

datasets

[63]

Effective feature weighting,
improved NB, GRFWNB,
RFWNB, DTFWNB, CFSFWNB,
CFSNB, and DFWNB.

wide range of domains UCI ML Respository
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Table 4. Cont.

Ref Objective and Algorithm Used Data Scope Dataset

[64]
Imbalanced text classification,
probability-based term
weighting, SVM, NB

Archive of engineering
technical papers,

Newsgroup message

MCV1 and Reuters
21578

[65] ITD and ITS based supervised
term weighting, SVM

Movie review, product
review

Cornell movie review,
product reviews from

Amazon, Stanford large
movie review data set

[66] Comparative study of feature
weighting, SVM Economic news Reuters 21578

[67]
Concept-based linguistic
methods, Naive Bayes, Neural
Network

Tweet Manually annotated
dataset

[68]

Decision tree, logistic regression,
multinomial naive Bayes,
support vector machine, random
forest, and Bernoulli Naive Bayes

Tweet Manually collected
dataset

6.1.2. Linear Classifier

The linear classifier is generally used to determine which class a feature belongs to.
The classification decision is made based on linear predictor functions, which linearly
combine feature values. Support Vector Machine (SVM) and Neural Network (NN) are
another two widely used implementation methodologies.

6.1.3. Rule-Based Classifier

This is effective to represent the information of the feature space using a set of rules
of “IF-THEN” for the classification, and the decision is made to classify the features into
predefined classes.

6.1.4. Decision Tree Classifier

This is a non-parametric approach of supervised learning, in which the feature space
is continually partitioned into sub-feature spaces for classification and regression. The goal
of this approach is to use decision rules to forecast the class label of the feature.

The supervised learning-based method is efficient for sentiment analysis; however, it
is difficult to manually prepare labeled data for the classification system. An unsupervised
learning-based approach has been developed to solve the problem, which identifies the
degree of polarity by subjective indicators generated from the sentiment lexicon [9].

6.2. Lexicon-Based Approach

The lexicon-based method makes use of a sentiment lexicon to gauge the strength
of the feelings expressed. To create a sentiment lexicon, a set of preset words is widely
used. Dictionary-based and corpus-based methods are the two most common techniques
to build a sentiment lexicon. Note that lexicographical information, such as a dictionary,
is used in the dictionary-based technique to define sentiment words, whereas the corpus-
based method typically employs scenarios of co-occurrence along with already established
sentiment terms [69]. Table 5 lists the publications that use the lexicon-based sentiment
analysis approach [14,41].
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Table 5. The list of lexicon-based approaches proposed for sentiment analysis.

Ref Objective and Algorithm Used Data Scope Dataset

[70]
Classification of text using
fine-grained attitude labels,
semantic, lexicon created by own

User-generated
personal story

Dataset from
Experience Project

website

[71]

Lexicon-based approach,
document discourse structure,
sentiment classifier, semantic,
lexicon created by own

Movie review IMDB

[72]

Lexicon-based
comments-oriented news
sentiment analyzer, NLP, PMI-IR,
taxonomy lexicon

News information N/A

[73]

Comparative analysis of emotion
detection, supervised and lexical
knowledge-based approach,
SVM

Corpus of emotions ISEAR, Emotinet

[74] Affect-based search, emotion
lexicon by crowdsourcing

Emails, fairy tales,
Novels, etc Corpus of enron email

[75] Unsupervised system of
SSA-UO, rule-based classifier

Unlabeled Twitter
message, SMS message SemEval

[76] Rule-based pattern matching
system, rule-based classifier

Message of Twitter and
SMS SemEval

[77]
Unsupervised sentiment analysis
with emotional signals,
sentiment lexicon

Tweet message STS, OMD

[78]
Entity and tweet-level sentiment
analysis, generic sentiment
lexicon

Tweet message OMD, HCR, STS-Gold

[79] Detection of connotative polarity,
connotation lexicon Tweet message SemEval-2007,

Sentiment twitter

6.3. Hybrid Approach

For this approach, the machine-learning and lexicon-based methods are combined. It
has been shown that the hybrid approach improves the performance of classification, and
the publications using this approach are summarized in Table 6 [14,80].

Table 6. The list of hybrid-based approaches proposed for sentiment analysis.

Ref Objective and Algorithm Used Data Scope Dataset

[81] Neural-network-based hybrid
approach, sentiment classifier

Blogger comments and
product reviews

Datasets collected from
LiveJournal, Review

Centre

[82]
Comparative study of ensemble
technique for sentiment analysis,
NB, SVM, maximum entropy

Movie review, product
review

Cornell movie-review
corpora

[83]

A system for subjectivity and
sentiment analysis (SSA),
manually created polarity
lexicon

Chat messages, Arabic
tweets

multi-domain
sentiment dataset from

Amazon

[84] Rule-based multivariate feature
selection, linear kernel SVM Online review DAR, TGRD, THR,

MONT

[85]

Hybrid method combining
rule-based classification and
machine learning, SVM, SBC,
RBC, GIBC

Movie review, product
review, and MySpace

comment

Epinions, Edmunds,
Movie review [15]
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Table 6. Cont.

Ref Objective and Algorithm Used Data Scope Dataset

[86] Entity-level sentiment analysis
method, opinion lexicon, SVM Tweet message Polarity dataset

[87]
Supervised feature reduction
using n-grams, Twitter-specific
lexicon, SVM

Tweet message Dataset extracted from
Twitter API

[88]

Large-scale distributed system
for real-time Twitter sentiment
analysis, lexicon builder,
lexicon-based classifier, adaptive
logistics regression

Tweet message Dataset extracted from
Twitter API

[89] Polarity Classification Algorithm
(PCA), EEC, IPC, SWNC Tweet message Dataset extracted from

Twitter API

6.4. Other Approaches

It is worth noting that some methods described in TSA literatures do not fit well
into any of the aforementioned categories, part of which could be categorized as “graph-
based approaches” [14]. The methodology seeks to build a connected social graph for
effective label propagation with the assumption that people are mutually influential. Such
approaches were initially developed by Speriosu et al. [90] for TSA, in which various
objects (tweets, hashtags, unigrams, etc.) were utilized as nodes to create the graph.
Additionally, Cui et al. [91] introduced another label propagation method based on the
extraction and analysis of emotion tokens. Recently, a graph-based technique was presented
by Cambria et al. [92] where reasoning tasks were performed by developing a morphology-
aware concept parser. Since construction of the social graph is time-consuming, and the
availability of the graph is greatly dependent on the diversity of the corpus, this area of
study requires further investigation.

7. Discussion

In light of the above, it is clear that the machine-learning-based approach to TSA is
the most popular. By this method, conventional machine learning algorithms are trained
using a subset of available features to predict the sentiment polarity of a given piece of text.
It is worth noting that the performance of the combination of multiple classifiers generally
yields better experimental results than the use of an individual one. Nonetheless, the
approach has its limits. Firstly, the size of the training dataset has a significant impact on
the classification performance of TSA. In order to train the models, most machine-learning
algorithms need a huge number of manually annotated tweets. However, due to the high
cost of human annotation of tweets, creating such data becomes a tedious task. Although
research such as distant supervision has looked into techniques to generate a huge number
of annotated tweets, annotation in poor quality has a negative impact on the efficiency
of TSA. Secondly, domain dependence is another limitation of machine learning-based
approaches. Specifically, the prediction accuracy of the TSA task is highly dependent on
the classifiers that were taught by the target domain [14].

Lexicon-based approaches relying on sentiment lexicons are introduced to categorize
TSA tasks. Its advantage is that it does not require annotated tweets; nevertheless, the
words that are not in the lexicon might reduce the performance. Context independence is
another drawback of the lexicon-based approaches, which ignores the relationship between
the sentiment and context of words. Hybrid approaches are proposed to address the
weaknesses of the machine-learning-based and lexicon-based approaches, which produce
superior performance in specific domains of the dataset but require a high computational
cost [14].
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8. Conclusions

In recent years, researchers have become increasingly interested in analyzing tweets
based on the sentiments they represent. This interest comes from the fact that a great
number of tweets are posted on Twitter, which provides vital information on the sentiments
of the public on a variety of subjects. The goal of this survey is to introduce the basic
concepts and techniques for sentiment analysis of tweets, and more than 60 publications
were evaluated and classified to exhibit the most recent developments in the field. It is also
beneficial to learn sentiment analysis by looking at the most recent applications of TSA. It
is believed that TSA will be a rapidly developing research field during the next few years.
More studies on TSA will be conducted in the future.
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